|
|
|
/* Copyright (c) 2017, Google Inc.
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
|
|
|
|
#include <openssl/aead.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
|
|
|
|
#include <openssl/cipher.h>
|
|
|
|
#include <openssl/crypto.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
|
|
|
|
#include "../fipsmodule/cipher/internal.h"
|
|
|
|
#include "../internal.h"
|
|
|
|
|
|
|
|
|
|
|
|
#define EVP_AEAD_AES_GCM_SIV_NONCE_LEN 12
|
|
|
|
#define EVP_AEAD_AES_GCM_SIV_TAG_LEN 16
|
|
|
|
|
|
|
|
// TODO(davidben): AES-GCM-SIV assembly is not correct for Windows. It must save
|
|
|
|
// and restore xmm6 through xmm15.
|
|
|
|
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
|
|
|
|
!defined(OPENSSL_WINDOWS)
|
|
|
|
#define AES_GCM_SIV_ASM
|
|
|
|
|
|
|
|
// Optimised AES-GCM-SIV
|
|
|
|
|
|
|
|
struct aead_aes_gcm_siv_asm_ctx {
|
|
|
|
alignas(16) uint8_t key[16*15];
|
|
|
|
int is_128_bit;
|
|
|
|
};
|
|
|
|
|
|
|
|
// The assembly code assumes 8-byte alignment of the EVP_AEAD_CTX's state, and
|
|
|
|
// aligns to 16 bytes itself.
|
|
|
|
static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) + 8 >=
|
|
|
|
sizeof(struct aead_aes_gcm_siv_asm_ctx),
|
|
|
|
"AEAD state is too small");
|
|
|
|
static_assert(alignof(union evp_aead_ctx_st_state) >= 8,
|
|
|
|
"AEAD state has insufficient alignment");
|
|
|
|
|
|
|
|
// asm_ctx_from_ctx returns a 16-byte aligned context pointer from |ctx|.
|
|
|
|
static struct aead_aes_gcm_siv_asm_ctx *asm_ctx_from_ctx(
|
|
|
|
const EVP_AEAD_CTX *ctx) {
|
|
|
|
// ctx->state must already be 8-byte aligned. Thus, at most, we may need to
|
|
|
|
// add eight to align it to 16 bytes.
|
|
|
|
const uintptr_t offset = ((uintptr_t)&ctx->state) & 8;
|
|
|
|
return (struct aead_aes_gcm_siv_asm_ctx *)(&ctx->state.opaque[offset]);
|
|
|
|
}
|
|
|
|
|
|
|
|
// aes128gcmsiv_aes_ks writes an AES-128 key schedule for |key| to
|
|
|
|
// |out_expanded_key|.
|
|
|
|
extern void aes128gcmsiv_aes_ks(
|
|
|
|
const uint8_t key[16], uint8_t out_expanded_key[16*15]);
|
|
|
|
|
|
|
|
// aes256gcmsiv_aes_ks writes an AES-256 key schedule for |key| to
|
|
|
|
// |out_expanded_key|.
|
|
|
|
extern void aes256gcmsiv_aes_ks(
|
|
|
|
const uint8_t key[32], uint8_t out_expanded_key[16*15]);
|
|
|
|
|
|
|
|
static int aead_aes_gcm_siv_asm_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
|
|
|
size_t key_len, size_t tag_len) {
|
|
|
|
const size_t key_bits = key_len * 8;
|
|
|
|
|
|
|
|
if (key_bits != 128 && key_bits != 256) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
|
|
|
return 0; // EVP_AEAD_CTX_init should catch this.
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
|
|
|
tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
|
|
|
|
assert((((uintptr_t)gcm_siv_ctx) & 15) == 0);
|
|
|
|
|
|
|
|
if (key_bits == 128) {
|
|
|
|
aes128gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
|
|
|
|
gcm_siv_ctx->is_128_bit = 1;
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_aes_ks(key, &gcm_siv_ctx->key[0]);
|
|
|
|
gcm_siv_ctx->is_128_bit = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
ctx->tag_len = tag_len;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void aead_aes_gcm_siv_asm_cleanup(EVP_AEAD_CTX *ctx) {}
|
|
|
|
|
|
|
|
// aesgcmsiv_polyval_horner updates the POLYVAL value in |in_out_poly| to
|
|
|
|
// include a number (|in_blocks|) of 16-byte blocks of data from |in|, given
|
|
|
|
// the POLYVAL key in |key|.
|
|
|
|
extern void aesgcmsiv_polyval_horner(const uint8_t in_out_poly[16],
|
|
|
|
const uint8_t key[16], const uint8_t *in,
|
|
|
|
size_t in_blocks);
|
|
|
|
|
|
|
|
// aesgcmsiv_htable_init writes powers 1..8 of |auth_key| to |out_htable|.
|
|
|
|
extern void aesgcmsiv_htable_init(uint8_t out_htable[16 * 8],
|
|
|
|
const uint8_t auth_key[16]);
|
|
|
|
|
|
|
|
// aesgcmsiv_htable6_init writes powers 1..6 of |auth_key| to |out_htable|.
|
|
|
|
extern void aesgcmsiv_htable6_init(uint8_t out_htable[16 * 6],
|
|
|
|
const uint8_t auth_key[16]);
|
|
|
|
|
|
|
|
// aesgcmsiv_htable_polyval updates the POLYVAL value in |in_out_poly| to
|
|
|
|
// include |in_len| bytes of data from |in|. (Where |in_len| must be a multiple
|
|
|
|
// of 16.) It uses the precomputed powers of the key given in |htable|.
