|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.] */
|
|
|
|
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <errno.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <stdarg.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include <openssl/err.h>
|
|
|
|
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
|
|
|
#include <windows.h>
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
|
|
|
|
#include <errno.h>
|
|
|
|
#include <signal.h>
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "internal.h"
|
|
|
|
|
|
|
|
|
|
|
|
#define OPENSSL_MALLOC_PREFIX 8
|
|
|
|
static_assert(OPENSSL_MALLOC_PREFIX >= sizeof(size_t), "size_t too large");
|
|
|
|
|
|
|
|
#if defined(OPENSSL_ASAN)
|
|
|
|
void __asan_poison_memory_region(const volatile void *addr, size_t size);
|
|
|
|
void __asan_unpoison_memory_region(const volatile void *addr, size_t size);
|
|
|
|
#else
|
|
|
|
static void __asan_poison_memory_region(const void *addr, size_t size) {}
|
|
|
|
static void __asan_unpoison_memory_region(const void *addr, size_t size) {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// Windows doesn't really support weak symbols as of May 2019, and Clang on
|
|
|
|
// Windows will emit strong symbols instead. See
|
|
|
|
// https://bugs.llvm.org/show_bug.cgi?id=37598
|
|
|
|
#if defined(__ELF__) && defined(__GNUC__)
|
|
|
|
#define WEAK_SYMBOL_FUNC(rettype, name, args) \
|
|
|
|
rettype name args __attribute__((weak));
|
|
|
|
#else
|
|
|
|
#define WEAK_SYMBOL_FUNC(rettype, name, args) static rettype(*name) args = NULL;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// sdallocx is a sized |free| function. By passing the size (which we happen to
|
|
|
|
// always know in BoringSSL), the malloc implementation can save work. We cannot
|
|
|
|
// depend on |sdallocx| being available, however, so it's a weak symbol.
|
|
|
|
//
|
|
|
|
// This will always be safe, but will only be overridden if the malloc
|
|
|
|
// implementation is statically linked with BoringSSL. So, if |sdallocx| is
|
|
|
|
// provided in, say, libc.so, we still won't use it because that's dynamically
|
|
|
|
// linked. This isn't an ideal result, but its helps in some cases.
|
|
|
|
WEAK_SYMBOL_FUNC(void, sdallocx, (void *ptr, size_t size, int flags));
|
|
|
|
|
|
|
|
// The following three functions can be defined to override default heap
|
|
|
|
// allocation and freeing. If defined, it is the responsibility of
|
|
|
|
// |OPENSSL_memory_free| to zero out the memory before returning it to the
|
|
|
|
// system. |OPENSSL_memory_free| will not be passed NULL pointers.
|
|
|
|
//
|
|
|
|
// WARNING: These functions are called on every allocation and free in
|
|
|
|
// BoringSSL across the entire process. They may be called by any code in the
|
|
|
|
// process which calls BoringSSL, including in process initializers and thread
|
|
|
|
// destructors. When called, BoringSSL may hold pthreads locks. Any other code
|
|
|
|
// in the process which, directly or indirectly, calls BoringSSL may be on the
|
|
|
|
// call stack and may itself be using arbitrary synchronization primitives.
|
|
|
|
//
|
|
|
|
// As a result, these functions may not have the usual programming environment
|
|
|
|
// available to most C or C++ code. In particular, they may not call into
|
|
|
|
// BoringSSL, or any library which depends on BoringSSL. Any synchronization
|
|
|
|
// primitives used must tolerate every other synchronization primitive linked
|
|
|
|
// into the process, including pthreads locks. Failing to meet these constraints
|
|
|
|
// may result in deadlocks, crashes, or memory corruption.
|
|
|
|
WEAK_SYMBOL_FUNC(void *, OPENSSL_memory_alloc, (size_t size));
|
|
|
|
WEAK_SYMBOL_FUNC(void, OPENSSL_memory_free, (void *ptr));
|
|
|
|
WEAK_SYMBOL_FUNC(size_t, OPENSSL_memory_get_size, (void *ptr));
|
|
|
|
|
|
|
|
// kBoringSSLBinaryTag is a distinctive byte sequence to identify binaries that
|
|
|
|
// are linking in BoringSSL and, roughly, what version they are using.
|
|
|
|
static const uint8_t kBoringSSLBinaryTag[18] = {
|
|
|
|
// 16 bytes of magic tag.
