|
|
|
/* Copyright (c) 2016, Google Inc.
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
|
|
|
|
#include <limits.h>
|
|
|
|
#include <stdio.h>
|
|
|
|
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include <gtest/gtest.h>
|
|
|
|
|
|
|
|
#include <openssl/asn1.h>
|
|
|
|
#include <openssl/asn1t.h>
|
|
|
|
#include <openssl/bytestring.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
#include <openssl/obj.h>
|
|
|
|
#include <openssl/span.h>
|
|
|
|
#include <openssl/x509v3.h>
|
|
|
|
|
|
|
|
#include "../test/test_util.h"
|
|
|
|
|
|
|
|
|
|
|
|
// kTag128 is an ASN.1 structure with a universal tag with number 128.
|
|
|
|
static const uint8_t kTag128[] = {
|
|
|
|
0x1f, 0x81, 0x00, 0x01, 0x00,
|
|
|
|
};
|
|
|
|
|
|
|
|
// kTag258 is an ASN.1 structure with a universal tag with number 258.
|
|
|
|
static const uint8_t kTag258[] = {
|
|
|
|
0x1f, 0x82, 0x02, 0x01, 0x00,
|
|
|
|
};
|
|
|
|
|
|
|
|
static_assert(V_ASN1_NEG_INTEGER == 258,
|
|
|
|
"V_ASN1_NEG_INTEGER changed. Update kTag258 to collide with it.");
|
|
|
|
|
|
|
|
// kTagOverflow is an ASN.1 structure with a universal tag with number 2^35-1,
|
|
|
|
// which will not fit in an int.
|
|
|
|
static const uint8_t kTagOverflow[] = {
|
|
|
|
0x1f, 0xff, 0xff, 0xff, 0xff, 0x7f, 0x01, 0x00,
|
|
|
|
};
|
|
|
|
|
|
|
|
TEST(ASN1Test, LargeTags) {
|
|
|
|
const uint8_t *p = kTag258;
|
|
|
|
bssl::UniquePtr<ASN1_TYPE> obj(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag258)));
|
|
|
|
EXPECT_FALSE(obj) << "Parsed value with illegal tag" << obj->type;
|
|
|
|
ERR_clear_error();
|
|
|
|
|
|
|
|
p = kTagOverflow;
|
|
|
|
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTagOverflow)));
|
|
|
|
EXPECT_FALSE(obj) << "Parsed value with tag overflow" << obj->type;
|
|
|
|
ERR_clear_error();
|
|
|
|
|
|
|
|
p = kTag128;
|
|
|
|
obj.reset(d2i_ASN1_TYPE(NULL, &p, sizeof(kTag128)));
|
|
|
|
ASSERT_TRUE(obj);
|
|
|
|
EXPECT_EQ(128, obj->type);
|
|
|
|
const uint8_t kZero = 0;
|
|
|
|
EXPECT_EQ(Bytes(&kZero, 1), Bytes(obj->value.asn1_string->data,
|
|
|
|
obj->value.asn1_string->length));
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ASN1Test, IntegerSetting) {
|
Unwind M_ASN1_* macros for primitive types.
At one point in the SSLeay days, all the ASN1_STRING typedefs were
separate structs (but only in debug builds) and the M_ASN1_* macros
included type casts to handle this.
This is long gone, but we still have the M_ASN1_* macros. Remove the
casts and switch code within the library to call the macros. Some
subtleties:
- The "MSTRING" types (what OpenSSL calls its built-in CHOICEs
containing some set of string types) are weird because the M_FOO_new()
macro and the tasn_new.c FOO_new() function behave differently. I've
split those into a separate CL.
- ASN1_STRING_type, etc., call into the macro, which accesses the field
directly. This CL inverts the dependency.
- ASN1_INTEGER_new and ASN1_INTEGER_free, etc., are generated via
IMPLEMENT_ASN1_STRING_FUNCTIONS in tasn_typ.c. I've pointed
M_ASN1_INTEGER_new and M_ASN1_INTEGER_free to these fields. (The free
function is a no-op, but consistent.)
- The other macros like M_ASN1_BIT_STRING_dup largely do not have
corresponding functions. I've aligned with OpenSSL in just using the
generic ASN1_STRING_dup function. But some others, like
M_ASN1_OCTET_STRING_dup have a corresponding ASN1_OCTET_STRING_dup
function. OpenSSL retained these, so I have too.
