Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

875 lines
28 KiB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/ssl.h>
#include <assert.h>
#include <limits.h>
#include <openssl/ec.h>
#include <openssl/ec_key.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include "internal.h"
#include "../crypto/internal.h"
BSSL_NAMESPACE_BEGIN
bool ssl_is_key_type_supported(int key_type) {
return key_type == EVP_PKEY_RSA || key_type == EVP_PKEY_EC ||
key_type == EVP_PKEY_ED25519;
}
static bool ssl_set_pkey(CERT *cert, EVP_PKEY *pkey) {
if (!ssl_is_key_type_supported(pkey->type)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNKNOWN_CERTIFICATE_TYPE);
return false;
}
if (cert->chain != nullptr &&
sk_CRYPTO_BUFFER_value(cert->chain.get(), 0) != nullptr &&
// Sanity-check that the private key and the certificate match.
!ssl_cert_check_private_key(cert, pkey)) {
return false;
}
cert->privatekey = UpRef(pkey);
return true;
}
typedef struct {
uint16_t sigalg;
int pkey_type;
int curve;
const EVP_MD *(*digest_func)(void);
bool is_rsa_pss;
} SSL_SIGNATURE_ALGORITHM;
static const SSL_SIGNATURE_ALGORITHM kSignatureAlgorithms[] = {
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_md5_sha1,
false},
{SSL_SIGN_RSA_PKCS1_SHA1, EVP_PKEY_RSA, NID_undef, &EVP_sha1, false},
{SSL_SIGN_RSA_PKCS1_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, false},
{SSL_SIGN_RSA_PKCS1_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, false},
{SSL_SIGN_RSA_PKCS1_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, false},
{SSL_SIGN_RSA_PSS_RSAE_SHA256, EVP_PKEY_RSA, NID_undef, &EVP_sha256, true},
{SSL_SIGN_RSA_PSS_RSAE_SHA384, EVP_PKEY_RSA, NID_undef, &EVP_sha384, true},
{SSL_SIGN_RSA_PSS_RSAE_SHA512, EVP_PKEY_RSA, NID_undef, &EVP_sha512, true},
{SSL_SIGN_ECDSA_SHA1, EVP_PKEY_EC, NID_undef, &EVP_sha1, false},
{SSL_SIGN_ECDSA_SECP256R1_SHA256, EVP_PKEY_EC, NID_X9_62_prime256v1,
&EVP_sha256, false},
{SSL_SIGN_ECDSA_SECP384R1_SHA384, EVP_PKEY_EC, NID_secp384r1, &EVP_sha384,
false},
{SSL_SIGN_ECDSA_SECP521R1_SHA512, EVP_PKEY_EC, NID_secp521r1, &EVP_sha512,
false},
{SSL_SIGN_ED25519, EVP_PKEY_ED25519, NID_undef, nullptr, false},
};
static const SSL_SIGNATURE_ALGORITHM *get_signature_algorithm(uint16_t sigalg) {
for (size_t i = 0; i < OPENSSL_ARRAY_SIZE(kSignatureAlgorithms); i++) {
if (kSignatureAlgorithms[i].sigalg == sigalg) {
return &kSignatureAlgorithms[i];
}
}
return NULL;
}
bool ssl_has_private_key(const SSL_HANDSHAKE *hs) {
if (hs->config->cert->privatekey != nullptr ||
hs->config->cert->key_method != nullptr ||
ssl_signing_with_dc(hs)) {
return true;
}
return false;
}
static bool pkey_supports_algorithm(const SSL *ssl, EVP_PKEY *pkey,
uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
if (alg == NULL ||
EVP_PKEY_id(pkey) != alg->pkey_type) {
return false;
}
if (ssl_protocol_version(ssl) >= TLS1_3_VERSION) {
// RSA keys may only be used with RSA-PSS.
if (alg->pkey_type == EVP_PKEY_RSA && !alg->is_rsa_pss) {
return false;
}
// EC keys have a curve requirement.