|
|
|
|
extern void aesgcmsiv_htable_polyval(const uint8_t htable[16 * 8],
|
|
|
|
const uint8_t *in, size_t in_len,
|
|
|
|
uint8_t in_out_poly[16]);
|
|
|
|
|
|
|
|
// aes128gcmsiv_dec decrypts |in_len| & ~15 bytes from |out| and writes them to
|
|
|
|
// |in|. (The full value of |in_len| is still used to find the authentication
|
|
|
|
// tag appended to the ciphertext, however, so must not be pre-masked.)
|
|
|
|
//
|
|
|
|
// |in| and |out| may be equal, but must not otherwise overlap.
|
|
|
|
//
|
|
|
|
// While decrypting, it updates the POLYVAL value found at the beginning of
|
|
|
|
// |in_out_calculated_tag_and_scratch| and writes the updated value back before
|
|
|
|
// return. During executation, it may use the whole of this space for other
|
|
|
|
// purposes. In order to decrypt and update the POLYVAL value, it uses the
|
|
|
|
// expanded key from |key| and the table of powers in |htable|.
|
|
|
|
extern void aes128gcmsiv_dec(const uint8_t *in, uint8_t *out,
|
|
|
|
uint8_t in_out_calculated_tag_and_scratch[16 * 8],
|
|
|
|
const uint8_t htable[16 * 6],
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *key,
|
|
|
|
size_t in_len);
|
|
|
|
|
|
|
|
// aes256gcmsiv_dec acts like |aes128gcmsiv_dec|, but for AES-256.
|
|
|
|
extern void aes256gcmsiv_dec(const uint8_t *in, uint8_t *out,
|
|
|
|
uint8_t in_out_calculated_tag_and_scratch[16 * 8],
|
|
|
|
const uint8_t htable[16 * 6],
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *key,
|
|
|
|
size_t in_len);
|
|
|
|
|
|
|
|
// aes128gcmsiv_kdf performs the AES-GCM-SIV KDF given the expanded key from
|
|
|
|
// |key_schedule| and the nonce in |nonce|. Note that, while only 12 bytes of
|
|
|
|
// the nonce are used, 16 bytes are read and so the value must be
|
|
|
|
// right-padded.
|
|
|
|
extern void aes128gcmsiv_kdf(const uint8_t nonce[16],
|
|
|
|
uint64_t out_key_material[8],
|
|
|
|
const uint8_t *key_schedule);
|
|
|
|
|
|
|
|
// aes256gcmsiv_kdf acts like |aes128gcmsiv_kdf|, but for AES-256.
|
|
|
|
extern void aes256gcmsiv_kdf(const uint8_t nonce[16],
|
|
|
|
uint64_t out_key_material[12],
|
|
|
|
const uint8_t *key_schedule);
|
|
|
|
|
|
|
|
// aes128gcmsiv_aes_ks_enc_x1 performs a key expansion of the AES-128 key in
|
|
|
|
// |key|, writes the expanded key to |out_expanded_key| and encrypts a single
|
|
|
|
// block from |in| to |out|.
|
|
|
|
extern void aes128gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
|
|
|
|
uint8_t out_expanded_key[16 * 15],
|
|
|
|
const uint64_t key[2]);
|
|
|
|
|
|
|
|
// aes256gcmsiv_aes_ks_enc_x1 acts like |aes128gcmsiv_aes_ks_enc_x1|, but for
|
|
|
|
// AES-256.
|
|
|
|
extern void aes256gcmsiv_aes_ks_enc_x1(const uint8_t in[16], uint8_t out[16],
|
|
|
|
uint8_t out_expanded_key[16 * 15],
|
|
|
|
const uint64_t key[4]);
|
|
|
|
|
|
|
|
// aes128gcmsiv_ecb_enc_block encrypts a single block from |in| to |out| using
|
|
|
|
// the expanded key in |expanded_key|.
|
|
|
|
extern void aes128gcmsiv_ecb_enc_block(
|
|
|
|
const uint8_t in[16], uint8_t out[16],
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
|
|
|
|
|
|
|
|
// aes256gcmsiv_ecb_enc_block acts like |aes128gcmsiv_ecb_enc_block|, but for
|
|
|
|
// AES-256.
|
|
|
|
extern void aes256gcmsiv_ecb_enc_block(
|
|
|
|
const uint8_t in[16], uint8_t out[16],
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *expanded_key);
|
|
|
|
|
|
|
|
// aes128gcmsiv_enc_msg_x4 encrypts |in_len| bytes from |in| to |out| using the
|
|
|
|
// expanded key from |key|. (The value of |in_len| must be a multiple of 16.)
|
|
|
|
// The |in| and |out| buffers may be equal but must not otherwise overlap. The
|
|
|
|
// initial counter is constructed from the given |tag| as required by
|
|
|
|
// AES-GCM-SIV.
|
|
|
|
extern void aes128gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
|
|
|
|
const uint8_t *tag,
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *key,
|
|
|
|
size_t in_len);
|
|
|
|
|
|
|
|
// aes256gcmsiv_enc_msg_x4 acts like |aes128gcmsiv_enc_msg_x4|, but for
|
|
|
|
// AES-256.
|
|
|
|
extern void aes256gcmsiv_enc_msg_x4(const uint8_t *in, uint8_t *out,
|
|
|
|
const uint8_t *tag,
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *key,
|
|
|
|
size_t in_len);
|
|
|
|
|
|
|
|
// aes128gcmsiv_enc_msg_x8 acts like |aes128gcmsiv_enc_msg_x4|, but is
|
|
|
|
// optimised for longer messages.
