Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

444 lines
18 KiB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*
* The DSS routines are based on patches supplied by
* Steven Schoch <schoch@sheba.arc.nasa.gov>. */
#ifndef OPENSSL_HEADER_DSA_H
#define OPENSSL_HEADER_DSA_H
#include <openssl/base.h>
#include <openssl/engine.h>
#include <openssl/ex_data.h>
#include <openssl/thread.h>
#if defined(__cplusplus)
extern "C" {
#endif
// DSA contains functions for signing and verifying with the Digital Signature
// Algorithm.
//
// This module is deprecated and retained for legacy reasons only. It is not
// considered a priority for performance or hardening work. Do not use it in
// new code. Use Ed25519, ECDSA with P-256, or RSA instead.
// Allocation and destruction.
// DSA_new returns a new, empty DSA object or NULL on error.
OPENSSL_EXPORT DSA *DSA_new(void);
// DSA_free decrements the reference count of |dsa| and frees it if the
// reference count drops to zero.
OPENSSL_EXPORT void DSA_free(DSA *dsa);
// DSA_up_ref increments the reference count of |dsa| and returns one.
OPENSSL_EXPORT int DSA_up_ref(DSA *dsa);
// Properties.
// DSA_get0_pub_key returns |dsa|'s public key.
OPENSSL_EXPORT const BIGNUM *DSA_get0_pub_key(const DSA *dsa);
// DSA_get0_priv_key returns |dsa|'s private key, or NULL if |dsa| is a public
// key.
OPENSSL_EXPORT const BIGNUM *DSA_get0_priv_key(const DSA *dsa);
// DSA_get0_p returns |dsa|'s group modulus.
OPENSSL_EXPORT const BIGNUM *DSA_get0_p(const DSA *dsa);
// DSA_get0_q returns the size of |dsa|'s subgroup.
OPENSSL_EXPORT const BIGNUM *DSA_get0_q(const DSA *dsa);
// DSA_get0_g returns |dsa|'s group generator.
OPENSSL_EXPORT const BIGNUM *DSA_get0_g(const DSA *dsa);
// DSA_get0_key sets |*out_pub_key| and |*out_priv_key|, if non-NULL, to |dsa|'s
// public and private key, respectively. If |dsa| is a public key, the private
// key will be set to NULL.
OPENSSL_EXPORT void DSA_get0_key(const DSA *dsa, const BIGNUM **out_pub_key,
const BIGNUM **out_priv_key);
// DSA_get0_pqg sets |*out_p|, |*out_q|, and |*out_g|, if non-NULL, to |dsa|'s
// p, q, and g parameters, respectively.
OPENSSL_EXPORT void DSA_get0_pqg(const DSA *dsa, const BIGNUM **out_p,
const BIGNUM **out_q, const BIGNUM **out_g);
// DSA_set0_key sets |dsa|'s public and private key to |pub_key| and |priv_key|,
// respectively, if non-NULL. On success, it takes ownership of each argument
// and returns one. Otherwise, it returns zero.
//
// |priv_key| may be NULL, but |pub_key| must either be non-NULL or already
// configured on |dsa|.
OPENSSL_EXPORT int DSA_set0_key(DSA *dsa, BIGNUM *pub_key, BIGNUM *priv_key);
// DSA_set0_pqg sets |dsa|'s parameters to |p|, |q|, and |g|, if non-NULL, and
// takes ownership of them. On success, it takes ownership of each argument and
// returns one. Otherwise, it returns zero.
//
// Each argument must either be non-NULL or already configured on |dsa|.
OPENSSL_EXPORT int DSA_set0_pqg(DSA *dsa, BIGNUM *p, BIGNUM *q, BIGNUM *g);
// Parameter generation.
// DSA_generate_parameters_ex generates a set of DSA parameters by following
// the procedure given in FIPS 186-4, appendix A.
// (http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf)
//
// The larger prime will have a length of |bits| (e.g. 2048). The |seed| value
// allows others to generate and verify the same parameters and should be
// random input which is kept for reference. If |out_counter| or |out_h| are
// not NULL then the counter and h value used in the generation are written to
// them.
