Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

335 lines
12 KiB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.]
*
* The DSS routines are based on patches supplied by
* Steven Schoch <schoch@sheba.arc.nasa.gov>. */
#include <openssl/dsa.h>
#include <stdio.h>
#include <string.h>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include "../internal.h"
// The following values are taken from the updated Appendix 5 to FIPS PUB 186
// and also appear in Appendix 5 to FIPS PUB 186-1.
static const uint8_t seed[20] = {
0xd5, 0x01, 0x4e, 0x4b, 0x60, 0xef, 0x2b, 0xa8, 0xb6, 0x21, 0x1b,
0x40, 0x62, 0xba, 0x32, 0x24, 0xe0, 0x42, 0x7d, 0xd3,
};
static const uint8_t fips_p[] = {
0x8d, 0xf2, 0xa4, 0x94, 0x49, 0x22, 0x76, 0xaa, 0x3d, 0x25, 0x75,
0x9b, 0xb0, 0x68, 0x69, 0xcb, 0xea, 0xc0, 0xd8, 0x3a, 0xfb, 0x8d,
0x0c, 0xf7, 0xcb, 0xb8, 0x32, 0x4f, 0x0d, 0x78, 0x82, 0xe5, 0xd0,
0x76, 0x2f, 0xc5, 0xb7, 0x21, 0x0e, 0xaf, 0xc2, 0xe9, 0xad, 0xac,
0x32, 0xab, 0x7a, 0xac, 0x49, 0x69, 0x3d, 0xfb, 0xf8, 0x37, 0x24,
0xc2, 0xec, 0x07, 0x36, 0xee, 0x31, 0xc8, 0x02, 0x91,
};
static const uint8_t fips_q[] = {
0xc7, 0x73, 0x21, 0x8c, 0x73, 0x7e, 0xc8, 0xee, 0x99, 0x3b, 0x4f,
0x2d, 0xed, 0x30, 0xf4, 0x8e, 0xda, 0xce, 0x91, 0x5f,
};
static const uint8_t fips_g[] = {
0x62, 0x6d, 0x02, 0x78, 0x39, 0xea, 0x0a, 0x13, 0x41, 0x31, 0x63,
0xa5, 0x5b, 0x4c, 0xb5, 0x00, 0x29, 0x9d, 0x55, 0x22, 0x95, 0x6c,
0xef, 0xcb, 0x3b, 0xff, 0x10, 0xf3, 0x99, 0xce, 0x2c, 0x2e, 0x71,
0xcb, 0x9d, 0xe5, 0xfa, 0x24, 0xba, 0xbf, 0x58, 0xe5, 0xb7, 0x95,
0x21, 0x92, 0x5c, 0x9c, 0xc4, 0x2e, 0x9f, 0x6f, 0x46, 0x4b, 0x08,
0x8c, 0xc5, 0x72, 0xaf, 0x53, 0xe6, 0xd7, 0x88, 0x02,
};
static const uint8_t fips_x[] = {
0x20, 0x70, 0xb3, 0x22, 0x3d, 0xba, 0x37, 0x2f, 0xde, 0x1c, 0x0f,
0xfc, 0x7b, 0x2e, 0x3b, 0x49, 0x8b, 0x26, 0x06, 0x14,
};
static const uint8_t fips_y[] = {
0x19, 0x13, 0x18, 0x71, 0xd7, 0x5b, 0x16, 0x12, 0xa8, 0x19, 0xf2,
0x9d, 0x78, 0xd1, 0xb0, 0xd7, 0x34, 0x6f, 0x7a, 0xa7, 0x7b, 0xb6,
0x2a, 0x85, 0x9b, 0xfd, 0x6c, 0x56, 0x75, 0xda, 0x9d, 0x21, 0x2d,
0x3a, 0x36, 0xef, 0x16, 0x72, 0xef, 0x66, 0x0b, 0x8c, 0x7c, 0x25,
0x5c, 0xc0, 0xec, 0x74, 0x85, 0x8f, 0xba, 0x33, 0xf4, 0x4c, 0x06,
0x69, 0x96, 0x30, 0xa7, 0x6b, 0x03, 0x0e, 0xe3, 0x33,
};
static const uint8_t fips_digest[] = {
0xa9, 0x99, 0x3e, 0x36, 0x47, 0x06, 0x81, 0x6a, 0xba, 0x3e, 0x25,
0x71, 0x78, 0x50, 0xc2, 0x6c, 0x9c, 0xd0, 0xd8, 0x9d,
};
// fips_sig is a DER-encoded version of the r and s values in FIPS PUB 186-1.