|
|
|
|
extern void aes128gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
|
|
|
|
const uint8_t *tag,
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *key,
|
|
|
|
size_t in_len);
|
|
|
|
|
|
|
|
// aes256gcmsiv_enc_msg_x8 acts like |aes256gcmsiv_enc_msg_x4|, but is
|
|
|
|
// optimised for longer messages.
|
|
|
|
extern void aes256gcmsiv_enc_msg_x8(const uint8_t *in, uint8_t *out,
|
|
|
|
const uint8_t *tag,
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *key,
|
|
|
|
size_t in_len);
|
|
|
|
|
|
|
|
// gcm_siv_asm_polyval evaluates POLYVAL at |auth_key| on the given plaintext
|
|
|
|
// and AD. The result is written to |out_tag|.
|
|
|
|
static void gcm_siv_asm_polyval(uint8_t out_tag[16], const uint8_t *in,
|
|
|
|
size_t in_len, const uint8_t *ad, size_t ad_len,
|
|
|
|
const uint8_t auth_key[16],
|
|
|
|
const uint8_t nonce[12]) {
|
|
|
|
OPENSSL_memset(out_tag, 0, 16);
|
|
|
|
const size_t ad_blocks = ad_len / 16;
|
|
|
|
const size_t in_blocks = in_len / 16;
|
|
|
|
int htable_init = 0;
|
|
|
|
alignas(16) uint8_t htable[16*8];
|
|
|
|
|
|
|
|
if (ad_blocks > 8 || in_blocks > 8) {
|
|
|
|
htable_init = 1;
|
|
|
|
aesgcmsiv_htable_init(htable, auth_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (htable_init) {
|
|
|
|
aesgcmsiv_htable_polyval(htable, ad, ad_len & ~15, out_tag);
|
|
|
|
} else {
|
|
|
|
aesgcmsiv_polyval_horner(out_tag, auth_key, ad, ad_blocks);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t scratch[16];
|
|
|
|
if (ad_len & 15) {
|
|
|
|
OPENSSL_memset(scratch, 0, sizeof(scratch));
|
|
|
|
OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
|
|
|
|
aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (htable_init) {
|
|
|
|
aesgcmsiv_htable_polyval(htable, in, in_len & ~15, out_tag);
|
|
|
|
} else {
|
|
|
|
aesgcmsiv_polyval_horner(out_tag, auth_key, in, in_blocks);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (in_len & 15) {
|
|
|
|
OPENSSL_memset(scratch, 0, sizeof(scratch));
|
|
|
|
OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
|
|
|
|
aesgcmsiv_polyval_horner(out_tag, auth_key, scratch, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t length_block[16];
|
|
|
|
CRYPTO_store_u64_le(length_block, ad_len * 8);
|
|
|
|
CRYPTO_store_u64_le(length_block + 8, in_len * 8);
|
|
|
|
aesgcmsiv_polyval_horner(out_tag, auth_key, length_block, 1);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < 12; i++) {
|
|
|
|
out_tag[i] ^= nonce[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
out_tag[15] &= 0x7f;
|
|
|
|
}
|
|
|
|
|
|
|
|
// aead_aes_gcm_siv_asm_crypt_last_block handles the encryption/decryption
|
|
|
|
// (same thing in CTR mode) of the final block of a plaintext/ciphertext. It
|
|
|
|
// writes |in_len| & 15 bytes to |out| + |in_len|, based on an initial counter
|
|
|
|
// derived from |tag|.
|
|
|
|
static void aead_aes_gcm_siv_asm_crypt_last_block(
|
|
|
|
int is_128_bit, uint8_t *out, const uint8_t *in, size_t in_len,
|
|
|
|
const uint8_t tag[16],
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *enc_key_expanded) {
|
|
|
|
alignas(16) uint8_t counter[16];
|
|
|
|
OPENSSL_memcpy(&counter, tag, sizeof(counter));
|
|
|
|
counter[15] |= 0x80;
|
|
|
|
CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + in_len / 16);
|
|
|
|
|
|
|
|
if (is_128_bit) {
|
|
|
|
aes128gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded);
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_ecb_enc_block(counter, counter, enc_key_expanded);
|
|
|
|
}
|
|
|
|
|
|
|
|
const size_t last_bytes_offset = in_len & ~15;
|
|
|
|
const size_t last_bytes_len = in_len & 15;
|
|
|
|
uint8_t *last_bytes_out = &out[last_bytes_offset];
|
|
|
|
const uint8_t *last_bytes_in = &in[last_bytes_offset];
|
|
|
|
for (size_t i = 0; i < last_bytes_len; i++) {
|
|
|
|
last_bytes_out[i] = last_bytes_in[i] ^ counter[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// aead_aes_gcm_siv_kdf calculates the record encryption and authentication
|
|
|
|
// keys given the |nonce|.