//
// The |cb| argument is passed to |BN_generate_prime_ex| and is thus called
// during the generation process in order to indicate progress. See the
// comments for that function for details. In addition to the calls made by
// |BN_generate_prime_ex|, |DSA_generate_parameters_ex| will call it with
// |event| equal to 2 and 3 at different stages of the process.
//
// It returns one on success and zero otherwise.
OPENSSL_EXPORT int DSA_generate_parameters_ex(DSA *dsa, unsigned bits,
const uint8_t *seed,
size_t seed_len, int *out_counter,
unsigned long *out_h,
BN_GENCB *cb);
// DSAparams_dup returns a freshly allocated |DSA| that contains a copy of the
// parameters from |dsa|. It returns NULL on error.
OPENSSL_EXPORT DSA *DSAparams_dup(const DSA *dsa);
// Key generation.
// DSA_generate_key generates a public/private key pair in |dsa|, which must
// already have parameters setup. It returns one on success and zero on
// error.
OPENSSL_EXPORT int DSA_generate_key(DSA *dsa);
// Signatures.
// DSA_SIG_st (aka |DSA_SIG|) contains a DSA signature as a pair of integers.
struct DSA_SIG_st {
BIGNUM *r, *s;
};
// DSA_SIG_new returns a freshly allocated, DIG_SIG structure or NULL on error.
// Both |r| and |s| in the signature will be NULL.
OPENSSL_EXPORT DSA_SIG *DSA_SIG_new(void);
// DSA_SIG_free frees the contents of |sig| and then frees |sig| itself.
OPENSSL_EXPORT void DSA_SIG_free(DSA_SIG *sig);
Add various OpenSSL compatibility functions. The non-_ex EVP_CIPHER_CTX Final functions are a bit interesting. Unlike EVP_DigestFinal(_ex), where the non-_ex version calls EVP_MD_CTX_cleanup for you, the EVP_CIPHER_CTX ones do not automatically cleanup. EVP_CipherFinal and EVP_CipherFinal_ex are identical in all releases where they exist. This appears to date to OpenSSL 0.9.7: Prior to OpenSSL 0.9.7, EVP_MD_CTX and EVP_CIPHER_CTX did not use void* data fields. Instead, they just had a union of context structures for every algorithm OpenSSL implemented. EVP_MD_CTX was truly cleanup-less. There were no EVP_MD_CTX_init or EVP_MD_CTX_cleanup functions at all. EVP_DigestInit filled things in without reference to the previous state. EVP_DigestFinal didn't cleanup because there was nothing to cleanup. EVP_CIPHER_CTX was also a union, but for some reason did include EVP_CIPHER_CTX_init and EVP_CIPHER_CTX_cleanup. EVP_CIPHER_CTX_init seemed to be optional: EVP_CipherInit with non-NULL EVP_CIPHER similarly didn't reference the previous state. EVP_CipherFinal did not call EVP_CIPHER_CTX_cleanup, but EVP_CIPHER_CTX_cleanup didn't do anything. It called an optional cleanup hook on the EVP_CIPHER, but as far as I can tell, no EVP_CIPHER implemented it. Then OpenSSL 0.9.7 introduced ENGINE. The union didn't work anymore, so EVP_MD_CTX and EVP_CIPHER_CTX contained void* with allocated type-specific data. The introduced EVP_MD_CTX_init and EVP_MD_CTX_cleanup. For (imperfect!) backwards compatibility, EVP_DigestInit and EVP_DigestFinal transparently called init/cleanup for you. EVP_DigestInit_ex and EVP_DigestFinal_ex became the more flexible versions that left init/cleanup to the caller. EVP_CIPHER_CTX got the same treatment with EVP_CipherInit/EVP_CipherInit_ex, but *not* EVP_CipherFinal/EVP_CipherFinal_ex. The latter did the same thing. The history seems to be that 581f1c84940d77451c2592e9fa470893f6c3c3eb introduced the Final/Final_ex split, with the former doing an auto-cleanup, then 544a2aea4ba1fad76f0802fb70d92a5a8e6ad85a undid it. Looks like the motivation is that EVP_CIPHER_CTX objects are often reused to do multiple operations with a single key. But they missed that the split functions are now unnecessary. Amusingly, OpenSSL's documentation incorrectly said that EVP_CipherFinal cleaned up after the call until it was fixed in 538860a3ce0b9fd142a7f1a62e597cccb74475d3. The fix says that some releases cleaned up, but there were, as far as I can tell, no actual releases with that behavior. I've put the new Final functions in the deprecated section, purely because there is no sense in recommending two different versions of the same function to users, and Final_ex seems to be more popular. But there isn't actually anything wrong with plain Final. Change-Id: Ic2bfda48fdcf30f292141add8c5f745348036852 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50485 Reviewed-by: Adam Langley <agl@google.com>
3 years ago
// DSA_SIG_get0 sets |*out_r| and |*out_s|, if non-NULL, to the two components
// of |sig|.