Update-Note: Some external code uses the M_ASN1_* macros. This should
remain compatible, but some type errors may have gotten through
unnoticed. This CL restores type-checking.
Change-Id: I8656abc7d0f179192e05a852c97483c021ad9b20
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/44045
Reviewed-by: Adam Langley <agl@google.com>
4 years ago
|
|
|
bssl::UniquePtr<ASN1_INTEGER> by_bn(ASN1_INTEGER_new());
|
|
|
|
bssl::UniquePtr<ASN1_INTEGER> by_long(ASN1_INTEGER_new());
|
|
|
|
bssl::UniquePtr<ASN1_INTEGER> by_uint64(ASN1_INTEGER_new());
|
|
|
|
bssl::UniquePtr<BIGNUM> bn(BN_new());
|
|
|
|
|
|
|
|
const std::vector<int64_t> kValues = {
|
|
|
|
LONG_MIN, -2, -1, 0, 1, 2, 0xff, 0x100, 0xffff, 0x10000, LONG_MAX,
|
|
|
|
};
|
|
|
|
for (const auto &i : kValues) {
|
|
|
|
SCOPED_TRACE(i);
|
|
|
|
|
|
|
|
ASSERT_EQ(1, ASN1_INTEGER_set(by_long.get(), i));
|
|
|
|
const uint64_t abs = i < 0 ? (0 - (uint64_t) i) : i;
|
|
|
|
ASSERT_TRUE(BN_set_u64(bn.get(), abs));
|
|
|
|
BN_set_negative(bn.get(), i < 0);
|
|
|
|
ASSERT_TRUE(BN_to_ASN1_INTEGER(bn.get(), by_bn.get()));
|
|
|
|
|
|
|
|
EXPECT_EQ(0, ASN1_INTEGER_cmp(by_bn.get(), by_long.get()));
|
|
|
|
|
|
|
|
if (i >= 0) {
|
|
|
|
ASSERT_EQ(1, ASN1_INTEGER_set_uint64(by_uint64.get(), i));
|
|
|
|
EXPECT_EQ(0, ASN1_INTEGER_cmp(by_bn.get(), by_uint64.get()));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename T>
|
|
|
|
void TestSerialize(T obj, int (*i2d_func)(T a, uint8_t **pp),
|
|
|
|
bssl::Span<const uint8_t> expected) {
|
|
|
|
int len = static_cast<int>(expected.size());
|
|
|
|
ASSERT_EQ(i2d_func(obj, nullptr), len);
|
|
|
|
|
|
|
|
std::vector<uint8_t> buf(expected.size());
|
|
|
|
uint8_t *ptr = buf.data();
|
|
|
|
ASSERT_EQ(i2d_func(obj, &ptr), len);
|
|
|
|
EXPECT_EQ(ptr, buf.data() + buf.size());
|
|
|
|
EXPECT_EQ(Bytes(expected), Bytes(buf));
|
|
|
|
|
|
|
|
// Test the allocating version.
|
|
|
|
ptr = nullptr;
|
|
|
|
ASSERT_EQ(i2d_func(obj, &ptr), len);
|
|
|
|
EXPECT_EQ(Bytes(expected), Bytes(ptr, expected.size()));
|
|
|
|
OPENSSL_free(ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ASN1Test, SerializeObject) {
|
|
|
|
static const uint8_t kDER[] = {0x06, 0x09, 0x2a, 0x86, 0x48, 0x86,
|
|
|
|
0xf7, 0x0d, 0x01, 0x01, 0x01};
|
|
|
|
const ASN1_OBJECT *obj = OBJ_nid2obj(NID_rsaEncryption);
|
|
|
|
TestSerialize(obj, i2d_ASN1_OBJECT, kDER);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ASN1Test, SerializeBoolean) {
|
|
|
|
static const uint8_t kTrue[] = {0x01, 0x01, 0xff};
|
|
|
|
TestSerialize(0xff, i2d_ASN1_BOOLEAN, kTrue);
|
|
|
|
// Other constants are also correctly encoded as TRUE.