|
|
|
|
static void aead_aes_gcm_siv_kdf(
|
|
|
|
int is_128_bit, const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx,
|
|
|
|
uint64_t out_record_auth_key[2], uint64_t out_record_enc_key[4],
|
|
|
|
const uint8_t nonce[12]) {
|
|
|
|
alignas(16) uint8_t padded_nonce[16];
|
|
|
|
OPENSSL_memcpy(padded_nonce, nonce, 12);
|
|
|
|
|
|
|
|
alignas(16) uint64_t key_material[12];
|
|
|
|
if (is_128_bit) {
|
|
|
|
aes128gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
|
|
|
|
out_record_enc_key[0] = key_material[4];
|
|
|
|
out_record_enc_key[1] = key_material[6];
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_kdf(padded_nonce, key_material, &gcm_siv_ctx->key[0]);
|
|
|
|
out_record_enc_key[0] = key_material[4];
|
|
|
|
out_record_enc_key[1] = key_material[6];
|
|
|
|
out_record_enc_key[2] = key_material[8];
|
|
|
|
out_record_enc_key[3] = key_material[10];
|
|
|
|
}
|
|
|
|
|
|
|
|
out_record_auth_key[0] = key_material[0];
|
|
|
|
out_record_auth_key[1] = key_material[2];
|
|
|
|
}
|
|
|
|
|
|
|
|
static int aead_aes_gcm_siv_asm_seal_scatter(
|
|
|
|
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
|
|
|
|
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
|
|
|
|
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
|
|
|
|
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
|
|
|
|
const uint64_t in_len_64 = in_len;
|
|
|
|
const uint64_t ad_len_64 = ad_len;
|
|
|
|
|
|
|
|
if (in_len_64 > (UINT64_C(1) << 36) ||
|
|
|
|
ad_len_64 >= (UINT64_C(1) << 61)) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
alignas(16) uint64_t record_auth_key[2];
|
|
|
|
alignas(16) uint64_t record_enc_key[4];
|
|
|
|
aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
|
|
|
|
record_enc_key, nonce);
|
|
|
|
|
|
|
|
alignas(16) uint8_t tag[16] = {0};
|
|
|
|
gcm_siv_asm_polyval(tag, in, in_len, ad, ad_len,
|
|
|
|
(const uint8_t *)record_auth_key, nonce);
|
|
|
|
|
|
|
|
struct aead_aes_gcm_siv_asm_ctx enc_key_expanded;
|
|
|
|
|
|
|
|
if (gcm_siv_ctx->is_128_bit) {
|
|
|
|
aes128gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
|
|
|
|
record_enc_key);
|
|
|
|
|
|
|
|
if (in_len < 128) {
|
|
|
|
aes128gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
|
|
|
|
} else {
|
|
|
|
aes128gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_aes_ks_enc_x1(tag, tag, &enc_key_expanded.key[0],
|
|
|
|
record_enc_key);
|
|
|
|
|
|
|
|
if (in_len < 128) {
|
|
|
|
aes256gcmsiv_enc_msg_x4(in, out, tag, &enc_key_expanded, in_len & ~15);
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_enc_msg_x8(in, out, tag, &enc_key_expanded, in_len & ~15);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (in_len & 15) {
|
|
|
|
aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
|
|
|
|
in_len, tag, &enc_key_expanded);
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_memcpy(out_tag, tag, sizeof(tag));
|
|
|
|
*out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO(martinkr): Add aead_aes_gcm_siv_asm_open_gather. N.B. aes128gcmsiv_dec
|
|
|
|
// expects ciphertext and tag in a contiguous buffer.
|
|
|
|
|
|
|
|
static int aead_aes_gcm_siv_asm_open(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
|
|
|
size_t *out_len, size_t max_out_len,
|
|
|
|
const uint8_t *nonce, size_t nonce_len,
|
|
|
|
const uint8_t *in, size_t in_len,
|
|
|
|
const uint8_t *ad, size_t ad_len) {
|
|
|
|
const uint64_t ad_len_64 = ad_len;
|
|
|
|
if (ad_len_64 >= (UINT64_C(1) << 61)) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t in_len_64 = in_len;
|
|
|
|
if (in_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
|
|
|
|
in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct aead_aes_gcm_siv_asm_ctx *gcm_siv_ctx = asm_ctx_from_ctx(ctx);
|
|
|
|
const size_t plaintext_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN;
|
|
|
|
const uint8_t *const given_tag = in + plaintext_len;
|
|
|
|
|
|
|
|
if (max_out_len < plaintext_len) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
alignas(16) uint64_t record_auth_key[2];
|
|
|
|
alignas(16) uint64_t record_enc_key[4];
|
|
|
|
aead_aes_gcm_siv_kdf(gcm_siv_ctx->is_128_bit, gcm_siv_ctx, record_auth_key,
|
|
|
|
record_enc_key, nonce);
|
|
|
|
|
|
|
|
struct aead_aes_gcm_siv_asm_ctx expanded_key;
|
|
|
|
if (gcm_siv_ctx->is_128_bit) {
|
|
|
|
aes128gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_aes_ks((const uint8_t *) record_enc_key, &expanded_key.key[0]);
|
|
|
|
}
|
|
|
|
// calculated_tag is 16*8 bytes, rather than 16 bytes, because
|
|
|
|
// aes[128|256]gcmsiv_dec uses the extra as scratch space.