if (alg->pkey_type == EVP_PKEY_EC &&
(alg->curve == NID_undef ||
EC_GROUP_get_curve_name(
EC_KEY_get0_group(EVP_PKEY_get0_EC_KEY(pkey))) != alg->curve)) {
return false;
}
}
return true;
}
static bool setup_ctx(SSL *ssl, EVP_MD_CTX *ctx, EVP_PKEY *pkey,
uint16_t sigalg, bool is_verify) {
if (!pkey_supports_algorithm(ssl, pkey, sigalg)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_SIGNATURE_TYPE);
return false;
}
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
const EVP_MD *digest = alg->digest_func != NULL ? alg->digest_func() : NULL;
EVP_PKEY_CTX *pctx;
if (is_verify) {
if (!EVP_DigestVerifyInit(ctx, &pctx, digest, NULL, pkey)) {
return false;
}
} else if (!EVP_DigestSignInit(ctx, &pctx, digest, NULL, pkey)) {
return false;
}
if (alg->is_rsa_pss) {
if (!EVP_PKEY_CTX_set_rsa_padding(pctx, RSA_PKCS1_PSS_PADDING) ||
!EVP_PKEY_CTX_set_rsa_pss_saltlen(pctx, -1 /* salt len = hash len */)) {
return false;
}
}
return true;
}
enum ssl_private_key_result_t ssl_private_key_sign(
SSL_HANDSHAKE *hs, uint8_t *out, size_t *out_len, size_t max_out,
uint16_t sigalg, Span<const uint8_t> in) {
SSL *const ssl = hs->ssl;
SSL_HANDSHAKE_HINTS *const hints = hs->hints.get();
Array<uint8_t> spki;
if (hints) {
ScopedCBB spki_cbb;
if (!CBB_init(spki_cbb.get(), 64) ||
!EVP_marshal_public_key(spki_cbb.get(), hs->local_pubkey.get()) ||
!CBBFinishArray(spki_cbb.get(), &spki)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_private_key_failure;
}
}
// Replay the signature from handshake hints if available.
if (hints && !hs->hints_requested && //
sigalg == hints->signature_algorithm && //
in == hints->signature_input &&
MakeConstSpan(spki) == hints->signature_spki &&
!hints->signature.empty() && //
hints->signature.size() <= max_out) {
// Signature algorithm and input both match. Reuse the signature from hints.
*out_len = hints->signature.size();
OPENSSL_memcpy(out, hints->signature.data(), hints->signature.size());
return ssl_private_key_success;
}
const SSL_PRIVATE_KEY_METHOD *key_method = hs->config->cert->key_method;
EVP_PKEY *privatekey = hs->config->cert->privatekey.get();
assert(!hs->can_release_private_key);
if (ssl_signing_with_dc(hs)) {
key_method = hs->config->cert->dc_key_method;
privatekey = hs->config->cert->dc_privatekey.get();
}
if (key_method != NULL) {
enum ssl_private_key_result_t ret;
if (hs->pending_private_key_op) {
ret = key_method->complete(ssl, out, out_len, max_out);
} else {
ret = key_method->sign(ssl, out, out_len, max_out, sigalg, in.data(),
in.size());
}
if (ret == ssl_private_key_failure) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
}
hs->pending_private_key_op = ret == ssl_private_key_retry;
if (ret != ssl_private_key_success) {
return ret;
}
} else {
*out_len = max_out;
ScopedEVP_MD_CTX ctx;
if (!setup_ctx(ssl, ctx.get(), privatekey, sigalg, false /* sign */) ||
!EVP_DigestSign(ctx.get(), out, out_len, in.data(), in.size())) {
return ssl_private_key_failure;
}
}
// Save the hint if applicable.