|
|
|
|
TestSerialize(1, i2d_ASN1_BOOLEAN, kTrue);
|
|
|
|
TestSerialize(0x100, i2d_ASN1_BOOLEAN, kTrue);
|
|
|
|
|
|
|
|
static const uint8_t kFalse[] = {0x01, 0x01, 0x00};
|
|
|
|
TestSerialize(0x00, i2d_ASN1_BOOLEAN, kFalse);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The templates go through a different codepath, so test them separately.
|
|
|
|
TEST(ASN1Test, SerializeEmbeddedBoolean) {
|
|
|
|
bssl::UniquePtr<BASIC_CONSTRAINTS> val(BASIC_CONSTRAINTS_new());
|
|
|
|
ASSERT_TRUE(val);
|
|
|
|
|
|
|
|
// BasicConstraints defaults to FALSE, so the encoding should be empty.
|
|
|
|
static const uint8_t kLeaf[] = {0x30, 0x00};
|
|
|
|
val->ca = 0;
|
|
|
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kLeaf);
|
|
|
|
|
|
|
|
// TRUE should always be encoded as 0xff, independent of what value the caller
|
|
|
|
// placed in the |ASN1_BOOLEAN|.
|
|
|
|
static const uint8_t kCA[] = {0x30, 0x03, 0x01, 0x01, 0xff};
|
|
|
|
val->ca = 0xff;
|
|
|
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA);
|
|
|
|
val->ca = 1;
|
|
|
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA);
|
|
|
|
val->ca = 0x100;
|
|
|
|
TestSerialize(val.get(), i2d_BASIC_CONSTRAINTS, kCA);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ASN1Test, ASN1Type) {
|
|
|
|
const struct {
|
|
|
|
int type;
|
|
|
|
std::vector<uint8_t> der;
|
|
|
|
} kTests[] = {
|
|
|
|
// BOOLEAN { TRUE }
|
|
|
|
{V_ASN1_BOOLEAN, {0x01, 0x01, 0xff}},
|
|
|
|
// BOOLEAN { FALSE }
|
|
|
|
{V_ASN1_BOOLEAN, {0x01, 0x01, 0x00}},
|
|
|
|
// OCTET_STRING { "a" }
|
|
|
|
{V_ASN1_OCTET_STRING, {0x04, 0x01, 0x61}},
|
|
|
|
// BIT_STRING { `01` `00` }
|
|
|
|
{V_ASN1_BIT_STRING, {0x03, 0x02, 0x01, 0x00}},
|
|
|
|
// INTEGER { -1 }
|
|
|
|
{V_ASN1_INTEGER, {0x02, 0x01, 0xff}},
|
|
|
|
// OBJECT_IDENTIFIER { 1.2.840.113554.4.1.72585.2 }
|
|
|
|
{V_ASN1_OBJECT,
|
|
|
|
{0x06, 0x0c, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12, 0x04, 0x01, 0x84, 0xb7,
|
|
|
|
0x09, 0x02}},
|
|
|
|
// NULL {}
|
|
|
|
{V_ASN1_NULL, {0x05, 0x00}},
|
|
|
|
// SEQUENCE {}
|
|
|
|
{V_ASN1_SEQUENCE, {0x30, 0x00}},
|
|
|
|
// SET {}
|
|
|
|
{V_ASN1_SET, {0x31, 0x00}},
|
|
|
|
// [0] { UTF8String { "a" } }
|
|
|
|
{V_ASN1_OTHER, {0xa0, 0x03, 0x0c, 0x01, 0x61}},
|
|
|
|
};
|
|
|
|
for (const auto &t : kTests) {
|
|
|
|
SCOPED_TRACE(Bytes(t.der));
|
|
|
|
|
|
|
|
// The input should successfully parse.
|
|
|
|
const uint8_t *ptr = t.der.data();
|
|
|
|
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, t.der.size()));
|
|
|
|
ASSERT_TRUE(val);
|
|
|
|
|
|
|
|
EXPECT_EQ(ASN1_TYPE_get(val.get()), t.type);
|
|
|
|
EXPECT_EQ(val->type, t.type);
|
|
|
|
TestSerialize(val.get(), i2d_ASN1_TYPE, t.der);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test that reading |value.ptr| from a FALSE |ASN1_TYPE| behaves correctly. The
|
|
|
|
// type historically supported this, so maintain the invariant in case external
|
|
|
|
// code relies on it.