|
|
|
|
alignas(16) uint8_t calculated_tag[16 * 8] = {0};
|
|
|
|
|
|
|
|
OPENSSL_memset(calculated_tag, 0, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
|
|
|
|
const size_t ad_blocks = ad_len / 16;
|
|
|
|
aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key, ad,
|
|
|
|
ad_blocks);
|
|
|
|
|
|
|
|
uint8_t scratch[16];
|
|
|
|
if (ad_len & 15) {
|
|
|
|
OPENSSL_memset(scratch, 0, sizeof(scratch));
|
|
|
|
OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
|
|
|
|
aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
|
|
|
|
scratch, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
alignas(16) uint8_t htable[16 * 6];
|
|
|
|
aesgcmsiv_htable6_init(htable, (const uint8_t *)record_auth_key);
|
|
|
|
|
|
|
|
if (gcm_siv_ctx->is_128_bit) {
|
|
|
|
aes128gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key,
|
|
|
|
plaintext_len);
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_dec(in, out, calculated_tag, htable, &expanded_key,
|
|
|
|
plaintext_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (plaintext_len & 15) {
|
|
|
|
aead_aes_gcm_siv_asm_crypt_last_block(gcm_siv_ctx->is_128_bit, out, in,
|
|
|
|
plaintext_len, given_tag,
|
|
|
|
&expanded_key);
|
|
|
|
OPENSSL_memset(scratch, 0, sizeof(scratch));
|
|
|
|
OPENSSL_memcpy(scratch, out + (plaintext_len & ~15), plaintext_len & 15);
|
|
|
|
aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
|
|
|
|
scratch, 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t length_block[16];
|
|
|
|
CRYPTO_store_u64_le(length_block, ad_len * 8);
|
|
|
|
CRYPTO_store_u64_le(length_block + 8, plaintext_len * 8);
|
|
|
|
aesgcmsiv_polyval_horner(calculated_tag, (const uint8_t *)record_auth_key,
|
|
|
|
length_block, 1);
|
|
|
|
|
|
|
|
for (size_t i = 0; i < 12; i++) {
|
|
|
|
calculated_tag[i] ^= nonce[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
calculated_tag[15] &= 0x7f;
|
|
|
|
|
|
|
|
if (gcm_siv_ctx->is_128_bit) {
|
|
|
|
aes128gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
|
|
|
|
} else {
|
|
|
|
aes256gcmsiv_ecb_enc_block(calculated_tag, calculated_tag, &expanded_key);
|
|
|
|
}
|
|
|
|
|
|
|
|
if (CRYPTO_memcmp(calculated_tag, given_tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN) !=
|
|
|
|
0) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*out_len = in_len - EVP_AEAD_AES_GCM_SIV_TAG_LEN;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const EVP_AEAD aead_aes_128_gcm_siv_asm = {
|
|
|
|
16, // key length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
|
|
|
|
0, // seal_scatter_supports_extra_in
|
|
|
|
|
|
|
|
aead_aes_gcm_siv_asm_init,
|
|
|
|
NULL /* init_with_direction */,
|
|
|
|
aead_aes_gcm_siv_asm_cleanup,
|
|
|
|
aead_aes_gcm_siv_asm_open,
|
|
|
|
aead_aes_gcm_siv_asm_seal_scatter,
|
|
|
|
NULL /* open_gather */,
|
|
|
|
NULL /* get_iv */,
|
|
|
|
NULL /* tag_len */,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const EVP_AEAD aead_aes_256_gcm_siv_asm = {
|
|
|
|
32, // key length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
|
|
|
|
0, // seal_scatter_supports_extra_in
|
|
|
|
|
|
|
|
aead_aes_gcm_siv_asm_init,
|
|
|
|
NULL /* init_with_direction */,
|
|
|
|
aead_aes_gcm_siv_asm_cleanup,
|
|
|
|
aead_aes_gcm_siv_asm_open,
|
|
|
|
aead_aes_gcm_siv_asm_seal_scatter,
|
|
|
|
NULL /* open_gather */,
|
|
|
|
NULL /* get_iv */,
|
|
|
|
NULL /* tag_len */,
|
|
|
|
};
|
|
|
|
|
|
|
|
#endif // X86_64 && !NO_ASM && !WINDOWS
|
|
|
|
|
|
|
|
struct aead_aes_gcm_siv_ctx {
|
|
|
|
union {
|
|
|
|
double align;
|
|
|
|
AES_KEY ks;
|
|
|
|
} ks;
|
|
|
|
block128_f kgk_block;
|
|
|
|
unsigned is_256:1;
|
|
|
|
};
|
|
|
|
|
|
|
|
static_assert(sizeof(((EVP_AEAD_CTX *)NULL)->state) >=
|
|
|
|
sizeof(struct aead_aes_gcm_siv_ctx),
|
|
|
|
"AEAD state is too small");
|
|
|
|
static_assert(alignof(union evp_aead_ctx_st_state) >=
|
|
|
|
alignof(struct aead_aes_gcm_siv_ctx),
|
|
|
|
"AEAD state has insufficient alignment");
|
|
|
|
|
|
|
|
static int aead_aes_gcm_siv_init(EVP_AEAD_CTX *ctx, const uint8_t *key,
|
|
|
|
size_t key_len, size_t tag_len) {
|
|
|
|
const size_t key_bits = key_len * 8;
|
|
|
|
|
|
|
|
if (key_bits != 128 && key_bits != 256) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_KEY_LENGTH);
|
|
|
|
return 0; // EVP_AEAD_CTX_init should catch this.
