|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.]
|
|
|
|
*/
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3. All advertising materials mentioning features or use of this
|
|
|
|
* software must display the following acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
|
|
* endorse or promote products derived from this software without
|
|
|
|
* prior written permission. For written permission, please contact
|
|
|
|
* openssl-core@openssl.org.
|
|
|
|
*
|
|
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
|
|
* permission of the OpenSSL Project.
|
|
|
|
*
|
|
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
|
|
* acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
* ====================================================================
|
|
|
|
*
|
|
|
|
* This product includes cryptographic software written by Eric Young
|
|
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
|
|
|
|
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
|
|
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
|
|
|
|
|
|
#include <openssl/crypto.h>
|
|
|
|
#include <openssl/ex_data.h>
|
|
|
|
#include <openssl/stack.h>
|
|
|
|
#include <openssl/thread.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
|
|
|
|
#include <valgrind/memcheck.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_TESTS)
|
|
|
|
#include <stdlib.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(__cplusplus)
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
#define alignas(x) __declspec(align(x))
|
|
|
|
#define alignof __alignof
|
|
|
|
#else
|
|
|
|
#include <stdalign.h>
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(OPENSSL_THREADS) && \
|
|
|
|
(!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
|
|
|
|
#include <pthread.h>
|
|
|
|
#define OPENSSL_PTHREADS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
|
|
|
|
defined(OPENSSL_WINDOWS)
|
|
|
|
#define OPENSSL_WINDOWS_THREADS
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
|
|
|
#include <windows.h>
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
|
|
|
|
defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
|
|
|
|
// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
|
|
|
|
void OPENSSL_cpuid_setup(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
|
|
|
|
!defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
|
|
|
|
// for unit tests. Any modifications to the value must be made after
|
|
|
|
// |CRYPTO_library_init| but before any other function call in BoringSSL.
|
|
|
|
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
|
|
|
|
#define BORINGSSL_HAS_UINT128
|
|
|
|
typedef __int128_t int128_t;
|
|
|
|
typedef __uint128_t uint128_t;
|
|
|
|
|
|
|
|
// clang-cl supports __uint128_t but modulus and division don't work.
|
|
|
|
// https://crbug.com/787617.
|
|
|
|
#if !defined(_MSC_VER) || !defined(__clang__)
|
|
|
|
#define BORINGSSL_CAN_DIVIDE_UINT128
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
|
|
|
|
|
|
|
|
// Have a generic fall-through for different versions of C/C++.
|
|
|
|
#if defined(__cplusplus) && __cplusplus >= 201703L
|
|
|
|
#define OPENSSL_FALLTHROUGH [[fallthrough]]
|
|
|
|
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
|
|
|
|
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
|
|
|
|
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
|
|
|
|
__GNUC__ >= 7
|
|
|
|
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
|
|
|
|
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
|
|
|
|
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
|
|
|
|
#elif defined(__clang__)
|
|
|
|
#if __has_attribute(fallthrough) && __clang_major__ >= 5
|
|
|
|
// Clang 3.5, at least, complains about "error: declaration does not declare
|
|
|
|
// anything", possibily because we put a semicolon after this macro in
|
|
|
|
// practice. Thus limit it to >= Clang 5, which does work.
|
|
|
|
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
|
|
|
|
#else // clang versions that do not support fallthrough.
|
|
|
|
#define OPENSSL_FALLTHROUGH
|
|
|
|
#endif
|
|
|
|
#else // C++11 on gcc 6, and all other cases
|
|
|
|
#define OPENSSL_FALLTHROUGH
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// For convenience in testing 64-bit generic code, we allow disabling SSE2
|
|
|
|
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
|
|
|
|
// available, so we would otherwise need to test such code on a non-x86_64
|
|
|
|
// platform.
|
|
|
|
#if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
|
|
|
|
#define OPENSSL_SSE2
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Pointer utility functions.
|
|
|
|
|
|
|
|
// buffers_alias returns one if |a| and |b| alias and zero otherwise.
|
|
|
|
static inline int buffers_alias(const uint8_t *a, size_t a_len,
|
|
|
|
const uint8_t *b, size_t b_len) {
|
|
|
|
// Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
|
|
|
|
// objects are undefined whereas pointer to integer conversions are merely
|
|
|
|
// implementation-defined. We assume the implementation defined it in a sane
|
|
|
|
// way.
|
|
|
|
uintptr_t a_u = (uintptr_t)a;
|
|
|
|
uintptr_t b_u = (uintptr_t)b;
|
|
|
|
return a_u + a_len > b_u && b_u + b_len > a_u;
|
|
|
|
}
|
|
|
|
|
|
|
|
// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
|
|
|
|
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
|
|
|
|
// space.
|
|
|
|
static inline void *align_pointer(void *ptr, size_t alignment) {
|
|
|
|
// |alignment| must be a power of two.
|
|
|
|
assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
|
|
|
|
// Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
|
|
|
|
// offset and advance in pointer space. C guarantees that casting from pointer
|
|
|
|
// to |uintptr_t| and back gives the same pointer, but general
|
|
|
|
// integer-to-pointer conversions are implementation-defined. GCC does define
|
|
|
|
// it in the useful way, but this makes fewer assumptions.