if (hints && hs->hints_requested) {
hints->signature_algorithm = sigalg;
hints->signature_spki = std::move(spki);
if (!hints->signature_input.CopyFrom(in) ||
!hints->signature.CopyFrom(MakeConstSpan(out, *out_len))) {
return ssl_private_key_failure;
}
}
return ssl_private_key_success;
}
bool ssl_public_key_verify(SSL *ssl, Span<const uint8_t> signature,
uint16_t sigalg, EVP_PKEY *pkey,
Span<const uint8_t> in) {
ScopedEVP_MD_CTX ctx;
if (!setup_ctx(ssl, ctx.get(), pkey, sigalg, true /* verify */)) {
return false;
}
bool ok = EVP_DigestVerify(ctx.get(), signature.data(), signature.size(),
in.data(), in.size());
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
ok = true;
ERR_clear_error();
#endif
return ok;
}
enum ssl_private_key_result_t ssl_private_key_decrypt(SSL_HANDSHAKE *hs,
uint8_t *out,
size_t *out_len,
size_t max_out,
Span<const uint8_t> in) {
SSL *const ssl = hs->ssl;
assert(!hs->can_release_private_key);
if (hs->config->cert->key_method != NULL) {
enum ssl_private_key_result_t ret;
if (hs->pending_private_key_op) {
ret = hs->config->cert->key_method->complete(ssl, out, out_len, max_out);
} else {
ret = hs->config->cert->key_method->decrypt(ssl, out, out_len, max_out,
in.data(), in.size());
}
if (ret == ssl_private_key_failure) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PRIVATE_KEY_OPERATION_FAILED);
}
hs->pending_private_key_op = ret == ssl_private_key_retry;
return ret;
}
RSA *rsa = EVP_PKEY_get0_RSA(hs->config->cert->privatekey.get());
if (rsa == NULL) {
// Decrypt operations are only supported for RSA keys.
OPENSSL_PUT_ERROR(SSL, ERR_R_INTERNAL_ERROR);
return ssl_private_key_failure;
}
// Decrypt with no padding. PKCS#1 padding will be removed as part of the
// timing-sensitive code by the caller.
if (!RSA_decrypt(rsa, out_len, out, max_out, in.data(), in.size(),
RSA_NO_PADDING)) {
return ssl_private_key_failure;
}
return ssl_private_key_success;
}
bool ssl_private_key_supports_signature_algorithm(SSL_HANDSHAKE *hs,
uint16_t sigalg) {
SSL *const ssl = hs->ssl;
if (!pkey_supports_algorithm(ssl, hs->local_pubkey.get(), sigalg)) {
return false;
}
// Ensure the RSA key is large enough for the hash. RSASSA-PSS requires that
// emLen be at least hLen + sLen + 2. Both hLen and sLen are the size of the
// hash in TLS. Reasonable RSA key sizes are large enough for the largest
// defined RSASSA-PSS algorithm, but 1024-bit RSA is slightly too small for
// SHA-512. 1024-bit RSA is sometimes used for test credentials, so check the
// size so that we can fall back to another algorithm in that case.
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
if (alg->is_rsa_pss && (size_t)EVP_PKEY_size(hs->local_pubkey.get()) <
2 * EVP_MD_size(alg->digest_func()) + 2) {
return false;
}
return true;
}
BSSL_NAMESPACE_END
using namespace bssl;
int SSL_use_RSAPrivateKey(SSL *ssl, RSA *rsa) {
if (rsa == NULL || ssl->config == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (!pkey ||
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
return ssl_set_pkey(ssl->config->cert.get(), pkey.get());
}
int SSL_use_RSAPrivateKey_ASN1(SSL *ssl, const uint8_t *der, size_t der_len) {
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
if (!rsa) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_use_RSAPrivateKey(ssl, rsa.get());
}
int SSL_use_PrivateKey(SSL *ssl, EVP_PKEY *pkey) {
if (pkey == NULL || ssl->config == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_pkey(ssl->config->cert.get(), pkey);
}