static const uint8_t fips_sig[] = {
0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
0xdc, 0xd8, 0xc8,
};
// fips_sig_negative is fips_sig with r encoded as a negative number.
static const uint8_t fips_sig_negative[] = {
0x30, 0x2c, 0x02, 0x14, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10, 0x43,
0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92, 0xb3,
0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56, 0xdf,
0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6, 0xdc,
0xd8, 0xc8,
};
// fip_sig_extra is fips_sig with trailing data.
static const uint8_t fips_sig_extra[] = {
0x30, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64, 0x10,
0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
0xdc, 0xd8, 0xc8, 0x00,
};
// fips_sig_lengths is fips_sig with a non-minimally encoded length.
static const uint8_t fips_sig_bad_length[] = {
0x30, 0x81, 0x2d, 0x02, 0x15, 0x00, 0x8b, 0xac, 0x1a, 0xb6, 0x64,
0x10, 0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c,
0x92, 0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f,
0x56, 0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d,
0xb6, 0xdc, 0xd8, 0xc8, 0x00,
};
// fips_sig_bad_r is fips_sig with a bad r value.
static const uint8_t fips_sig_bad_r[] = {
0x30, 0x2d, 0x02, 0x15, 0x00, 0x8c, 0xac, 0x1a, 0xb6, 0x64, 0x10,
0x43, 0x5c, 0xb7, 0x18, 0x1f, 0x95, 0xb1, 0x6a, 0xb9, 0x7c, 0x92,
0xb3, 0x41, 0xc0, 0x02, 0x14, 0x41, 0xe2, 0x34, 0x5f, 0x1f, 0x56,
0xdf, 0x24, 0x58, 0xf4, 0x26, 0xd1, 0x55, 0xb4, 0xba, 0x2d, 0xb6,
0xdc, 0xd8, 0xc8,
};
static bssl::UniquePtr<DSA> GetFIPSDSA(void) {
bssl::UniquePtr<DSA> dsa(DSA_new());
if (!dsa) {
return nullptr;
}
dsa->p = BN_bin2bn(fips_p, sizeof(fips_p), nullptr);
dsa->q = BN_bin2bn(fips_q, sizeof(fips_q), nullptr);
dsa->g = BN_bin2bn(fips_g, sizeof(fips_g), nullptr);
dsa->pub_key = BN_bin2bn(fips_y, sizeof(fips_y), nullptr);
dsa->priv_key = BN_bin2bn(fips_x, sizeof(fips_x), nullptr);
if (dsa->p == nullptr || dsa->q == nullptr || dsa->g == nullptr ||
dsa->pub_key == nullptr || dsa->priv_key == nullptr) {
return nullptr;
}
return dsa;
}
struct GenerateContext {
FILE *out = nullptr;
int ok = 0;
int num = 0;
};
static int GenerateCallback(int p, int n, BN_GENCB *arg) {
GenerateContext *ctx = reinterpret_cast<GenerateContext *>(arg->arg);
char c = '*';
switch (p) {
case 0:
c = '.';
ctx->num++;
break;
case 1:
c = '+';
break;
case 2:
c = '*';
ctx->ok++;
break;
case 3:
c = '\n';
}
fputc(c, ctx->out);
fflush(ctx->out);
if (!ctx->ok && p == 0 && ctx->num > 1) {
fprintf(stderr, "error in dsatest\n");
return 0;
}
return 1;
}
static int TestGenerate(FILE *out) {
BN_GENCB cb;
int counter, i, j;
uint8_t buf[256];
unsigned long h;
uint8_t sig[256];
unsigned int siglen;
fprintf(out, "test generation of DSA parameters\n");
GenerateContext ctx;
ctx.out = out;
BN_GENCB_set(&cb, GenerateCallback, &ctx);
bssl::UniquePtr<DSA> dsa(DSA_new());
if (!dsa ||
!DSA_generate_parameters_ex(dsa.get(), 512, seed, 20, &counter, &h,
&cb)) {
return false;
}
fprintf(out, "seed\n");
for (i = 0; i < 20; i += 4) {
fprintf(out, "%02X%02X%02X%02X ", seed[i], seed[i + 1], seed[i + 2],
seed[i + 3]);
}