|
|
|
|
uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
|
|
|
|
ptr = (char *)ptr + offset;
|
|
|
|
assert(((uintptr_t)ptr & (alignment - 1)) == 0);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Constant-time utility functions.
|
|
|
|
//
|
|
|
|
// The following methods return a bitmask of all ones (0xff...f) for true and 0
|
|
|
|
// for false. This is useful for choosing a value based on the result of a
|
|
|
|
// conditional in constant time. For example,
|
|
|
|
//
|
|
|
|
// if (a < b) {
|
|
|
|
// c = a;
|
|
|
|
// } else {
|
|
|
|
// c = b;
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// can be written as
|
|
|
|
//
|
|
|
|
// crypto_word_t lt = constant_time_lt_w(a, b);
|
|
|
|
// c = constant_time_select_w(lt, a, b);
|
|
|
|
|
|
|
|
// crypto_word_t is the type that most constant-time functions use. Ideally we
|
|
|
|
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
|
|
|
|
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
|
|
|
|
// bits. Since we want to be able to do constant-time operations on a
|
|
|
|
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
|
|
|
|
// word length.
|
|
|
|
#if defined(OPENSSL_64_BIT)
|
|
|
|
typedef uint64_t crypto_word_t;
|
|
|
|
#elif defined(OPENSSL_32_BIT)
|
|
|
|
typedef uint32_t crypto_word_t;
|
|
|
|
#else
|
|
|
|
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
|
|
|
|
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
|
|
|
|
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
|
|
|
|
#define CONSTTIME_FALSE_8 ((uint8_t)0)
|
|
|
|
|
|
|
|
// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
|
|
|
|
// the returned value. This is used to mitigate compilers undoing constant-time
|
|
|
|
// code, until we can express our requirements directly in the language.
|
|
|
|
//
|
|
|
|
// Note the compiler is aware that |value_barrier_w| has no side effects and
|
|
|
|
// always has the same output for a given input. This allows it to eliminate
|
|
|
|
// dead code, move computations across loops, and vectorize.
|
|
|
|
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
|
|
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
|
|
#endif
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
|
|
|
|
static inline uint32_t value_barrier_u32(uint32_t a) {
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
|
|
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
|
|
#endif
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
|
|
|
|
static inline uint64_t value_barrier_u64(uint64_t a) {
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
|
|
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
|
|
#endif
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_msb_w returns the given value with the MSB copied to all the
|
|
|
|
// other bits.
|
|
|
|
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
|
|
|
|
return 0u - (a >> (sizeof(a) * 8 - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
// Consider the two cases of the problem:
|
|
|
|
// msb(a) == msb(b): a < b iff the MSB of a - b is set.
|
|
|
|
// msb(a) != msb(b): a < b iff the MSB of b is set.
|
|
|
|
//
|
|
|
|
// If msb(a) == msb(b) then the following evaluates as:
|
|
|
|
// msb(a^((a^b)|((a-b)^a))) ==
|
|
|
|
// msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
|
|
|
|
// msb(a^a^(a-b)) == (rearranging)
|
|
|
|
// msb(a-b) (because ∀x. x^x == 0)
|
|
|
|
//
|
|
|
|
// Else, if msb(a) != msb(b) then the following evaluates as:
|
|
|
|
// msb(a^((a^b)|((a-b)^a))) ==
|
|
|
|
// msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
|
|
|
|
// represents a value s.t. msb(𝟙) = 1)
|
|
|
|
// msb(a^𝟙) == (because ORing with 1 results in 1)
|
|
|
|
// msb(b)
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Here is an SMT-LIB verification of this formula:
|
|
|
|
//
|
|
|
|
// (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
|
|
|
|
// (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
|
|
|
|
// )
|
|
|
|
//
|
|
|
|
// (declare-fun a () (_ BitVec 32))
|
|
|
|
// (declare-fun b () (_ BitVec 32))
|
|
|
|
//
|
|
|
|
// (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
|
|
|
|
// (check-sat)
|
|
|
|
// (get-model)
|
|
|
|
return constant_time_msb_w(a^((a^b)|((a-b)^a)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
|
|
|
|
return (uint8_t)(constant_time_lt_w(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
return ~constant_time_lt_w(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
|
|
|
|
return (uint8_t)(constant_time_ge_w(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
|
|
|
|
// Here is an SMT-LIB verification of this formula:
|
|
|
|
//
|
|
|
|
// (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
|
|
|
|
// (bvand (bvnot a) (bvsub a #x00000001))
|
|
|
|
// )
|
|
|
|
//
|
|
|
|
// (declare-fun a () (_ BitVec 32))
|
|
|
|
//
|
|
|
|
// (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
|
|
|
|
// (check-sat)
|
|
|
|
// (get-model)
|
|
|
|
return constant_time_msb_w(~a & (a - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
|
|
|
|
// 8-bit mask.
|
|
|
|
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
|
|
|
|
return (uint8_t)(constant_time_is_zero_w(a));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
return constant_time_is_zero_w(a ^ b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
|
|
|
|
return (uint8_t)(constant_time_eq_w(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_int acts like |constant_time_eq_w| but works on int
|
|
|
|
// values.