|
|
|
|
0x8c,
|
|
|
|
0x62,
|
|
|
|
0x20,
|
|
|
|
0x0b,
|
|
|
|
0xd2,
|
|
|
|
0xa0,
|
|
|
|
0x72,
|
|
|
|
0x58,
|
|
|
|
0x44,
|
|
|
|
0xa8,
|
|
|
|
0x96,
|
|
|
|
0x69,
|
|
|
|
0xad,
|
|
|
|
0x55,
|
|
|
|
0x7e,
|
|
|
|
0xec,
|
|
|
|
// Current source iteration. Incremented ~monthly.
|
|
|
|
3,
|
|
|
|
0,
|
|
|
|
};
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_MALLOC_FAILURE_TESTING)
|
|
|
|
static CRYPTO_MUTEX malloc_failure_lock = CRYPTO_MUTEX_INIT;
|
|
|
|
static uint64_t current_malloc_count = 0;
|
|
|
|
static uint64_t malloc_number_to_fail = 0;
|
|
|
|
static int malloc_failure_enabled = 0, break_on_malloc_fail = 0,
|
|
|
|
any_malloc_failed = 0;
|
|
|
|
|
|
|
|
static void malloc_exit_handler(void) {
|
|
|
|
CRYPTO_MUTEX_lock_read(&malloc_failure_lock);
|
|
|
|
if (any_malloc_failed) {
|
|
|
|
// Signal to the test driver that some allocation failed, so it knows to
|
|
|
|
// increment the counter and continue.
|
|
|
|
_exit(88);
|
|
|
|
}
|
|
|
|
CRYPTO_MUTEX_unlock_read(&malloc_failure_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void init_malloc_failure(void) {
|
|
|
|
const char *env = getenv("MALLOC_NUMBER_TO_FAIL");
|
|
|
|
if (env != NULL && env[0] != 0) {
|
|
|
|
char *endptr;
|
|
|
|
malloc_number_to_fail = strtoull(env, &endptr, 10);
|
|
|
|
if (*endptr == 0) {
|
|
|
|
malloc_failure_enabled = 1;
|
|
|
|
atexit(malloc_exit_handler);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
break_on_malloc_fail = getenv("MALLOC_BREAK_ON_FAIL") != NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
// should_fail_allocation returns one if the current allocation should fail and
|
|
|
|
// zero otherwise.
|
|
|
|
static int should_fail_allocation() {
|
|
|
|
static CRYPTO_once_t once = CRYPTO_ONCE_INIT;
|
|
|
|
CRYPTO_once(&once, init_malloc_failure);
|
|
|
|
if (!malloc_failure_enabled) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// We lock just so multi-threaded tests are still correct, but we won't test
|
|
|
|
// every malloc exhaustively.
|
|
|
|
CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
|
|
|
|
int should_fail = current_malloc_count == malloc_number_to_fail;
|
|
|
|
current_malloc_count++;
|
|
|
|
any_malloc_failed = any_malloc_failed || should_fail;
|
|
|
|
CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
|
|
|
|
|
|
|
|
if (should_fail && break_on_malloc_fail) {
|
|
|
|
raise(SIGTRAP);
|
|
|
|
}
|
|
|
|
if (should_fail) {
|
|
|
|
errno = ENOMEM;
|
|
|
|
}
|
|
|
|
return should_fail;
|
|
|
|
}
|
|
|
|
|
|
|
|
void OPENSSL_reset_malloc_counter_for_testing(void) {
|
|
|
|
CRYPTO_MUTEX_lock_write(&malloc_failure_lock);
|
|
|
|
current_malloc_count = 0;
|
|
|
|
CRYPTO_MUTEX_unlock_write(&malloc_failure_lock);
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
static int should_fail_allocation(void) { return 0; }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void *OPENSSL_malloc(size_t size) {
|
|
|
|
if (should_fail_allocation()) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (OPENSSL_memory_alloc != NULL) {
|
|
|
|
assert(OPENSSL_memory_free != NULL);
|
|
|
|
assert(OPENSSL_memory_get_size != NULL);
|
|
|
|
void *ptr = OPENSSL_memory_alloc(size);
|
|
|
|
if (ptr == NULL && size != 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (size + OPENSSL_MALLOC_PREFIX < size) {
|
|
|
|
// |OPENSSL_malloc| is a central function in BoringSSL thus a reference to
|
|
|
|
// |kBoringSSLBinaryTag| is created here so that the tag isn't discarded by
|
|
|
|
// the linker. The following is sufficient to stop GCC, Clang, and MSVC
|
|
|
|
// optimising away the reference at the time of writing. Since this
|
|
|
|
// probably results in an actual memory reference, it is put in this very
|
|
|
|
// rare code path.