int SSL_use_PrivateKey_ASN1(int type, SSL *ssl, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
if (!pkey || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_use_PrivateKey(ssl, pkey.get());
}
int SSL_CTX_use_RSAPrivateKey(SSL_CTX *ctx, RSA *rsa) {
if (rsa == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
UniquePtr<EVP_PKEY> pkey(EVP_PKEY_new());
if (!pkey ||
!EVP_PKEY_set1_RSA(pkey.get(), rsa)) {
OPENSSL_PUT_ERROR(SSL, ERR_R_EVP_LIB);
return 0;
}
return ssl_set_pkey(ctx->cert.get(), pkey.get());
}
int SSL_CTX_use_RSAPrivateKey_ASN1(SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
UniquePtr<RSA> rsa(RSA_private_key_from_bytes(der, der_len));
if (!rsa) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_CTX_use_RSAPrivateKey(ctx, rsa.get());
}
int SSL_CTX_use_PrivateKey(SSL_CTX *ctx, EVP_PKEY *pkey) {
if (pkey == NULL) {
OPENSSL_PUT_ERROR(SSL, ERR_R_PASSED_NULL_PARAMETER);
return 0;
}
return ssl_set_pkey(ctx->cert.get(), pkey);
}
int SSL_CTX_use_PrivateKey_ASN1(int type, SSL_CTX *ctx, const uint8_t *der,
size_t der_len) {
if (der_len > LONG_MAX) {
OPENSSL_PUT_ERROR(SSL, ERR_R_OVERFLOW);
return 0;
}
const uint8_t *p = der;
UniquePtr<EVP_PKEY> pkey(d2i_PrivateKey(type, NULL, &p, (long)der_len));
if (!pkey || p != der + der_len) {
OPENSSL_PUT_ERROR(SSL, ERR_R_ASN1_LIB);
return 0;
}
return SSL_CTX_use_PrivateKey(ctx, pkey.get());
}
void SSL_set_private_key_method(SSL *ssl,
const SSL_PRIVATE_KEY_METHOD *key_method) {
if (!ssl->config) {
return;
}
ssl->config->cert->key_method = key_method;
}
void SSL_CTX_set_private_key_method(SSL_CTX *ctx,
const SSL_PRIVATE_KEY_METHOD *key_method) {
ctx->cert->key_method = key_method;
}
static constexpr size_t kMaxSignatureAlgorithmNameLen = 23;
// This was "constexpr" rather than "const", but that triggered a bug in MSVC
// where it didn't pad the strings to the correct length.
static const struct {
uint16_t signature_algorithm;
const char name[kMaxSignatureAlgorithmNameLen];
} kSignatureAlgorithmNames[] = {
{SSL_SIGN_RSA_PKCS1_MD5_SHA1, "rsa_pkcs1_md5_sha1"},
{SSL_SIGN_RSA_PKCS1_SHA1, "rsa_pkcs1_sha1"},
{SSL_SIGN_RSA_PKCS1_SHA256, "rsa_pkcs1_sha256"},
{SSL_SIGN_RSA_PKCS1_SHA384, "rsa_pkcs1_sha384"},
{SSL_SIGN_RSA_PKCS1_SHA512, "rsa_pkcs1_sha512"},
{SSL_SIGN_ECDSA_SHA1, "ecdsa_sha1"},
{SSL_SIGN_ECDSA_SECP256R1_SHA256, "ecdsa_secp256r1_sha256"},
{SSL_SIGN_ECDSA_SECP384R1_SHA384, "ecdsa_secp384r1_sha384"},
{SSL_SIGN_ECDSA_SECP521R1_SHA512, "ecdsa_secp521r1_sha512"},
{SSL_SIGN_RSA_PSS_RSAE_SHA256, "rsa_pss_rsae_sha256"},
{SSL_SIGN_RSA_PSS_RSAE_SHA384, "rsa_pss_rsae_sha384"},
{SSL_SIGN_RSA_PSS_RSAE_SHA512, "rsa_pss_rsae_sha512"},
{SSL_SIGN_ED25519, "ed25519"},
};
const char *SSL_get_signature_algorithm_name(uint16_t sigalg,
int include_curve) {
if (!include_curve) {
switch (sigalg) {
case SSL_SIGN_ECDSA_SECP256R1_SHA256:
return "ecdsa_sha256";
case SSL_SIGN_ECDSA_SECP384R1_SHA384:
return "ecdsa_sha384";
case SSL_SIGN_ECDSA_SECP521R1_SHA512:
return "ecdsa_sha512";
}
}
for (const auto &candidate : kSignatureAlgorithmNames) {
if (candidate.signature_algorithm == sigalg) {
return candidate.name;
}
}
return NULL;
}
int SSL_get_signature_algorithm_key_type(uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
return alg != nullptr ? alg->pkey_type : EVP_PKEY_NONE;
}
const EVP_MD *SSL_get_signature_algorithm_digest(uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
if (alg == nullptr || alg->digest_func == nullptr) {
return nullptr;
}
return alg->digest_func();
}
int SSL_is_signature_algorithm_rsa_pss(uint16_t sigalg) {