|
|
|
|
}
|
|
|
|
|
|
|
|
if (tag_len == EVP_AEAD_DEFAULT_TAG_LENGTH) {
|
|
|
|
tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
|
|
|
|
}
|
|
|
|
if (tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TAG_TOO_LARGE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
|
|
|
|
(struct aead_aes_gcm_siv_ctx *)&ctx->state;
|
|
|
|
OPENSSL_memset(gcm_siv_ctx, 0, sizeof(struct aead_aes_gcm_siv_ctx));
|
|
|
|
|
|
|
|
aes_ctr_set_key(&gcm_siv_ctx->ks.ks, NULL, &gcm_siv_ctx->kgk_block, key,
|
|
|
|
key_len);
|
|
|
|
gcm_siv_ctx->is_256 = (key_len == 32);
|
|
|
|
ctx->tag_len = tag_len;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void aead_aes_gcm_siv_cleanup(EVP_AEAD_CTX *ctx) {}
|
|
|
|
|
|
|
|
// gcm_siv_crypt encrypts (or decrypts—it's the same thing) |in_len| bytes from
|
|
|
|
// |in| to |out|, using the block function |enc_block| with |key| in counter
|
|
|
|
// mode, starting at |initial_counter|. This differs from the traditional
|
|
|
|
// counter mode code in that the counter is handled little-endian, only the
|
|
|
|
// first four bytes are used and the GCM-SIV tweak to the final byte is
|
|
|
|
// applied. The |in| and |out| pointers may be equal but otherwise must not
|
|
|
|
// alias.
|
|
|
|
static void gcm_siv_crypt(uint8_t *out, const uint8_t *in, size_t in_len,
|
|
|
|
const uint8_t initial_counter[AES_BLOCK_SIZE],
|
|
|
|
block128_f enc_block, const AES_KEY *key) {
|
|
|
|
uint8_t counter[16];
|
|
|
|
|
|
|
|
OPENSSL_memcpy(counter, initial_counter, AES_BLOCK_SIZE);
|
|
|
|
counter[15] |= 0x80;
|
|
|
|
|
|
|
|
for (size_t done = 0; done < in_len;) {
|
|
|
|
uint8_t keystream[AES_BLOCK_SIZE];
|
|
|
|
enc_block(counter, keystream, key);
|
|
|
|
CRYPTO_store_u32_le(counter, CRYPTO_load_u32_le(counter) + 1);
|
|
|
|
|
|
|
|
size_t todo = AES_BLOCK_SIZE;
|
|
|
|
if (in_len - done < todo) {
|
|
|
|
todo = in_len - done;
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < todo; i++) {
|
|
|
|
out[done + i] = keystream[i] ^ in[done + i];
|
|
|
|
}
|
|
|
|
|
|
|
|
done += todo;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// gcm_siv_polyval evaluates POLYVAL at |auth_key| on the given plaintext and
|
|
|
|
// AD. The result is written to |out_tag|.
|
|
|
|
static void gcm_siv_polyval(
|
|
|
|
uint8_t out_tag[16], const uint8_t *in, size_t in_len, const uint8_t *ad,
|
|
|
|
size_t ad_len, const uint8_t auth_key[16],
|
|
|
|
const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
|
|
|
|
struct polyval_ctx polyval_ctx;
|
|
|
|
CRYPTO_POLYVAL_init(&polyval_ctx, auth_key);
|
|
|
|
|
|
|
|
CRYPTO_POLYVAL_update_blocks(&polyval_ctx, ad, ad_len & ~15);
|
|
|
|
|
|
|
|
uint8_t scratch[16];
|
|
|
|
if (ad_len & 15) {
|
|
|
|
OPENSSL_memset(scratch, 0, sizeof(scratch));
|
|
|
|
OPENSSL_memcpy(scratch, &ad[ad_len & ~15], ad_len & 15);
|
|
|
|
CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
|
|
|
|
}
|
|
|
|
|
|
|
|
CRYPTO_POLYVAL_update_blocks(&polyval_ctx, in, in_len & ~15);
|
|
|
|
if (in_len & 15) {
|
|
|
|
OPENSSL_memset(scratch, 0, sizeof(scratch));
|
|
|
|
OPENSSL_memcpy(scratch, &in[in_len & ~15], in_len & 15);
|
|
|
|
CRYPTO_POLYVAL_update_blocks(&polyval_ctx, scratch, sizeof(scratch));
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t length_block[16];
|
|
|
|
CRYPTO_store_u64_le(length_block, ad_len * 8);
|
|
|
|
CRYPTO_store_u64_le(length_block + 8, in_len * 8);
|
|
|
|
CRYPTO_POLYVAL_update_blocks(&polyval_ctx, length_block,
|
|
|
|
sizeof(length_block));
|
|
|
|
|
|
|
|
CRYPTO_POLYVAL_finish(&polyval_ctx, out_tag);
|
|
|
|
for (size_t i = 0; i < EVP_AEAD_AES_GCM_SIV_NONCE_LEN; i++) {
|
|
|
|
out_tag[i] ^= nonce[i];
|
|
|
|
}
|
|
|
|
out_tag[15] &= 0x7f;
|
|
|
|
}
|
|
|
|
|
|
|
|
// gcm_siv_record_keys contains the keys used for a specific GCM-SIV record.
|
|
|
|
struct gcm_siv_record_keys {
|
|
|
|
uint8_t auth_key[16];
|
|
|
|
union {
|
|
|
|
double align;
|
|
|
|
AES_KEY ks;
|
|
|
|
} enc_key;
|
|
|
|
block128_f enc_block;
|
|
|
|
};
|
|
|
|
|
|
|
|
// gcm_siv_keys calculates the keys for a specific GCM-SIV record with the
|
|
|
|
// given nonce and writes them to |*out_keys|.