|
|
|
|
uint8_t unused = *(volatile uint8_t *)kBoringSSLBinaryTag;
|
|
|
|
(void) unused;
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *ptr = malloc(size + OPENSSL_MALLOC_PREFIX);
|
|
|
|
if (ptr == NULL) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
|
|
|
|
*(size_t *)ptr = size;
|
|
|
|
|
|
|
|
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
|
|
return ((uint8_t *)ptr) + OPENSSL_MALLOC_PREFIX;
|
|
|
|
|
|
|
|
err:
|
|
|
|
// This only works because ERR does not call OPENSSL_malloc.
|
|
|
|
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *OPENSSL_zalloc(size_t size) {
|
|
|
|
void *ret = OPENSSL_malloc(size);
|
|
|
|
if (ret != NULL) {
|
|
|
|
OPENSSL_memset(ret, 0, size);
|
|
|
|
}
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void OPENSSL_free(void *orig_ptr) {
|
|
|
|
if (orig_ptr == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (OPENSSL_memory_free != NULL) {
|
|
|
|
OPENSSL_memory_free(orig_ptr);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
|
|
|
|
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
|
|
|
|
|
|
size_t size = *(size_t *)ptr;
|
|
|
|
OPENSSL_cleanse(ptr, size + OPENSSL_MALLOC_PREFIX);
|
|
|
|
|
|
|
|
// ASan knows to intercept malloc and free, but not sdallocx.
|
|
|
|
#if defined(OPENSSL_ASAN)
|
|
|
|
(void)sdallocx;
|
|
|
|
free(ptr);
|
|
|
|
#else
|
|
|
|
if (sdallocx) {
|
|
|
|
sdallocx(ptr, size + OPENSSL_MALLOC_PREFIX, 0 /* flags */);
|
|
|
|
} else {
|
|
|
|
free(ptr);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void *OPENSSL_realloc(void *orig_ptr, size_t new_size) {
|
|
|
|
if (orig_ptr == NULL) {
|
|
|
|
return OPENSSL_malloc(new_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t old_size;
|
|
|
|
if (OPENSSL_memory_get_size != NULL) {
|
|
|
|
old_size = OPENSSL_memory_get_size(orig_ptr);
|
|
|
|
} else {
|
|
|
|
void *ptr = ((uint8_t *)orig_ptr) - OPENSSL_MALLOC_PREFIX;
|
|
|
|
__asan_unpoison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
|
|
old_size = *(size_t *)ptr;
|
|
|
|
__asan_poison_memory_region(ptr, OPENSSL_MALLOC_PREFIX);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *ret = OPENSSL_malloc(new_size);
|
|
|
|
if (ret == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t to_copy = new_size;
|
|
|
|
if (old_size < to_copy) {
|
|
|
|
to_copy = old_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
memcpy(ret, orig_ptr, to_copy);
|
|
|
|
OPENSSL_free(orig_ptr);
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void OPENSSL_cleanse(void *ptr, size_t len) {
|
|
|
|
#if defined(OPENSSL_WINDOWS)
|
|
|
|
SecureZeroMemory(ptr, len);
|
|
|
|
#else
|
|
|
|
OPENSSL_memset(ptr, 0, len);
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_NO_ASM)
|
|
|
|
/* As best as we can tell, this is sufficient to break any optimisations that
|
|
|
|
might try to eliminate "superfluous" memsets. If there's an easy way to
|
|
|
|
detect memset_s, it would be better to use that. */
|
|
|
|
__asm__ __volatile__("" : : "r"(ptr) : "memory");
|
|
|
|
#endif
|
|
|
|
#endif // !OPENSSL_NO_ASM
|
|
|
|
}
|
|
|
|
|
|
|
|
void OPENSSL_clear_free(void *ptr, size_t unused) { OPENSSL_free(ptr); }
|
|
|
|
|
|
|
|
int CRYPTO_secure_malloc_init(size_t size, size_t min_size) { return 0; }
|
|
|
|
|
|
|
|
int CRYPTO_secure_malloc_initialized(void) { return 0; }
|
|
|
|
|
|
|
|
size_t CRYPTO_secure_used(void) { return 0; }
|
|
|
|
|
|
|
|
void *OPENSSL_secure_malloc(size_t size) { return OPENSSL_malloc(size); }
|
|
|
|
|
|
|
|
void OPENSSL_secure_clear_free(void *ptr, size_t len) {
|
|
|
|
OPENSSL_clear_free(ptr, len);
|
|
|
|
}
|
|
|
|
|
|
|
|
int CRYPTO_memcmp(const void *in_a, const void *in_b, size_t len) {
|
|
|
|
const uint8_t *a = in_a;
|
|
|
|
const uint8_t *b = in_b;
|
|
|
|
uint8_t x = 0;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
|
|
x |= a[i] ^ b[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t OPENSSL_hash32(const void *ptr, size_t len) {
|
|
|
|
// These are the FNV-1a parameters for 32 bits.