|
|
|
|
static inline crypto_word_t constant_time_eq_int(int a, int b) {
|
|
|
|
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_eq_int_8(int a, int b) {
|
|
|
|
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
|
|
|
|
// 1s or all 0s (as returned by the methods above), the select methods return
|
|
|
|
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
|
|
|
|
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
|
|
|
|
crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
// Clang recognizes this pattern as a select. While it usually transforms it
|
|
|
|
// to a cmov, it sometimes further transforms it into a branch, which we do
|
|
|
|
// not want.
|
|
|
|
//
|
|
|
|
// Adding barriers to both |mask| and |~mask| breaks the relationship between
|
|
|
|
// the two, which makes the compiler stick with bitmasks.
|
|
|
|
return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_select_8 acts like |constant_time_select| but operates on
|
|
|
|
// 8-bit values.
|
|
|
|
static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
|
|
|
|
uint8_t b) {
|
|
|
|
return (uint8_t)(constant_time_select_w(mask, a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_select_int acts like |constant_time_select| but operates on
|
|
|
|
// ints.
|
|
|
|
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
|
|
|
|
return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
|
|
|
|
(crypto_word_t)(b)));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
|
|
|
|
|
|
|
|
// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
|
|
|
|
// of memory as secret. Secret data is tracked as it flows to registers and
|
|
|
|
// other parts of a memory. If secret data is used as a condition for a branch,
|
|
|
|
// or as a memory index, it will trigger warnings in valgrind.
|
|
|
|
#define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
|
|
|
|
|
|
|
|
// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
|
|
|
|
// region of memory as public. Public data is not subject to constant-time
|
|
|
|
// rules.
|
|
|
|
#define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define CONSTTIME_SECRET(x, y)
|
|
|
|
#define CONSTTIME_DECLASSIFY(x, y)
|
|
|
|
|
|
|
|
#endif // BORINGSSL_CONSTANT_TIME_VALIDATION
|
|
|
|
|
|
|
|
|
|
|
|
// Thread-safe initialisation.
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_THREADS)
|
|
|
|
typedef uint32_t CRYPTO_once_t;
|
|
|
|
#define CRYPTO_ONCE_INIT 0
|
|
|
|
#elif defined(OPENSSL_WINDOWS_THREADS)
|
|
|
|
typedef INIT_ONCE CRYPTO_once_t;
|
|
|
|
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
|
|
|
|
#elif defined(OPENSSL_PTHREADS)
|
|
|
|
typedef pthread_once_t CRYPTO_once_t;
|
|
|
|
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
|
|
|
|
#else
|
|
|
|
#error "Unknown threading library"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
|
|
|
|
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
|
|
|
|
// then they will block until |init| completes, but |init| will have only been
|
|
|
|
// called once.
|
|
|
|
//
|
|
|
|
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
|
|
|
|
// the value |CRYPTO_ONCE_INIT|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
|
|
|
|
|
|
|
|
|
|
|
|
// Reference counting.
|
|
|
|
|
Automatically enable C11 atomics when available.
It's now 2021. Hopefully we can at least assume anyone building with
-std=c11 also has a corresponding set of headers. Plus, even if you
don't, Clang seems to provide a header. (So C11 atomics work in
clang-cl.) Also apparently atomics are optional, so this checks
__STDC_NO_ATOMICS__.
This does *not* set C11 as the minimum version. If you build with
-std=c99, we'll silently use the non-atomics implementation. That's a
little magical, so I've kept OPENSSL_C11_ATOMIC as a way to assert that
you really want C11 atomics. Mostly it turns into a -std=c11 && !MSVC
self-assert.
Update-Note: If something fails to compile, we'll revert this and adjust
the check, or add an opt-out, or give up. Also, if building with
-std=c99, consider -std=c11.
Change-Id: I1a8074c367a765c5a0f087db8c250e050df2dde8
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/46344
Reviewed-by: Adam Langley <agl@google.com>
4 years ago
|
|
|
// Automatically enable C11 atomics if implemented.
|
|
|
|
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
|
|
|
|
!defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \
|
|
|
|
__STDC_VERSION__ >= 201112L
|
Automatically enable C11 atomics when available.
It's now 2021. Hopefully we can at least assume anyone building with
-std=c11 also has a corresponding set of headers. Plus, even if you
don't, Clang seems to provide a header. (So C11 atomics work in
clang-cl.) Also apparently atomics are optional, so this checks
__STDC_NO_ATOMICS__.
This does *not* set C11 as the minimum version. If you build with
-std=c99, we'll silently use the non-atomics implementation. That's a
little magical, so I've kept OPENSSL_C11_ATOMIC as a way to assert that
you really want C11 atomics. Mostly it turns into a -std=c11 && !MSVC
self-assert.
Update-Note: If something fails to compile, we'll revert this and adjust
the check, or add an opt-out, or give up. Also, if building with
-std=c99, consider -std=c11.