|
|
|
|
TEST(ASN1Test, UnusedBooleanBits) {
|
|
|
|
// OCTET_STRING { "a" }
|
|
|
|
static const uint8_t kDER[] = {0x04, 0x01, 0x61};
|
|
|
|
const uint8_t *ptr = kDER;
|
|
|
|
bssl::UniquePtr<ASN1_TYPE> val(d2i_ASN1_TYPE(nullptr, &ptr, sizeof(kDER)));
|
|
|
|
ASSERT_TRUE(val);
|
|
|
|
EXPECT_EQ(V_ASN1_OCTET_STRING, val->type);
|
|
|
|
EXPECT_TRUE(val->value.ptr);
|
|
|
|
|
|
|
|
// Set |val| to a BOOLEAN containing FALSE.
|
|
|
|
ASN1_TYPE_set(val.get(), V_ASN1_BOOLEAN, NULL);
|
|
|
|
EXPECT_EQ(V_ASN1_BOOLEAN, val->type);
|
|
|
|
EXPECT_FALSE(val->value.ptr);
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ASN1Test, ASN1ObjectReuse) {
|
|
|
|
// 1.2.840.113554.4.1.72585.2, an arbitrary unknown OID.
|
|
|
|
static const uint8_t kOID[] = {0x2a, 0x86, 0x48, 0x86, 0xf7, 0x12,
|
|
|
|
0x04, 0x01, 0x84, 0xb7, 0x09, 0x02};
|
|
|
|
ASN1_OBJECT *obj = ASN1_OBJECT_create(NID_undef, kOID, sizeof(kOID),
|
|
|
|
"short name", "long name");
|
|
|
|
ASSERT_TRUE(obj);
|
|
|
|
|
|
|
|
// OBJECT_IDENTIFIER { 1.3.101.112 }
|
|
|
|
static const uint8_t kDER[] = {0x06, 0x03, 0x2b, 0x65, 0x70};
|
|
|
|
const uint8_t *ptr = kDER;
|
|
|
|
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER)));
|
|
|
|
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj));
|
|
|
|
ASN1_OBJECT_free(obj);
|
|
|
|
|
|
|
|
// Repeat the test, this time overriding a static |ASN1_OBJECT|.
|
|
|
|
obj = OBJ_nid2obj(NID_rsaEncryption);
|
|
|
|
ptr = kDER;
|
|
|
|
EXPECT_TRUE(d2i_ASN1_OBJECT(&obj, &ptr, sizeof(kDER)));
|
|
|
|
EXPECT_EQ(NID_ED25519, OBJ_obj2nid(obj));
|
|
|
|
ASN1_OBJECT_free(obj);
|
|
|
|
}
|
|
|
|
|
|
|
|
// The ASN.1 macros do not work on Windows shared library builds, where usage of
|
|
|
|
// |OPENSSL_EXPORT| is a bit stricter.
|
|
|
|
#if !defined(OPENSSL_WINDOWS) || !defined(BORINGSSL_SHARED_LIBRARY)
|
|
|
|
|
|
|
|
typedef struct asn1_linked_list_st {
|
|
|
|
struct asn1_linked_list_st *next;
|
|
|
|
} ASN1_LINKED_LIST;
|
|
|
|
|
|
|
|
DECLARE_ASN1_ITEM(ASN1_LINKED_LIST)
|
|
|
|
DECLARE_ASN1_FUNCTIONS(ASN1_LINKED_LIST)
|
|
|
|
|
|
|
|
ASN1_SEQUENCE(ASN1_LINKED_LIST) = {
|
|
|
|
ASN1_OPT(ASN1_LINKED_LIST, next, ASN1_LINKED_LIST),
|
|
|
|
} ASN1_SEQUENCE_END(ASN1_LINKED_LIST)
|
|
|
|
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(ASN1_LINKED_LIST)
|
|
|
|
|
|
|
|
static bool MakeLinkedList(bssl::UniquePtr<uint8_t> *out, size_t *out_len,
|
|
|
|
size_t count) {
|
|
|
|
bssl::ScopedCBB cbb;
|
|
|
|
std::vector<CBB> cbbs(count);
|
|
|
|
if (!CBB_init(cbb.get(), 2 * count) ||
|
|
|
|
!CBB_add_asn1(cbb.get(), &cbbs[0], CBS_ASN1_SEQUENCE)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
for (size_t i = 1; i < count; i++) {
|
|
|
|
if (!CBB_add_asn1(&cbbs[i - 1], &cbbs[i], CBS_ASN1_SEQUENCE)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
uint8_t *ptr;
|
|
|
|
if (!CBB_finish(cbb.get(), &ptr, out_len)) {
|
|
|
|
return false;
|
|
|
|
}
|
|
|
|
out->reset(ptr);
|
|
|
|
return true;
|
|
|
|
}
|
|
|
|
|
|
|
|
TEST(ASN1Test, Recursive) {
|
|
|
|
bssl::UniquePtr<uint8_t> data;
|
|
|
|
size_t len;
|
|
|
|
|
|
|
|
// Sanity-check that MakeLinkedList can be parsed.