|
|
|
|
static const uint32_t kPrime = 16777619u;
|
|
|
|
static const uint32_t kOffsetBasis = 2166136261u;
|
|
|
|
|
|
|
|
const uint8_t *in = ptr;
|
|
|
|
uint32_t h = kOffsetBasis;
|
|
|
|
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
|
|
h ^= in[i];
|
|
|
|
h *= kPrime;
|
|
|
|
}
|
|
|
|
|
|
|
|
return h;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint32_t OPENSSL_strhash(const char *s) { return OPENSSL_hash32(s, strlen(s)); }
|
|
|
|
|
|
|
|
size_t OPENSSL_strnlen(const char *s, size_t len) {
|
|
|
|
for (size_t i = 0; i < len; i++) {
|
|
|
|
if (s[i] == 0) {
|
|
|
|
return i;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return len;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *OPENSSL_strdup(const char *s) {
|
|
|
|
if (s == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
const size_t len = strlen(s) + 1;
|
|
|
|
char *ret = OPENSSL_malloc(len);
|
|
|
|
if (ret == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
OPENSSL_memcpy(ret, s, len);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_isalpha(int c) {
|
|
|
|
return (c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z');
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_isdigit(int c) { return c >= '0' && c <= '9'; }
|
|
|
|
|
|
|
|
int OPENSSL_isxdigit(int c) {
|
|
|
|
return OPENSSL_isdigit(c) || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F');
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_fromxdigit(uint8_t *out, int c) {
|
|
|
|
if (OPENSSL_isdigit(c)) {
|
|
|
|
*out = c - '0';
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if ('a' <= c && c <= 'f') {
|
|
|
|
*out = c - 'a' + 10;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
if ('A' <= c && c <= 'F') {
|
|
|
|
*out = c - 'A' + 10;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_isalnum(int c) { return OPENSSL_isalpha(c) || OPENSSL_isdigit(c); }
|
|
|
|
|
|
|
|
int OPENSSL_tolower(int c) {
|
|
|
|
if (c >= 'A' && c <= 'Z') {
|
|
|
|
return c + ('a' - 'A');
|
|
|
|
}
|
|
|
|
return c;
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_isspace(int c) {
|
|
|
|
return c == '\t' || c == '\n' || c == '\v' || c == '\f' || c == '\r' ||
|
|
|
|
c == ' ';
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_strcasecmp(const char *a, const char *b) {
|
|
|
|
for (size_t i = 0;; i++) {
|
|
|
|
const int aa = OPENSSL_tolower(a[i]);
|
|
|
|
const int bb = OPENSSL_tolower(b[i]);
|
|
|
|
|
|
|
|
if (aa < bb) {
|
|
|
|
return -1;
|
|
|
|
} else if (aa > bb) {
|
|
|
|
return 1;
|
|
|
|
} else if (aa == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_strncasecmp(const char *a, const char *b, size_t n) {
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
const int aa = OPENSSL_tolower(a[i]);
|
|
|
|
const int bb = OPENSSL_tolower(b[i]);
|
|
|
|
|
|
|
|
if (aa < bb) {
|
|
|
|
return -1;
|
|
|
|
} else if (aa > bb) {
|
|
|
|
return 1;
|
|
|
|
} else if (aa == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
int BIO_snprintf(char *buf, size_t n, const char *format, ...) {
|
|
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
|
|
int ret = BIO_vsnprintf(buf, n, format, args);
|
|
|
|
va_end(args);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
int BIO_vsnprintf(char *buf, size_t n, const char *format, va_list args) {
|
|
|
|
return vsnprintf(buf, n, format, args);
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_vasprintf_internal(char **str, const char *format, va_list args,
|
|
|
|
int system_malloc) {
|
|
|
|
void *(*allocate)(size_t) = system_malloc ? malloc : OPENSSL_malloc;
|
|
|
|
void (*deallocate)(void *) = system_malloc ? free : OPENSSL_free;
|
|
|
|
void *(*reallocate)(void *, size_t) =
|
|
|
|
system_malloc ? realloc : OPENSSL_realloc;
|
|
|
|
char *candidate = NULL;
|
|
|
|
size_t candidate_len = 64; // TODO(bbe) what's the best initial size?