|
|
|
|
static void gcm_siv_keys(
|
|
|
|
const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx,
|
|
|
|
struct gcm_siv_record_keys *out_keys,
|
|
|
|
const uint8_t nonce[EVP_AEAD_AES_GCM_SIV_NONCE_LEN]) {
|
|
|
|
const AES_KEY *const key = &gcm_siv_ctx->ks.ks;
|
|
|
|
uint8_t key_material[(128 /* POLYVAL key */ + 256 /* max AES key */) / 8];
|
|
|
|
const size_t blocks_needed = gcm_siv_ctx->is_256 ? 6 : 4;
|
|
|
|
|
|
|
|
uint8_t counter[AES_BLOCK_SIZE];
|
|
|
|
OPENSSL_memset(counter, 0, AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
|
|
|
|
OPENSSL_memcpy(counter + AES_BLOCK_SIZE - EVP_AEAD_AES_GCM_SIV_NONCE_LEN,
|
|
|
|
nonce, EVP_AEAD_AES_GCM_SIV_NONCE_LEN);
|
|
|
|
for (size_t i = 0; i < blocks_needed; i++) {
|
|
|
|
counter[0] = i;
|
|
|
|
|
|
|
|
uint8_t ciphertext[AES_BLOCK_SIZE];
|
|
|
|
gcm_siv_ctx->kgk_block(counter, ciphertext, key);
|
|
|
|
OPENSSL_memcpy(&key_material[i * 8], ciphertext, 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_memcpy(out_keys->auth_key, key_material, 16);
|
|
|
|
// Note the |ctr128_f| function uses a big-endian couner, while AES-GCM-SIV
|
|
|
|
// uses a little-endian counter. We ignore the return value and only use
|
|
|
|
// |block128_f|. This has a significant performance cost for the fallback
|
|
|
|
// bitsliced AES implementations (bsaes and aes_nohw).
|
|
|
|
//
|
|
|
|
// We currently do not consider AES-GCM-SIV to be performance-sensitive on
|
|
|
|
// client hardware. If this changes, we can write little-endian |ctr128_f|
|
|
|
|
// functions.
|
|
|
|
aes_ctr_set_key(&out_keys->enc_key.ks, NULL, &out_keys->enc_block,
|
|
|
|
key_material + 16, gcm_siv_ctx->is_256 ? 32 : 16);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int aead_aes_gcm_siv_seal_scatter(
|
|
|
|
const EVP_AEAD_CTX *ctx, uint8_t *out, uint8_t *out_tag,
|
|
|
|
size_t *out_tag_len, size_t max_out_tag_len, const uint8_t *nonce,
|
|
|
|
size_t nonce_len, const uint8_t *in, size_t in_len, const uint8_t *extra_in,
|
|
|
|
size_t extra_in_len, const uint8_t *ad, size_t ad_len) {
|
|
|
|
const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
|
|
|
|
(struct aead_aes_gcm_siv_ctx *)&ctx->state;
|
|
|
|
const uint64_t in_len_64 = in_len;
|
|
|
|
const uint64_t ad_len_64 = ad_len;
|
|
|
|
|
|
|
|
if (in_len + EVP_AEAD_AES_GCM_SIV_TAG_LEN < in_len ||
|
|
|
|
in_len_64 > (UINT64_C(1) << 36) ||
|
|
|
|
ad_len_64 >= (UINT64_C(1) << 61)) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (max_out_tag_len < EVP_AEAD_AES_GCM_SIV_TAG_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BUFFER_TOO_SMALL);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct gcm_siv_record_keys keys;
|
|
|
|
gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
|
|
|
|
|
|
|
|
uint8_t tag[16];
|
|
|
|
gcm_siv_polyval(tag, in, in_len, ad, ad_len, keys.auth_key, nonce);
|
|
|
|
keys.enc_block(tag, tag, &keys.enc_key.ks);
|
|
|
|
|
|
|
|
gcm_siv_crypt(out, in, in_len, tag, keys.enc_block, &keys.enc_key.ks);
|
|
|
|
|
|
|
|
OPENSSL_memcpy(out_tag, tag, EVP_AEAD_AES_GCM_SIV_TAG_LEN);
|
|
|
|
*out_tag_len = EVP_AEAD_AES_GCM_SIV_TAG_LEN;
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int aead_aes_gcm_siv_open_gather(const EVP_AEAD_CTX *ctx, uint8_t *out,
|
|
|
|
const uint8_t *nonce, size_t nonce_len,
|
|
|
|
const uint8_t *in, size_t in_len,
|
|
|
|
const uint8_t *in_tag,
|
|
|
|
size_t in_tag_len, const uint8_t *ad,
|
|
|
|
size_t ad_len) {
|
|
|
|
const uint64_t ad_len_64 = ad_len;
|
|
|
|
if (ad_len_64 >= (UINT64_C(1) << 61)) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_TOO_LARGE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t in_len_64 = in_len;
|
|
|
|
if (in_tag_len != EVP_AEAD_AES_GCM_SIV_TAG_LEN ||
|
|
|
|
in_len_64 > (UINT64_C(1) << 36) + AES_BLOCK_SIZE) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (nonce_len != EVP_AEAD_AES_GCM_SIV_NONCE_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_UNSUPPORTED_NONCE_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
const struct aead_aes_gcm_siv_ctx *gcm_siv_ctx =
|
|
|
|
(struct aead_aes_gcm_siv_ctx *)&ctx->state;
|
|
|
|
|
|
|
|
struct gcm_siv_record_keys keys;
|
|
|
|
gcm_siv_keys(gcm_siv_ctx, &keys, nonce);
|
|
|
|
|
|
|
|
gcm_siv_crypt(out, in, in_len, in_tag, keys.enc_block, &keys.enc_key.ks);
|
|
|
|
|
|
|
|
uint8_t expected_tag[EVP_AEAD_AES_GCM_SIV_TAG_LEN];
|
|
|
|
gcm_siv_polyval(expected_tag, out, in_len, ad, ad_len, keys.auth_key, nonce);
|
|
|
|
keys.enc_block(expected_tag, expected_tag, &keys.enc_key.ks);
|
|
|
|
|
|
|
|
if (CRYPTO_memcmp(expected_tag, in_tag, sizeof(expected_tag)) != 0) {
|
|
|
|
OPENSSL_PUT_ERROR(CIPHER, CIPHER_R_BAD_DECRYPT);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static const EVP_AEAD aead_aes_128_gcm_siv = {