const SSL_SIGNATURE_ALGORITHM *alg = get_signature_algorithm(sigalg);
return alg != nullptr && alg->is_rsa_pss;
}
int SSL_CTX_set_signing_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
size_t num_prefs) {
return ctx->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
}
int SSL_set_signing_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
size_t num_prefs) {
if (!ssl->config) {
return 0;
}
return ssl->config->cert->sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
}
static constexpr struct {
int pkey_type;
int hash_nid;
uint16_t signature_algorithm;
} kSignatureAlgorithmsMapping[] = {
{EVP_PKEY_RSA, NID_sha1, SSL_SIGN_RSA_PKCS1_SHA1},
{EVP_PKEY_RSA, NID_sha256, SSL_SIGN_RSA_PKCS1_SHA256},
{EVP_PKEY_RSA, NID_sha384, SSL_SIGN_RSA_PKCS1_SHA384},
{EVP_PKEY_RSA, NID_sha512, SSL_SIGN_RSA_PKCS1_SHA512},
{EVP_PKEY_RSA_PSS, NID_sha256, SSL_SIGN_RSA_PSS_RSAE_SHA256},
{EVP_PKEY_RSA_PSS, NID_sha384, SSL_SIGN_RSA_PSS_RSAE_SHA384},
{EVP_PKEY_RSA_PSS, NID_sha512, SSL_SIGN_RSA_PSS_RSAE_SHA512},
{EVP_PKEY_EC, NID_sha1, SSL_SIGN_ECDSA_SHA1},
{EVP_PKEY_EC, NID_sha256, SSL_SIGN_ECDSA_SECP256R1_SHA256},
{EVP_PKEY_EC, NID_sha384, SSL_SIGN_ECDSA_SECP384R1_SHA384},
{EVP_PKEY_EC, NID_sha512, SSL_SIGN_ECDSA_SECP521R1_SHA512},
{EVP_PKEY_ED25519, NID_undef, SSL_SIGN_ED25519},
};
static bool parse_sigalg_pairs(Array<uint16_t> *out, const int *values,
size_t num_values) {
if ((num_values & 1) == 1) {
return false;
}
const size_t num_pairs = num_values / 2;
if (!out->Init(num_pairs)) {
return false;
}
for (size_t i = 0; i < num_values; i += 2) {
const int hash_nid = values[i];
const int pkey_type = values[i+1];
bool found = false;
for (const auto &candidate : kSignatureAlgorithmsMapping) {
if (candidate.pkey_type == pkey_type && candidate.hash_nid == hash_nid) {
(*out)[i / 2] = candidate.signature_algorithm;
found = true;
break;
}
}
if (!found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown hash:%d pkey:%d", hash_nid, pkey_type);
return false;
}
}
return true;
}
static int compare_uint16_t(const void *p1, const void *p2) {
uint16_t u1 = *((const uint16_t *)p1);
uint16_t u2 = *((const uint16_t *)p2);
if (u1 < u2) {
return -1;
} else if (u1 > u2) {
return 1;
} else {
return 0;
}
}
static bool sigalgs_unique(Span<const uint16_t> in_sigalgs) {
if (in_sigalgs.size() < 2) {
return true;
}
Array<uint16_t> sigalgs;
if (!sigalgs.CopyFrom(in_sigalgs)) {
return false;
}
qsort(sigalgs.data(), sigalgs.size(), sizeof(uint16_t), compare_uint16_t);
for (size_t i = 1; i < sigalgs.size(); i++) {
if (sigalgs[i - 1] == sigalgs[i]) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DUPLICATE_SIGNATURE_ALGORITHM);
return false;
}
}
return true;
}
int SSL_CTX_set1_sigalgs(SSL_CTX *ctx, const int *values, size_t num_values) {
Array<uint16_t> sigalgs;
if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
!sigalgs_unique(sigalgs)) {
return 0;
}
if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size()) ||
!ctx->verify_sigalgs.CopyFrom(sigalgs)) {
return 0;
}
return 1;
}
int SSL_set1_sigalgs(SSL *ssl, const int *values, size_t num_values) {
if (!ssl->config) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
Array<uint16_t> sigalgs;
if (!parse_sigalg_pairs(&sigalgs, values, num_values) ||
!sigalgs_unique(sigalgs)) {
return 0;
}
if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
!ssl->config->verify_sigalgs.CopyFrom(sigalgs)) {
return 0;
}
return 1;
}
static bool parse_sigalgs_list(Array<uint16_t> *out, const char *str) {
// str looks like "RSA+SHA1:ECDSA+SHA256:ecdsa_secp256r1_sha256".