OPENSSL_EXPORT void DSA_SIG_get0(const DSA_SIG *sig, const BIGNUM **out_r,
const BIGNUM **out_s);
// DSA_SIG_set0 sets |sig|'s components to |r| and |s|, neither of which may be
// NULL. On success, it takes ownership of each argument and returns one.
// Otherwise, it returns zero.
OPENSSL_EXPORT int DSA_SIG_set0(DSA_SIG *sig, BIGNUM *r, BIGNUM *s);
// DSA_do_sign returns a signature of the hash in |digest| by the key in |dsa|
// and returns an allocated, DSA_SIG structure, or NULL on error.
OPENSSL_EXPORT DSA_SIG *DSA_do_sign(const uint8_t *digest, size_t digest_len,
const DSA *dsa);
// DSA_do_verify verifies that |sig| is a valid signature, by the public key in
// |dsa|, of the hash in |digest|. It returns one if so, zero if invalid and -1
// on error.
//
// WARNING: do not use. This function returns -1 for error, 0 for invalid and 1
// for valid. However, this is dangerously different to the usual OpenSSL
// convention and could be a disaster if a user did |if (DSA_do_verify(...))|.
// Because of this, |DSA_check_signature| is a safer version of this.
//
// TODO(fork): deprecate.
OPENSSL_EXPORT int DSA_do_verify(const uint8_t *digest, size_t digest_len,
DSA_SIG *sig, const DSA *dsa);
// DSA_do_check_signature sets |*out_valid| to zero. Then it verifies that |sig|
// is a valid signature, by the public key in |dsa| of the hash in |digest|
// and, if so, it sets |*out_valid| to one.
//
// It returns one if it was able to verify the signature as valid or invalid,
// and zero on error.
OPENSSL_EXPORT int DSA_do_check_signature(int *out_valid, const uint8_t *digest,
size_t digest_len, DSA_SIG *sig,
const DSA *dsa);
// ASN.1 signatures.
//
// These functions also perform DSA signature operations, but deal with ASN.1
// encoded signatures as opposed to raw |BIGNUM|s. If you don't know what
// encoding a DSA signature is in, it's probably ASN.1.
// DSA_sign signs |digest| with the key in |dsa| and writes the resulting
// signature, in ASN.1 form, to |out_sig| and the length of the signature to
// |*out_siglen|. There must be, at least, |DSA_size(dsa)| bytes of space in
// |out_sig|. It returns one on success and zero otherwise.
//
// (The |type| argument is ignored.)
OPENSSL_EXPORT int DSA_sign(int type, const uint8_t *digest, size_t digest_len,
uint8_t *out_sig, unsigned int *out_siglen,
const DSA *dsa);
// DSA_verify verifies that |sig| is a valid, ASN.1 signature, by the public
// key in |dsa|, of the hash in |digest|. It returns one if so, zero if invalid
// and -1 on error.
//
// (The |type| argument is ignored.)
//
// WARNING: do not use. This function returns -1 for error, 0 for invalid and 1
// for valid. However, this is dangerously different to the usual OpenSSL
// convention and could be a disaster if a user did |if (DSA_do_verify(...))|.
// Because of this, |DSA_check_signature| is a safer version of this.
//
// TODO(fork): deprecate.