|
|
|
|
ASSERT_TRUE(MakeLinkedList(&data, &len, 5));
|
|
|
|
const uint8_t *ptr = data.get();
|
|
|
|
ASN1_LINKED_LIST *list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len);
|
|
|
|
EXPECT_TRUE(list);
|
|
|
|
ASN1_LINKED_LIST_free(list);
|
|
|
|
|
|
|
|
// Excessively deep structures are rejected.
|
|
|
|
ASSERT_TRUE(MakeLinkedList(&data, &len, 100));
|
|
|
|
ptr = data.get();
|
|
|
|
list = d2i_ASN1_LINKED_LIST(nullptr, &ptr, len);
|
|
|
|
EXPECT_FALSE(list);
|
|
|
|
// Note checking the error queue here does not work. The error "stack trace"
|
|
|
|
// is too deep, so the |ASN1_R_NESTED_TOO_DEEP| entry drops off the queue.
|
|
|
|
ASN1_LINKED_LIST_free(list);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct IMPLICIT_CHOICE {
|
|
|
|
ASN1_STRING *string;
|
|
|
|
};
|
|
|
|
|
|
|
|
// clang-format off
|
|
|
|
DECLARE_ASN1_FUNCTIONS(IMPLICIT_CHOICE)
|
|
|
|
|
|
|
|
ASN1_SEQUENCE(IMPLICIT_CHOICE) = {
|
|
|
|
ASN1_IMP(IMPLICIT_CHOICE, string, DIRECTORYSTRING, 0)
|
|
|
|
} ASN1_SEQUENCE_END(IMPLICIT_CHOICE)
|
|
|
|
|
|
|
|
IMPLEMENT_ASN1_FUNCTIONS(IMPLICIT_CHOICE)
|
|
|
|
// clang-format on
|
|
|
|
|
|
|
|
// Test that the ASN.1 templates reject types with implicitly-tagged CHOICE
|
|
|
|
// types.
|
|
|
|
TEST(ASN1Test, ImplicitChoice) {
|
|
|
|
// Serializing a type with an implicitly tagged CHOICE should fail.
|
|
|
|
std::unique_ptr<IMPLICIT_CHOICE, decltype(&IMPLICIT_CHOICE_free)> obj(
|
|
|
|
IMPLICIT_CHOICE_new(), IMPLICIT_CHOICE_free);
|
|
|
|
EXPECT_EQ(-1, i2d_IMPLICIT_CHOICE(obj.get(), nullptr));
|
|
|
|
|
|
|
|
// An implicitly-tagged CHOICE is an error. Depending on the implementation,
|
|
|
|
// it may be misinterpreted as without the tag, or as clobbering the CHOICE
|
|
|
|
// tag. Test both inputs and ensure they fail.
|
|
|
|
|
|
|
|
// SEQUENCE { UTF8String {} }
|
|
|
|
static const uint8_t kInput1[] = {0x30, 0x02, 0x0c, 0x00};
|
|
|
|
const uint8_t *ptr = kInput1;
|
|
|
|
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput1)));
|
|
|
|
|
|
|
|
// SEQUENCE { [0 PRIMITIVE] {} }
|
|
|
|
static const uint8_t kInput2[] = {0x30, 0x02, 0x80, 0x00};
|
|
|
|
ptr = kInput2;
|
|
|
|
EXPECT_EQ(nullptr, d2i_IMPLICIT_CHOICE(nullptr, &ptr, sizeof(kInput2)));
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // !WINDOWS || !SHARED_LIBRARY
|