// Count colons to give the number of output elements from any successful
// parse.
size_t num_elements = 1;
size_t len = 0;
for (const char *p = str; *p; p++) {
len++;
if (*p == ':') {
num_elements++;
}
}
if (!out->Init(num_elements)) {
return false;
}
size_t out_i = 0;
enum {
pkey_or_name,
hash_name,
} state = pkey_or_name;
char buf[kMaxSignatureAlgorithmNameLen];
// buf_used is always < sizeof(buf). I.e. it's always safe to write
// buf[buf_used] = 0.
size_t buf_used = 0;
int pkey_type = 0, hash_nid = 0;
// Note that the loop runs to len+1, i.e. it'll process the terminating NUL.
for (size_t offset = 0; offset < len+1; offset++) {
Fix the easy -Wformat-signedness errors. GCC has a warning that complains about even more type mismatches in printf. Some of these are a bit messy and will be fixed in separate CLs. This covers the easy ones. The .*s stuff is unfortunate, but printf has no size_t-clean string printer. ALPN protocol lengths are bound by uint8_t, so it doesn't really matter. The IPv6 printing one is obnoxious and arguably a false positive. It's really a C language flaw: all types smaller than int get converted to int when you do arithmetic. So something like this first doesn't overflow the shift because it computes over int, but then the result overall is stored as an int. uint8_t a, b; (a << 8) | b On the one hand, this fixes a "missing" cast to uint16_t before the shift. At the same time, the incorrect final type means passing it to %x, which expects unsigned int. The compiler has forgotten this value actually fits in uint16_t and flags a warning. Mitigate this by storing in a uint16_t first. The story doesn't quite end here. Arguments passed to variadic functions go through integer promotion[0], so the argument is still passed to snprintf as an int! But then va_arg allows for a signedness mismatch[1], provided the value is representable in both types. The combination means that %x, though actually paired with unsigned, also accept uint8_t and uint16_t, because those are guaranteed to promote to an int that meets [1]. GCC recognizes [1] applies here. (There's also PRI16x, but that's a bit tedious to use and, in glibc, is defined as plain "x" anyway.) [0] https://en.cppreference.com/w/c/language/conversion#Default_argument_promotions [1] https://en.cppreference.com/w/c/variadic/va_arg Bug: 450 Change-Id: Ic1d41356755a18ab922956dd2e07b560470341f4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50765 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com>
3 years ago
const unsigned char c = str[offset];
switch (c) {
case '+':
if (state == hash_name) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("+ found in hash name at offset %zu", offset);
return false;
}
if (buf_used == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("empty public key type at offset %zu", offset);
return false;
}
buf[buf_used] = 0;
if (strcmp(buf, "RSA") == 0) {
pkey_type = EVP_PKEY_RSA;
} else if (strcmp(buf, "RSA-PSS") == 0 ||
strcmp(buf, "PSS") == 0) {
pkey_type = EVP_PKEY_RSA_PSS;
} else if (strcmp(buf, "ECDSA") == 0) {
pkey_type = EVP_PKEY_EC;
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown public key type '%s'", buf);
return false;
}
state = hash_name;
buf_used = 0;
break;
case ':':
OPENSSL_FALLTHROUGH;
case 0:
if (buf_used == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("empty element at offset %zu", offset);
return false;
}
buf[buf_used] = 0;
if (state == pkey_or_name) {
// No '+' was seen thus this is a TLS 1.3-style name.