Change-Id: I1a8074c367a765c5a0f087db8c250e050df2dde8
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/46344
Reviewed-by: Adam Langley <agl@google.com>
4 years ago
|
|
|
#define OPENSSL_C11_ATOMIC
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
|
|
|
|
#define CRYPTO_REFCOUNT_MAX 0xffffffff
|
|
|
|
|
|
|
|
// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
|
|
|
|
// value would overflow. It's safe for multiple threads to concurrently call
|
|
|
|
// this or |CRYPTO_refcount_dec_and_test_zero| on the same
|
|
|
|
// |CRYPTO_refcount_t|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
|
|
|
|
|
|
|
|
// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
|
|
|
|
// if it's zero, it crashes the address space.
|
|
|
|
// if it's the maximum value, it returns zero.
|
|
|
|
// otherwise, it atomically decrements it and returns one iff the resulting
|
|
|
|
// value is zero.
|
|
|
|
//
|
|
|
|
// It's safe for multiple threads to concurrently call this or
|
|
|
|
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
|
|
|
|
|
|
|
|
|
|
|
|
// Locks.
|
|
|
|
//
|
|
|
|
// Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
|
|
|
|
// structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
|
|
|
|
// a global lock. A global lock must be initialised to the value
|
|
|
|
// |CRYPTO_STATIC_MUTEX_INIT|.
|
|
|
|
//
|
|
|
|
// |CRYPTO_MUTEX| can appear in public structures and so is defined in
|
|
|
|
// thread.h as a structure large enough to fit the real type. The global lock is
|
|
|
|
// a different type so it may be initialized with platform initializer macros.
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_THREADS)
|
|
|
|
struct CRYPTO_STATIC_MUTEX {
|
|
|
|
char padding; // Empty structs have different sizes in C and C++.
|
|
|
|
};
|
|
|
|
#define CRYPTO_STATIC_MUTEX_INIT { 0 }
|
|
|
|
#elif defined(OPENSSL_WINDOWS_THREADS)
|
|
|
|
struct CRYPTO_STATIC_MUTEX {
|
|
|
|
SRWLOCK lock;
|
|
|
|
};
|
|
|
|
#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
|
|
|
|
#elif defined(OPENSSL_PTHREADS)
|
|
|
|
struct CRYPTO_STATIC_MUTEX {
|
|
|
|
pthread_rwlock_t lock;
|
|
|
|
};
|
|
|
|
#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
|
|
|
|
#else
|
|
|
|
#error "Unknown threading library"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
|
|
|
|
// |CRYPTO_STATIC_MUTEX|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
|
|
|
|
// read lock, but none may have a write lock.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
|
|
|
|
// of lock on it.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
|
|
|
|
// have a read lock, but none may have a write lock. The |lock| variable does
|
|
|
|
// not need to be initialised by any function, but must have been statically
|
|
|
|
// initialised with |CRYPTO_STATIC_MUTEX_INIT|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
|
|
|
|
// any type of lock on it. The |lock| variable does not need to be initialised
|
|
|
|
// by any function, but must have been statically initialised with
|
|
|
|
// |CRYPTO_STATIC_MUTEX_INIT|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C++" {
|
|
|
|
|
|
|
|
BSSL_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
|
|
|
|
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
|
|
|
|
class MutexLockBase {
|
|
|
|
public:
|
|
|
|
explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
|
|
|
|
assert(mu_ != nullptr);
|
|
|
|
LockFunc(mu_);
|
|
|
|
}
|
|
|
|
~MutexLockBase() { ReleaseFunc(mu_); }
|
|
|
|
MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
|
|
|
|
MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
|
|
|
|
delete;
|
|
|
|
|
|
|
|
private:
|
|
|
|
CRYPTO_MUTEX *const mu_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
|
|
|
using MutexWriteLock =
|
|
|
|
internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
|
|
|
|
using MutexReadLock =
|
|
|
|
internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
|
|
|
|
|
|
|
|
BSSL_NAMESPACE_END
|
|
|
|
|
|
|
|
} // extern "C++"
|
|
|
|
#endif // defined(__cplusplus)
|
|
|
|
|
|
|
|
|
|
|
|
// Thread local storage.
|
|
|
|
|
|
|
|
// thread_local_data_t enumerates the types of thread-local data that can be
|
|
|
|
// stored.
|
|
|
|
typedef enum {
|
|
|
|
OPENSSL_THREAD_LOCAL_ERR = 0,
|
|
|
|
OPENSSL_THREAD_LOCAL_RAND,
|
|
|
|
OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
|
|
|
|
OPENSSL_THREAD_LOCAL_TEST,
|
|
|
|
NUM_OPENSSL_THREAD_LOCALS,
|
|
|
|
} thread_local_data_t;
|
|
|
|
|
|
|
|
// thread_local_destructor_t is the type of a destructor function that will be
|
|
|
|
// called when a thread exits and its thread-local storage needs to be freed.
|
|
|
|
typedef void (*thread_local_destructor_t)(void *);
|
|
|
|
|
|
|
|
// CRYPTO_get_thread_local gets the pointer value that is stored for the
|
|
|
|
// current thread for the given index, or NULL if none has been set.
|
|
|
|
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
|
|
|
|
|
|
|
|
// CRYPTO_set_thread_local sets a pointer value for the current thread at the
|
|
|
|
// given index. This function should only be called once per thread for a given
|
|
|
|
// |index|: rather than update the pointer value itself, update the data that
|
|
|
|
// is pointed to.
|
|
|
|
//
|
|
|
|
// The destructor function will be called when a thread exits to free this
|
|
|
|
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
|
|
|
|
// |index| should have the same |destructor| argument. The destructor may be
|
|
|
|
// called with a NULL argument if a thread that never set a thread-local
|
|
|
|
// pointer for |index|, exits. The destructor may be called concurrently with
|
|
|
|
// different arguments.