|
|
|
|
|
|
|
|
if ((candidate = allocate(candidate_len)) == NULL) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
va_list args_copy;
|
|
|
|
va_copy(args_copy, args);
|
|
|
|
int ret = vsnprintf(candidate, candidate_len, format, args_copy);
|
|
|
|
va_end(args_copy);
|
|
|
|
if (ret < 0) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
if ((size_t)ret >= candidate_len) {
|
|
|
|
// Too big to fit in allocation.
|
|
|
|
char *tmp;
|
|
|
|
|
|
|
|
candidate_len = (size_t)ret + 1;
|
|
|
|
if ((tmp = reallocate(candidate, candidate_len)) == NULL) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
candidate = tmp;
|
|
|
|
ret = vsnprintf(candidate, candidate_len, format, args);
|
|
|
|
}
|
|
|
|
// At this point this should not happen unless vsnprintf is insane.
|
|
|
|
if (ret < 0 || (size_t)ret >= candidate_len) {
|
|
|
|
goto err;
|
|
|
|
}
|
|
|
|
*str = candidate;
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
err:
|
|
|
|
deallocate(candidate);
|
|
|
|
*str = NULL;
|
|
|
|
errno = ENOMEM;
|
|
|
|
return -1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_vasprintf(char **str, const char *format, va_list args) {
|
|
|
|
return OPENSSL_vasprintf_internal(str, format, args, /*system_malloc=*/0);
|
|
|
|
}
|
|
|
|
|
|
|
|
int OPENSSL_asprintf(char **str, const char *format, ...) {
|
|
|
|
va_list args;
|
|
|
|
va_start(args, format);
|
|
|
|
int ret = OPENSSL_vasprintf(str, format, args);
|
|
|
|
va_end(args);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
char *OPENSSL_strndup(const char *str, size_t size) {
|
|
|
|
size = OPENSSL_strnlen(str, size);
|
|
|
|
|
|
|
|
size_t alloc_size = size + 1;
|
|
|
|
if (alloc_size < size) {
|
|
|
|
// overflow
|
|
|
|
OPENSSL_PUT_ERROR(CRYPTO, ERR_R_MALLOC_FAILURE);
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
char *ret = OPENSSL_malloc(alloc_size);
|
|
|
|
if (ret == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_memcpy(ret, str, size);
|
|
|
|
ret[size] = '\0';
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t OPENSSL_strlcpy(char *dst, const char *src, size_t dst_size) {
|
|
|
|
size_t l = 0;
|
|
|
|
|
|
|
|
for (; dst_size > 1 && *src; dst_size--) {
|
|
|
|
*dst++ = *src++;
|
|
|
|
l++;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (dst_size) {
|
|
|
|
*dst = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return l + strlen(src);
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t OPENSSL_strlcat(char *dst, const char *src, size_t dst_size) {
|
|
|
|
size_t l = 0;
|
|
|
|
for (; dst_size > 0 && *dst; dst_size--, dst++) {
|
|
|
|
l++;
|
|
|
|
}
|
|
|
|
return l + OPENSSL_strlcpy(dst, src, dst_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *OPENSSL_memdup(const void *data, size_t size) {
|
|
|
|
if (size == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *ret = OPENSSL_malloc(size);
|
|
|
|
if (ret == NULL) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_memcpy(ret, data, size);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
void *CRYPTO_malloc(size_t size, const char *file, int line) {
|
|
|
|
return OPENSSL_malloc(size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void *CRYPTO_realloc(void *ptr, size_t new_size, const char *file, int line) {
|
|
|
|
return OPENSSL_realloc(ptr, new_size);
|
|
|
|
}
|
|
|
|
|
|
|
|
void CRYPTO_free(void *ptr, const char *file, int line) { OPENSSL_free(ptr); }
|