Fix the easy -Wformat-signedness errors. GCC has a warning that complains about even more type mismatches in printf. Some of these are a bit messy and will be fixed in separate CLs. This covers the easy ones. The .*s stuff is unfortunate, but printf has no size_t-clean string printer. ALPN protocol lengths are bound by uint8_t, so it doesn't really matter. The IPv6 printing one is obnoxious and arguably a false positive. It's really a C language flaw: all types smaller than int get converted to int when you do arithmetic. So something like this first doesn't overflow the shift because it computes over int, but then the result overall is stored as an int. uint8_t a, b; (a << 8) | b On the one hand, this fixes a "missing" cast to uint16_t before the shift. At the same time, the incorrect final type means passing it to %x, which expects unsigned int. The compiler has forgotten this value actually fits in uint16_t and flags a warning. Mitigate this by storing in a uint16_t first. The story doesn't quite end here. Arguments passed to variadic functions go through integer promotion[0], so the argument is still passed to snprintf as an int! But then va_arg allows for a signedness mismatch[1], provided the value is representable in both types. The combination means that %x, though actually paired with unsigned, also accept uint8_t and uint16_t, because those are guaranteed to promote to an int that meets [1]. GCC recognizes [1] applies here. (There's also PRI16x, but that's a bit tedious to use and, in glibc, is defined as plain "x" anyway.) [0] https://en.cppreference.com/w/c/language/conversion#Default_argument_promotions [1] https://en.cppreference.com/w/c/variadic/va_arg Bug: 450 Change-Id: Ic1d41356755a18ab922956dd2e07b560470341f4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50765 Reviewed-by: Adam Langley <agl@google.com> Commit-Queue: Adam Langley <agl@google.com>
3 years ago
fprintf(out, "\ncounter=%d h=%lu\n", counter, h);
if (counter != 105) {
fprintf(stderr, "counter should be 105\n");
return false;
}
if (h != 2) {
fprintf(stderr, "h should be 2\n");
return false;
}
i = BN_bn2bin(dsa->q, buf);
j = sizeof(fips_q);
if (i != j || OPENSSL_memcmp(buf, fips_q, i) != 0) {
fprintf(stderr, "q value is wrong\n");
return false;
}
i = BN_bn2bin(dsa->p, buf);
j = sizeof(fips_p);
if (i != j || OPENSSL_memcmp(buf, fips_p, i) != 0) {
fprintf(stderr, "p value is wrong\n");
return false;
}
i = BN_bn2bin(dsa->g, buf);
j = sizeof(fips_g);
if (i != j || OPENSSL_memcmp(buf, fips_g, i) != 0) {
fprintf(stderr, "g value is wrong\n");
return false;
}
if (!DSA_generate_key(dsa.get()) ||
!DSA_sign(0, fips_digest, sizeof(fips_digest), sig, &siglen, dsa.get())) {
return false;
}
if (DSA_verify(0, fips_digest, sizeof(fips_digest), sig, siglen, dsa.get()) !=
1) {
fprintf(stderr, "verification failure\n");
return false;
}
return true;
}
static bool TestVerify(const uint8_t *sig, size_t sig_len, int expect) {
bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
if (!dsa) {
return false;
}
int ret =
DSA_verify(0, fips_digest, sizeof(fips_digest), sig, sig_len, dsa.get());
if (ret != expect) {
fprintf(stderr, "DSA_verify returned %d, want %d\n", ret, expect);
return false;
}
// Clear any errors from a test with expected failure.
ERR_clear_error();
return true;
}
// TODO(davidben): Convert this file to GTest properly.
TEST(DSATest, AllTests) {
if (!TestGenerate(stdout) ||
!TestVerify(fips_sig, sizeof(fips_sig), 1) ||
!TestVerify(fips_sig_negative, sizeof(fips_sig_negative), -1) ||
!TestVerify(fips_sig_extra, sizeof(fips_sig_extra), -1) ||
!TestVerify(fips_sig_bad_length, sizeof(fips_sig_bad_length), -1) ||
!TestVerify(fips_sig_bad_r, sizeof(fips_sig_bad_r), 0)) {
ADD_FAILURE() << "Tests failed";
}
}
TEST(DSATest, InvalidGroup) {
bssl::UniquePtr<DSA> dsa = GetFIPSDSA();
ASSERT_TRUE(dsa);
BN_zero(dsa->g);
std::vector<uint8_t> sig(DSA_size(dsa.get()));
unsigned sig_len;
static const uint8_t kDigest[32] = {0};
EXPECT_FALSE(
DSA_sign(0, kDigest, sizeof(kDigest), sig.data(), &sig_len, dsa.get()));
uint32_t err = ERR_get_error();
EXPECT_EQ(ERR_LIB_DSA, ERR_GET_LIB(err));
EXPECT_EQ(DSA_R_INVALID_PARAMETERS, ERR_GET_REASON(err));
}