OPENSSL_EXPORT int DSA_verify(int type, const uint8_t *digest,
size_t digest_len, const uint8_t *sig,
size_t sig_len, const DSA *dsa);
// DSA_check_signature sets |*out_valid| to zero. Then it verifies that |sig|
// is a valid, ASN.1 signature, by the public key in |dsa|, of the hash in
// |digest|. If so, it sets |*out_valid| to one.
//
// It returns one if it was able to verify the signature as valid or invalid,
// and zero on error.
OPENSSL_EXPORT int DSA_check_signature(int *out_valid, const uint8_t *digest,
size_t digest_len, const uint8_t *sig,
size_t sig_len, const DSA *dsa);
// DSA_size returns the size, in bytes, of an ASN.1 encoded, DSA signature
// generated by |dsa|. Parameters must already have been setup in |dsa|.
OPENSSL_EXPORT int DSA_size(const DSA *dsa);
// ASN.1 encoding.
// DSA_SIG_parse parses a DER-encoded DSA-Sig-Value structure from |cbs| and
// advances |cbs|. It returns a newly-allocated |DSA_SIG| or NULL on error.
OPENSSL_EXPORT DSA_SIG *DSA_SIG_parse(CBS *cbs);
// DSA_SIG_marshal marshals |sig| as a DER-encoded DSA-Sig-Value and appends the
// result to |cbb|. It returns one on success and zero on error.
OPENSSL_EXPORT int DSA_SIG_marshal(CBB *cbb, const DSA_SIG *sig);
// DSA_parse_public_key parses a DER-encoded DSA public key from |cbs| and
// advances |cbs|. It returns a newly-allocated |DSA| or NULL on error.
OPENSSL_EXPORT DSA *DSA_parse_public_key(CBS *cbs);
// DSA_marshal_public_key marshals |dsa| as a DER-encoded DSA public key and
// appends the result to |cbb|. It returns one on success and zero on
// failure.
OPENSSL_EXPORT int DSA_marshal_public_key(CBB *cbb, const DSA *dsa);
// DSA_parse_private_key parses a DER-encoded DSA private key from |cbs| and
// advances |cbs|. It returns a newly-allocated |DSA| or NULL on error.
OPENSSL_EXPORT DSA *DSA_parse_private_key(CBS *cbs);
// DSA_marshal_private_key marshals |dsa| as a DER-encoded DSA private key and
// appends the result to |cbb|. It returns one on success and zero on
// failure.
OPENSSL_EXPORT int DSA_marshal_private_key(CBB *cbb, const DSA *dsa);
// DSA_parse_parameters parses a DER-encoded Dss-Parms structure (RFC 3279)
// from |cbs| and advances |cbs|. It returns a newly-allocated |DSA| or NULL on
// error.
OPENSSL_EXPORT DSA *DSA_parse_parameters(CBS *cbs);
// DSA_marshal_parameters marshals |dsa| as a DER-encoded Dss-Parms structure
// (RFC 3279) and appends the result to |cbb|. It returns one on success and
// zero on failure.
OPENSSL_EXPORT int DSA_marshal_parameters(CBB *cbb, const DSA *dsa);
// Conversion.
// DSA_dup_DH returns a |DH| constructed from the parameters of |dsa|. This is
// sometimes needed when Diffie-Hellman parameters are stored in the form of
// DSA parameters. It returns an allocated |DH| on success or NULL on error.
OPENSSL_EXPORT DH *DSA_dup_DH(const DSA *dsa);
// ex_data functions.
//
// See |ex_data.h| for details.
OPENSSL_EXPORT int DSA_get_ex_new_index(long argl, void *argp,
CRYPTO_EX_unused *unused,
CRYPTO_EX_dup *dup_unused,
CRYPTO_EX_free *free_func);
OPENSSL_EXPORT int DSA_set_ex_data(DSA *dsa, int idx, void *arg);
OPENSSL_EXPORT void *DSA_get_ex_data(const DSA *dsa, int idx);
// Deprecated functions.
// d2i_DSA_SIG parses a DER-encoded DSA-Sig-Value structure from |len| bytes at
// |*inp|, as described in |d2i_SAMPLE|.
//
// Use |DSA_SIG_parse| instead.