bool found = false;
for (const auto &candidate : kSignatureAlgorithmNames) {
if (strcmp(candidate.name, buf) == 0) {
assert(out_i < num_elements);
(*out)[out_i++] = candidate.signature_algorithm;
found = true;
break;
}
}
if (!found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown signature algorithm '%s'", buf);
return false;
}
} else {
if (strcmp(buf, "SHA1") == 0) {
hash_nid = NID_sha1;
} else if (strcmp(buf, "SHA256") == 0) {
hash_nid = NID_sha256;
} else if (strcmp(buf, "SHA384") == 0) {
hash_nid = NID_sha384;
} else if (strcmp(buf, "SHA512") == 0) {
hash_nid = NID_sha512;
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown hash function '%s'", buf);
return false;
}
bool found = false;
for (const auto &candidate : kSignatureAlgorithmsMapping) {
if (candidate.pkey_type == pkey_type &&
candidate.hash_nid == hash_nid) {
assert(out_i < num_elements);
(*out)[out_i++] = candidate.signature_algorithm;
found = true;
break;
}
}
if (!found) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("unknown pkey:%d hash:%s", pkey_type, buf);
return false;
}
}
state = pkey_or_name;
buf_used = 0;
break;
default:
if (buf_used == sizeof(buf) - 1) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("substring too long at offset %zu", offset);
return false;
}
if ((c >= '0' && c <= '9') || (c >= 'a' && c <= 'z') ||
(c >= 'A' && c <= 'Z') || c == '-' || c == '_') {
buf[buf_used++] = c;
} else {
OPENSSL_PUT_ERROR(SSL, SSL_R_INVALID_SIGNATURE_ALGORITHM);
ERR_add_error_dataf("invalid character 0x%02x at offest %zu", c,
offset);
return false;
}
}
}
assert(out_i == out->size());
return true;
}
int SSL_CTX_set1_sigalgs_list(SSL_CTX *ctx, const char *str) {
Array<uint16_t> sigalgs;
if (!parse_sigalgs_list(&sigalgs, str) ||
!sigalgs_unique(sigalgs)) {
return 0;
}
if (!SSL_CTX_set_signing_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size()) ||
!SSL_CTX_set_verify_algorithm_prefs(ctx, sigalgs.data(),
sigalgs.size())) {
return 0;
}
return 1;
}
int SSL_set1_sigalgs_list(SSL *ssl, const char *str) {
if (!ssl->config) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
Array<uint16_t> sigalgs;
if (!parse_sigalgs_list(&sigalgs, str) ||
!sigalgs_unique(sigalgs)) {
return 0;
}
if (!SSL_set_signing_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size()) ||
!SSL_set_verify_algorithm_prefs(ssl, sigalgs.data(), sigalgs.size())) {
return 0;
}
return 1;
}
int SSL_CTX_set_verify_algorithm_prefs(SSL_CTX *ctx, const uint16_t *prefs,
size_t num_prefs) {
return ctx->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
}
int SSL_set_verify_algorithm_prefs(SSL *ssl, const uint16_t *prefs,
size_t num_prefs) {
if (!ssl->config) {
OPENSSL_PUT_ERROR(SSL, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
return 0;
}
return ssl->config->verify_sigalgs.CopyFrom(MakeConstSpan(prefs, num_prefs));
}