|
|
|
|
//
|
|
|
|
// This function returns one on success or zero on error. If it returns zero
|
|
|
|
// then |destructor| has been called with |value| already.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_set_thread_local(
|
|
|
|
thread_local_data_t index, void *value,
|
|
|
|
thread_local_destructor_t destructor);
|
|
|
|
|
|
|
|
|
|
|
|
// ex_data
|
|
|
|
|
|
|
|
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
|
|
|
|
|
|
|
|
DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
|
|
|
|
|
|
|
|
// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
|
|
|
|
// supports ex_data. It should defined as a static global within the module
|
|
|
|
// which defines that type.
|
|
|
|
typedef struct {
|
|
|
|
struct CRYPTO_STATIC_MUTEX lock;
|
|
|
|
STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
|
|
|
|
// num_reserved is one if the ex_data index zero is reserved for legacy
|
|
|
|
// |TYPE_get_app_data| functions.
|
|
|
|
uint8_t num_reserved;
|
|
|
|
} CRYPTO_EX_DATA_CLASS;
|
|
|
|
|
|
|
|
#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
|
|
|
|
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
|
|
|
|
{CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
|
|
|
|
|
|
|
|
// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
|
|
|
|
// it to |*out_index|. Each class of object should provide a wrapper function
|
|
|
|
// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
|
|
|
|
// zero otherwise.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
|
|
|
|
int *out_index, long argl,
|
|
|
|
void *argp,
|
|
|
|
CRYPTO_EX_free *free_func);
|
|
|
|
|
|
|
|
// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
|
|
|
|
// of object should provide a wrapper function.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
|
|
|
|
|
|
|
|
// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
|
|
|
|
// if no such index exists. Each class of object should provide a wrapper
|
|
|
|
// function.
|
|
|
|
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
|
|
|
|
|
|
|
|
// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
|
|
|
|
|
|
|
|
// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
|
|
|
|
// object of the given class.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
|
|
|
|
void *obj, CRYPTO_EX_DATA *ad);
|
|
|
|
|
|
|
|
|
|
|
|
// Endianness conversions.
|
|
|
|
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 2
|
|
|
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
|
|
|
|
return __builtin_bswap16(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
|
|
return __builtin_bswap32(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
|
|
return __builtin_bswap64(x);
|
|
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
|
|
|
#include <stdlib.h>
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
|
|
|
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
|
|
|
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
|
|
|
|
return _byteswap_ushort(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
|
|
return _byteswap_ulong(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
|
|
return _byteswap_uint64(x);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
|
|
|
|
return (x >> 8) | (x << 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
|
|
x = (x >> 16) | (x << 16);
|
|
|
|
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
|
|
return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Language bug workarounds.
|
|
|
|
//
|
|
|
|
// Most C standard library functions are undefined if passed NULL, even when the
|
|
|
|
// corresponding length is zero. This gives them (and, in turn, all functions
|
|
|
|
// which call them) surprising behavior on empty arrays. Some compilers will
|
|
|
|
// miscompile code due to this rule. See also
|
|
|
|
// https://www.imperialviolet.org/2016/06/26/nonnull.html
|
|
|
|
//
|
|
|
|
// These wrapper functions behave the same as the corresponding C standard
|
|
|
|
// functions, but behave as expected when passed NULL if the length is zero.
|
|
|
|
//
|
|
|
|
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
|
|
|
|
|
|
|
|
// C++ defines |memchr| as a const-correct overload.
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C++" {
|
|
|
|
|
|
|
|
static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memchr(s, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memchr(s, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // extern "C++"
|
|
|
|
#else // __cplusplus
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memchr(s, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // __cplusplus
|
|
|
|
|
|
|
|
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memcmp(s1, s2, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memcpy(dst, src, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memmove(dst, src, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memset(dst, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Loads and stores.
|
|
|
|
//
|
|
|
|
// The following functions load and store sized integers with the specified
|
|
|
|
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
|
|
|
|
// requirements on the input and output pointers.
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_load_u32_le(const void *in) {
|
|
|
|
uint32_t v;
|
|
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_load_u32_be(const void *in) {
|
|
|
|
uint32_t v;
|
|
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
|
|
return CRYPTO_bswap4(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
|
|
|
|
v = CRYPTO_bswap4(v);
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
|
|
|
|
uint64_t ret;
|
|
|
|
OPENSSL_memcpy(&ret, ptr, sizeof(ret));
|
|
|
|
return CRYPTO_bswap8(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
|
|
|
|
v = CRYPTO_bswap8(v);
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
|
|
|
|
crypto_word_t v;
|
|
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Extract common rotl/rotr functions.
We have a ton of per-file rotation functions, often with generic names
that do not tell you whether they are uint32_t vs uint64_t, or rotl vs
rotr.
Additionally, (x >> r) | (x << (32 - r)) is UB at r = 0.
(x >> r) | (x << ((-r) & 31)) works for 0 <= r < 32, which is what
cast.c does. GCC and Clang recognize this pattern as a rotate, but MSVC
doesn't. MSVC does, however, provide functions for this.
We usually rotate by a non-zero constant, which makes this moot, but
rotation comes up often enough that it's worth extracting out. Some
particular changes to call out:
- I've switched sha256.c from rotl to rotr. There was a comment
explaining why it differed from the specification. Now that we have
both functions, it's simpler to just match the specification.