|
|
|
|
16, // key length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
|
|
|
|
0, // seal_scatter_supports_extra_in
|
|
|
|
|
|
|
|
aead_aes_gcm_siv_init,
|
|
|
|
NULL /* init_with_direction */,
|
|
|
|
aead_aes_gcm_siv_cleanup,
|
|
|
|
NULL /* open */,
|
|
|
|
aead_aes_gcm_siv_seal_scatter,
|
|
|
|
aead_aes_gcm_siv_open_gather,
|
|
|
|
NULL /* get_iv */,
|
|
|
|
NULL /* tag_len */,
|
|
|
|
};
|
|
|
|
|
|
|
|
static const EVP_AEAD aead_aes_256_gcm_siv = {
|
|
|
|
32, // key length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_NONCE_LEN, // nonce length
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // overhead
|
|
|
|
EVP_AEAD_AES_GCM_SIV_TAG_LEN, // max tag length
|
|
|
|
0, // seal_scatter_supports_extra_in
|
|
|
|
|
|
|
|
aead_aes_gcm_siv_init,
|
|
|
|
NULL /* init_with_direction */,
|
|
|
|
aead_aes_gcm_siv_cleanup,
|
|
|
|
NULL /* open */,
|
|
|
|
aead_aes_gcm_siv_seal_scatter,
|
|
|
|
aead_aes_gcm_siv_open_gather,
|
|
|
|
NULL /* get_iv */,
|
|
|
|
NULL /* tag_len */,
|
|
|
|
};
|
|
|
|
|
|
|
|
#if defined(AES_GCM_SIV_ASM)
|
|
|
|
|
|
|
|
const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
|
Check static CPU capabilities on x86.
On Arm, our CRYPTO_is_*_capable functions check the corresponding
preprocessor symbol. This allows us to automatically drop dynamic checks
and fallback code when some capability is always avilable.
This CL does the same on x86, as well as consolidates our
OPENSSL_ia32cap_P checks in one place. Since this abstraction is
incompatible with some optimizations we do around OPENSSL_ia32cap_get()
in the FIPS module, I've marked the symbol __attribute__((const)), which
is enough to make GCC and Clang do the optimizations for us. (We already
do the same to DEFINE_BSS_GET.)
Most x86 platforms support a much wider range of capabilities, so this
is usually a no-op. But, notably, all x86_64 Mac hardware has SSSE3
available, so this allows us to statically drop an AES implementation.
(On macOS with -Wl,-dead_strip, this seems to trim 35080 bytes from the
bssl binary.) Configs like -march=native can also drop a bunch of code.
Update-Note: This CL may break build environments that incorrectly mark
some instruction as statically available. This is unlikely to happen
with vector instructions like AVX, where the compiler could freely emit
them anyway. However, instructions like AES-NI might be set incorrectly.
Change-Id: I44fd715c9887d3fda7cb4519c03bee4d4f2c7ea6
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/51548
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) {
|
|
|
|
return &aead_aes_128_gcm_siv_asm;
|
|
|
|
}
|
|
|
|
return &aead_aes_128_gcm_siv;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
|
Check static CPU capabilities on x86.
On Arm, our CRYPTO_is_*_capable functions check the corresponding
preprocessor symbol. This allows us to automatically drop dynamic checks
and fallback code when some capability is always avilable.
This CL does the same on x86, as well as consolidates our
OPENSSL_ia32cap_P checks in one place. Since this abstraction is
incompatible with some optimizations we do around OPENSSL_ia32cap_get()
in the FIPS module, I've marked the symbol __attribute__((const)), which
is enough to make GCC and Clang do the optimizations for us. (We already
do the same to DEFINE_BSS_GET.)
Most x86 platforms support a much wider range of capabilities, so this
is usually a no-op. But, notably, all x86_64 Mac hardware has SSSE3
available, so this allows us to statically drop an AES implementation.
(On macOS with -Wl,-dead_strip, this seems to trim 35080 bytes from the
bssl binary.) Configs like -march=native can also drop a bunch of code.
Update-Note: This CL may break build environments that incorrectly mark
some instruction as statically available. This is unlikely to happen
with vector instructions like AVX, where the compiler could freely emit
them anyway. However, instructions like AES-NI might be set incorrectly.
Change-Id: I44fd715c9887d3fda7cb4519c03bee4d4f2c7ea6
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/51548
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
if (CRYPTO_is_AVX_capable() && CRYPTO_is_AESNI_capable()) {
|
|
|
|
return &aead_aes_256_gcm_siv_asm;
|
|
|
|
}
|
|
|
|
return &aead_aes_256_gcm_siv;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
const EVP_AEAD *EVP_aead_aes_128_gcm_siv(void) {
|
|
|
|
return &aead_aes_128_gcm_siv;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_AEAD *EVP_aead_aes_256_gcm_siv(void) {
|
|
|
|
return &aead_aes_256_gcm_siv;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // AES_GCM_SIV_ASM
|