OPENSSL_EXPORT DSA_SIG *d2i_DSA_SIG(DSA_SIG **out_sig, const uint8_t **inp,
long len);
// i2d_DSA_SIG marshals |in| to a DER-encoded DSA-Sig-Value structure, as
// described in |i2d_SAMPLE|.
//
// Use |DSA_SIG_marshal| instead.
OPENSSL_EXPORT int i2d_DSA_SIG(const DSA_SIG *in, uint8_t **outp);
// d2i_DSAPublicKey parses a DER-encoded DSA public key from |len| bytes at
// |*inp|, as described in |d2i_SAMPLE|.
//
// Use |DSA_parse_public_key| instead.
OPENSSL_EXPORT DSA *d2i_DSAPublicKey(DSA **out, const uint8_t **inp, long len);
// i2d_DSAPublicKey marshals |in| as a DER-encoded DSA public key, as described
// in |i2d_SAMPLE|.
//
// Use |DSA_marshal_public_key| instead.
OPENSSL_EXPORT int i2d_DSAPublicKey(const DSA *in, uint8_t **outp);
// d2i_DSAPrivateKey parses a DER-encoded DSA private key from |len| bytes at
// |*inp|, as described in |d2i_SAMPLE|.
//
// Use |DSA_parse_private_key| instead.
OPENSSL_EXPORT DSA *d2i_DSAPrivateKey(DSA **out, const uint8_t **inp, long len);
// i2d_DSAPrivateKey marshals |in| as a DER-encoded DSA private key, as
// described in |i2d_SAMPLE|.
//
// Use |DSA_marshal_private_key| instead.
OPENSSL_EXPORT int i2d_DSAPrivateKey(const DSA *in, uint8_t **outp);
// d2i_DSAparams parses a DER-encoded Dss-Parms structure (RFC 3279) from |len|
// bytes at |*inp|, as described in |d2i_SAMPLE|.
//
// Use |DSA_parse_parameters| instead.
OPENSSL_EXPORT DSA *d2i_DSAparams(DSA **out, const uint8_t **inp, long len);
// i2d_DSAparams marshals |in|'s parameters as a DER-encoded Dss-Parms structure
// (RFC 3279), as described in |i2d_SAMPLE|.
//
// Use |DSA_marshal_parameters| instead.
OPENSSL_EXPORT int i2d_DSAparams(const DSA *in, uint8_t **outp);
// DSA_generate_parameters is a deprecated version of
// |DSA_generate_parameters_ex| that creates and returns a |DSA*|. Don't use
// it.
OPENSSL_EXPORT DSA *DSA_generate_parameters(int bits, unsigned char *seed,
int seed_len, int *counter_ret,
unsigned long *h_ret,
void (*callback)(int, int, void *),
void *cb_arg);
struct dsa_st {
long version;
BIGNUM *p;
BIGNUM *q; // == 20
BIGNUM *g;
BIGNUM *pub_key; // y public key
BIGNUM *priv_key; // x private key
int flags;
// Normally used to cache montgomery values
CRYPTO_MUTEX method_mont_lock;
BN_MONT_CTX *method_mont_p;
BN_MONT_CTX *method_mont_q;
CRYPTO_refcount_t references;
CRYPTO_EX_DATA ex_data;
};
#if defined(__cplusplus)
} // extern C
extern "C++" {
BSSL_NAMESPACE_BEGIN
BORINGSSL_MAKE_DELETER(DSA, DSA_free)
BORINGSSL_MAKE_UP_REF(DSA, DSA_up_ref)
BORINGSSL_MAKE_DELETER(DSA_SIG, DSA_SIG_free)
BSSL_NAMESPACE_END
} // extern C++
#endif
#define DSA_R_BAD_Q_VALUE 100
#define DSA_R_MISSING_PARAMETERS 101
#define DSA_R_MODULUS_TOO_LARGE 102
#define DSA_R_NEED_NEW_SETUP_VALUES 103
#define DSA_R_BAD_VERSION 104
#define DSA_R_DECODE_ERROR 105
#define DSA_R_ENCODE_ERROR 106
#define DSA_R_INVALID_PARAMETERS 107
#endif // OPENSSL_HEADER_DSA_H