- I've dropped all the inline assembly from sha512.c. Compilers should
be able to recognize rotations in 2021.
Change-Id: Ia1030e8bfe94dad92514ed1c28777447c48b82f9
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/49765
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
// Bit rotation functions.
|
|
|
|
//
|
|
|
|
// Note these functions use |(-shift) & 31|, etc., because shifting by the bit
|
|
|
|
// width is undefined. Both Clang and GCC recognize this pattern as a rotation,
|
|
|
|
// but MSVC does not. Instead, we call MSVC's built-in functions.
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotl(value, shift);
|
|
|
|
#else
|
|
|
|
return (value << shift) | (value >> ((-shift) & 31));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotr(value, shift);
|
|
|
|
#else
|
|
|
|
return (value >> shift) | (value << ((-shift) & 31));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotl64(value, shift);
|
|
|
|
#else
|
|
|
|
return (value << shift) | (value >> ((-shift) & 63));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotr64(value, shift);
|
|
|
|
#else
|
|
|
|
return (value >> shift) | (value << ((-shift) & 63));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// FIPS functions.
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
|
|
|
|
// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
|
|
|
|
// fails. It prevents any further cryptographic operations by the current
|
|
|
|
// process.
|
|
|
|
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
|
|
|
|
|
|
|
|
// boringssl_self_test_startup runs all startup self tests and returns one on
|
|
|
|
// success or zero on error. Startup self tests do not include lazy tests.
|
|
|
|
// Call |BORINGSSL_self_test| to run every self test.
|
|
|
|
int boringssl_self_test_startup(void);
|
|
|
|
|
|
|
|
// boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run
|
|
|
|
// in this address space. If not, it runs it and crashes the address space if
|
|
|
|
// unsuccessful.
|
|
|
|
void boringssl_ensure_rsa_self_test(void);
|
|
|
|
|
|
|
|
// boringssl_ensure_ecc_self_test checks whether the ECDSA and ECDH self-test
|
|
|
|
// has been run in this address space. If not, it runs it and crashes the
|
|
|
|
// address space if unsuccessful.
|
|
|
|
void boringssl_ensure_ecc_self_test(void);
|
|
|
|
|
|
|
|
// boringssl_ensure_ffdh_self_test checks whether the FFDH self-test has been
|
|
|
|
// run in this address space. If not, it runs it and crashes the address space
|
|
|
|
// if unsuccessful.
|
|
|
|
void boringssl_ensure_ffdh_self_test(void);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// Outside of FIPS mode, the lazy tests are no-ops.
|
|
|
|
|
|
|
|
OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {}
|
|
|
|
OPENSSL_INLINE void boringssl_ensure_ecc_self_test(void) {}
|
|
|
|
OPENSSL_INLINE void boringssl_ensure_ffdh_self_test(void) {}
|
|
|
|
|
|
|
|
#endif // FIPS
|
|
|
|
|
|
|
|
// boringssl_self_test_sha256 performs a SHA-256 KAT.
|
|
|
|
int boringssl_self_test_sha256(void);
|
|
|
|
|
|
|
|
// boringssl_self_test_sha512 performs a SHA-512 KAT.
|
|
|
|
int boringssl_self_test_sha512(void);
|
|
|
|
|
|
|
|
// boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT.
|
|
|
|
int boringssl_self_test_hmac_sha256(void);
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_COUNTERS)
|
|
|
|
void boringssl_fips_inc_counter(enum fips_counter_t counter);
|
|
|
|
#else
|
|
|
|
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_TESTS)
|
|
|
|
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
|
|
|
|
const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST");
|
|
|
|
return value != NULL && strcmp(value, test) == 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif // BORINGSSL_FIPS_BREAK_TESTS
|
|
|
|
|
|
|
|
|
|
|
|
// Runtime CPU feature support
|
|
|
|
|
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
|
|
|
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
|
|
|
|
// x86-64 system.
|
|
|
|
//
|
|
|
|
// Index 0:
|
|
|
|
// EDX for CPUID where EAX = 1
|
|
|
|
// Bit 20 is always zero
|
|
|
|
// Bit 28 is adjusted to reflect whether the data cache is shared between
|
|
|
|
// multiple logical cores
|
|
|
|
// Bit 30 is used to indicate an Intel CPU
|
|
|
|
// Index 1:
|
|
|
|
// ECX for CPUID where EAX = 1
|
|
|
|
// Bit 11 is used to indicate AMD XOP support, not SDBG
|
|
|
|
// Index 2:
|
|
|
|
// EBX for CPUID where EAX = 7
|
|
|
|
// Index 3:
|
|
|
|
// ECX for CPUID where EAX = 7
|
|
|
|
//
|
|
|
|
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
|
|
|
|
// bits in XCR0, so it is not necessary to check those.
|
|
|
|
extern uint32_t OPENSSL_ia32cap_P[4];
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS) && !defined(BORINGSSL_SHARED_LIBRARY)
|
Check static CPU capabilities on x86.
On Arm, our CRYPTO_is_*_capable functions check the corresponding
preprocessor symbol. This allows us to automatically drop dynamic checks
and fallback code when some capability is always avilable.
This CL does the same on x86, as well as consolidates our
OPENSSL_ia32cap_P checks in one place. Since this abstraction is
incompatible with some optimizations we do around OPENSSL_ia32cap_get()
in the FIPS module, I've marked the symbol __attribute__((const)), which
is enough to make GCC and Clang do the optimizations for us. (We already
do the same to DEFINE_BSS_GET.)
Most x86 platforms support a much wider range of capabilities, so this
is usually a no-op. But, notably, all x86_64 Mac hardware has SSSE3
available, so this allows us to statically drop an AES implementation.
(On macOS with -Wl,-dead_strip, this seems to trim 35080 bytes from the
bssl binary.) Configs like -march=native can also drop a bunch of code.
Update-Note: This CL may break build environments that incorrectly mark
some instruction as statically available. This is unlikely to happen
with vector instructions like AVX, where the compiler could freely emit
them anyway. However, instructions like AES-NI might be set incorrectly.
Change-Id: I44fd715c9887d3fda7cb4519c03bee4d4f2c7ea6
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/51548
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
// The FIPS module, as a static library, requires an out-of-line version of
|
|
|
|
// |OPENSSL_ia32cap_get| so accesses can be rewritten by delocate. Mark the
|
|
|
|
// function const so multiple accesses can be optimized together.
|
|
|
|
const uint32_t *OPENSSL_ia32cap_get(void) __attribute__((const));
|
|
|
|
#else
|
|
|
|
OPENSSL_INLINE const uint32_t *OPENSSL_ia32cap_get(void) {
|
|
|
|
return OPENSSL_ia32cap_P;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
Check static CPU capabilities on x86.
On Arm, our CRYPTO_is_*_capable functions check the corresponding
preprocessor symbol. This allows us to automatically drop dynamic checks
and fallback code when some capability is always avilable.
This CL does the same on x86, as well as consolidates our
OPENSSL_ia32cap_P checks in one place. Since this abstraction is
incompatible with some optimizations we do around OPENSSL_ia32cap_get()
in the FIPS module, I've marked the symbol __attribute__((const)), which
is enough to make GCC and Clang do the optimizations for us. (We already
do the same to DEFINE_BSS_GET.)
Most x86 platforms support a much wider range of capabilities, so this
is usually a no-op. But, notably, all x86_64 Mac hardware has SSSE3
available, so this allows us to statically drop an AES implementation.
(On macOS with -Wl,-dead_strip, this seems to trim 35080 bytes from the
bssl binary.) Configs like -march=native can also drop a bunch of code.
Update-Note: This CL may break build environments that incorrectly mark
some instruction as statically available. This is unlikely to happen
with vector instructions like AVX, where the compiler could freely emit
them anyway. However, instructions like AES-NI might be set incorrectly.
Change-Id: I44fd715c9887d3fda7cb4519c03bee4d4f2c7ea6
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/51548
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
// See Intel manual, volume 2A, table 3-11.
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_FXSR_capable(void) {
|
|
|
|
#if defined(__FXSR__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[0] & (1 << 24)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_intel_cpu(void) {
|
|
|
|
// The reserved bit 30 is used to indicate an Intel CPU.
|
|
|
|
return (OPENSSL_ia32cap_get()[0] & (1 << 30)) != 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// See Intel manual, volume 2A, table 3-10.
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_PCLMUL_capable(void) {
|
|
|
|
#if defined(__PCLMUL__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[1] & (1 << 1)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_SSSE3_capable(void) {
|
|
|
|
#if defined(__SSSE3__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[1] & (1 << 9)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_SSE4_1_capable(void) {
|
|
|
|
#if defined(__SSE4_1__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_P[1] & (1 << 19)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_MOVBE_capable(void) {
|
|
|
|
#if defined(__MOVBE__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[1] & (1 << 22)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_AESNI_capable(void) {
|
|
|
|
#if defined(__AES__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[1] & (1 << 25)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_AVX_capable(void) {
|
|
|
|
#if defined(__AVX__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[1] & (1 << 28)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_RDRAND_capable(void) {
|
|
|
|
// The GCC/Clang feature name and preprocessor symbol for RDRAND are "rdrnd"
|
|
|
|
// and |__RDRND__|, respectively.
|
|
|
|
#if defined(__RDRND__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[1] & (1u << 30)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// See Intel manual, volume 2A, table 3-8.
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_BMI1_capable(void) {
|
|
|
|
#if defined(__BMI1__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[2] & (1 << 3)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_AVX2_capable(void) {
|
|
|
|
#if defined(__AVX2__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[2] & (1 << 5)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_BMI2_capable(void) {
|
|
|
|
#if defined(__BMI2__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[2] & (1 << 8)) != 0;
|
|
|
|
#endif
|
Check static CPU capabilities on x86.
On Arm, our CRYPTO_is_*_capable functions check the corresponding
preprocessor symbol. This allows us to automatically drop dynamic checks
and fallback code when some capability is always avilable.
This CL does the same on x86, as well as consolidates our
OPENSSL_ia32cap_P checks in one place. Since this abstraction is
incompatible with some optimizations we do around OPENSSL_ia32cap_get()
in the FIPS module, I've marked the symbol __attribute__((const)), which
is enough to make GCC and Clang do the optimizations for us. (We already
do the same to DEFINE_BSS_GET.)
Most x86 platforms support a much wider range of capabilities, so this
is usually a no-op. But, notably, all x86_64 Mac hardware has SSSE3
available, so this allows us to statically drop an AES implementation.
(On macOS with -Wl,-dead_strip, this seems to trim 35080 bytes from the
bssl binary.) Configs like -march=native can also drop a bunch of code.
Update-Note: This CL may break build environments that incorrectly mark
some instruction as statically available. This is unlikely to happen
with vector instructions like AVX, where the compiler could freely emit
them anyway. However, instructions like AES-NI might be set incorrectly.
Change-Id: I44fd715c9887d3fda7cb4519c03bee4d4f2c7ea6
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/51548
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_ADX_capable(void) {
|
|
|
|
#if defined(__ADX__)
|
|
|
|
return 1;
|
|
|
|
#else
|
|
|
|
return (OPENSSL_ia32cap_get()[2] & (1 << 19)) != 0;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // OPENSSL_X86 || OPENSSL_X86_64
|
|
|
|
|
|
|
|
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
|
|
|
|
|
|
|
#if defined(OPENSSL_APPLE) && defined(OPENSSL_ARM)
|
|
|
|
// We do not detect any features at runtime for Apple's 32-bit ARM platforms. On
|
|
|
|
// 64-bit ARM, we detect some post-ARMv8.0 features.
|
|
|
|
#define OPENSSL_STATIC_ARMCAP
|
|
|
|
#endif
|
|
|
|
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
// Normalize some older feature flags to their modern ACLE values.
|
|
|
|
// https://developer.arm.com/architectures/system-architectures/software-standards/acle
|
|
|
|
#if defined(__ARM_NEON__) && !defined(__ARM_NEON)
|
|
|
|
#define __ARM_NEON 1
|
|
|
|
#endif
|
|
|
|
#if defined(__ARM_FEATURE_CRYPTO)
|
|
|
|
#if !defined(__ARM_FEATURE_AES)
|
|
|
|
#define __ARM_FEATURE_AES 1
|
|
|
|
#endif
|
|
|
|
#if !defined(__ARM_FEATURE_SHA2)
|
|
|
|
#define __ARM_FEATURE_SHA2 1
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
// CRYPTO_is_NEON_capable_at_runtime returns true if the current CPU has a NEON
|
|
|
|
// unit. Note that |OPENSSL_armcap_P| also exists and contains the same
|
|
|
|
// information in a form that's easier for assembly to use.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_is_NEON_capable_at_runtime(void);
|
|
|
|
|
|
|
|
// CRYPTO_is_ARMv8_AES_capable_at_runtime returns true if the current CPU
|
|
|
|
// supports the ARMv8 AES instruction.
|
|
|
|
int CRYPTO_is_ARMv8_AES_capable_at_runtime(void);
|
|
|
|
|
|
|
|
// CRYPTO_is_ARMv8_PMULL_capable_at_runtime returns true if the current CPU
|
|
|
|
// supports the ARMv8 PMULL instruction.
|
|
|
|
int CRYPTO_is_ARMv8_PMULL_capable_at_runtime(void);
|
|
|
|
#endif // !OPENSSL_STATIC_ARMCAP
|
|
|
|
|
|
|
|
// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
|
|
|
|
// this is known statically, it is a constant inline function.
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) {
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON)
|
|
|
|
return 1;
|
|
|
|
#elif defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
return CRYPTO_is_NEON_capable_at_runtime();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) {
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
#if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES)
|
|
|
|
return 1;
|
|
|
|
#elif defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
return CRYPTO_is_ARMv8_AES_capable_at_runtime();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) {
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
#if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES)
|
|
|
|
return 1;
|
|
|
|
#elif defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
return CRYPTO_is_ARMv8_PMULL_capable_at_runtime();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // OPENSSL_ARM || OPENSSL_AARCH64
|
|
|
|
|
|
|
|
#if defined(OPENSSL_PPC64LE)
|
|
|
|
|
|
|
|
// CRYPTO_is_PPC64LE_vcrypto_capable returns true iff the current CPU supports
|
|
|
|
// the Vector.AES category of instructions.
|
|
|
|
int CRYPTO_is_PPC64LE_vcrypto_capable(void);
|
|
|
|
|
|
|
|
extern unsigned long OPENSSL_ppc64le_hwcap2;
|
|
|
|
|
|
|
|
#endif // OPENSSL_PPC64LE
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_DISPATCH_TEST)
|
|
|
|
// Runtime CPU dispatch testing support
|
|
|
|
|
|
|
|
// BORINGSSL_function_hit is an array of flags. The following functions will
|
|
|
|
// set these flags if BORINGSSL_DISPATCH_TEST is defined.
|
|
|
|
// 0: aes_hw_ctr32_encrypt_blocks
|
|
|
|
// 1: aes_hw_encrypt
|
|
|
|
// 2: aesni_gcm_encrypt
|
|
|
|
// 3: aes_hw_set_encrypt_key
|
|
|
|
// 4: vpaes_encrypt
|
|
|
|
// 5: vpaes_set_encrypt_key
|
|
|
|
extern uint8_t BORINGSSL_function_hit[7];
|
|
|
|
#endif // BORINGSSL_DISPATCH_TEST
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
} // extern C
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
|