|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.]
|
|
|
|
*/
|
|
|
|
/* ====================================================================
|
|
|
|
* Copyright (c) 1998-2001 The OpenSSL Project. All rights reserved.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
*
|
|
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
*
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in
|
|
|
|
* the documentation and/or other materials provided with the
|
|
|
|
* distribution.
|
|
|
|
*
|
|
|
|
* 3. All advertising materials mentioning features or use of this
|
|
|
|
* software must display the following acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit. (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
|
|
|
|
* endorse or promote products derived from this software without
|
|
|
|
* prior written permission. For written permission, please contact
|
|
|
|
* openssl-core@openssl.org.
|
|
|
|
*
|
|
|
|
* 5. Products derived from this software may not be called "OpenSSL"
|
|
|
|
* nor may "OpenSSL" appear in their names without prior written
|
|
|
|
* permission of the OpenSSL Project.
|
|
|
|
*
|
|
|
|
* 6. Redistributions of any form whatsoever must retain the following
|
|
|
|
* acknowledgment:
|
|
|
|
* "This product includes software developed by the OpenSSL Project
|
|
|
|
* for use in the OpenSSL Toolkit (http://www.openssl.org/)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
|
|
|
|
* EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
|
|
|
* PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE OpenSSL PROJECT OR
|
|
|
|
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|
|
|
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
|
|
|
|
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
|
|
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
|
|
|
|
* OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
* ====================================================================
|
|
|
|
*
|
|
|
|
* This product includes cryptographic software written by Eric Young
|
|
|
|
* (eay@cryptsoft.com). This product includes software written by Tim
|
|
|
|
* Hudson (tjh@cryptsoft.com). */
|
|
|
|
|
|
|
|
#ifndef OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
|
|
#define OPENSSL_HEADER_CRYPTO_INTERNAL_H
|
|
|
|
|
|
|
|
#include <openssl/crypto.h>
|
|
|
|
#include <openssl/ex_data.h>
|
|
|
|
#include <openssl/stack.h>
|
|
|
|
#include <openssl/thread.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
|
|
|
|
#include <valgrind/memcheck.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_TESTS)
|
|
|
|
#include <stdlib.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(__cplusplus)
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
#define alignas(x) __declspec(align(x))
|
|
|
|
#define alignof __alignof
|
|
|
|
#else
|
|
|
|
#include <stdalign.h>
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(OPENSSL_THREADS) && \
|
|
|
|
(!defined(OPENSSL_WINDOWS) || defined(__MINGW32__))
|
|
|
|
#include <pthread.h>
|
|
|
|
#define OPENSSL_PTHREADS
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(OPENSSL_THREADS) && !defined(OPENSSL_PTHREADS) && \
|
|
|
|
defined(OPENSSL_WINDOWS)
|
|
|
|
#define OPENSSL_WINDOWS_THREADS
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
|
|
|
#include <windows.h>
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64) || defined(OPENSSL_ARM) || \
|
|
|
|
defined(OPENSSL_AARCH64) || defined(OPENSSL_PPC64LE)
|
|
|
|
// OPENSSL_cpuid_setup initializes the platform-specific feature cache.
|
|
|
|
void OPENSSL_cpuid_setup(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if (defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)) && \
|
|
|
|
!defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
// OPENSSL_get_armcap_pointer_for_test returns a pointer to |OPENSSL_armcap_P|
|
|
|
|
// for unit tests. Any modifications to the value must be made after
|
|
|
|
// |CRYPTO_library_init| but before any other function call in BoringSSL.
|
|
|
|
OPENSSL_EXPORT uint32_t *OPENSSL_get_armcap_pointer_for_test(void);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if (!defined(_MSC_VER) || defined(__clang__)) && defined(OPENSSL_64_BIT)
|
|
|
|
#define BORINGSSL_HAS_UINT128
|
|
|
|
typedef __int128_t int128_t;
|
|
|
|
typedef __uint128_t uint128_t;
|
|
|
|
|
|
|
|
// clang-cl supports __uint128_t but modulus and division don't work.
|
|
|
|
// https://crbug.com/787617.
|
|
|
|
#if !defined(_MSC_VER) || !defined(__clang__)
|
|
|
|
#define BORINGSSL_CAN_DIVIDE_UINT128
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define OPENSSL_ARRAY_SIZE(array) (sizeof(array) / sizeof((array)[0]))
|
|
|
|
|
|
|
|
// Have a generic fall-through for different versions of C/C++.
|
|
|
|
#if defined(__cplusplus) && __cplusplus >= 201703L
|
|
|
|
#define OPENSSL_FALLTHROUGH [[fallthrough]]
|
|
|
|
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__clang__)
|
|
|
|
#define OPENSSL_FALLTHROUGH [[clang::fallthrough]]
|
|
|
|
#elif defined(__cplusplus) && __cplusplus >= 201103L && defined(__GNUC__) && \
|
|
|
|
__GNUC__ >= 7
|
|
|
|
#define OPENSSL_FALLTHROUGH [[gnu::fallthrough]]
|
|
|
|
#elif defined(__GNUC__) && __GNUC__ >= 7 // gcc 7
|
|
|
|
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
|
|
|
|
#elif defined(__clang__)
|
|
|
|
#if __has_attribute(fallthrough) && __clang_major__ >= 5
|
|
|
|
// Clang 3.5, at least, complains about "error: declaration does not declare
|
|
|
|
// anything", possibily because we put a semicolon after this macro in
|
|
|
|
// practice. Thus limit it to >= Clang 5, which does work.
|
|
|
|
#define OPENSSL_FALLTHROUGH __attribute__ ((fallthrough))
|
|
|
|
#else // clang versions that do not support fallthrough.
|
|
|
|
#define OPENSSL_FALLTHROUGH
|
|
|
|
#endif
|
|
|
|
#else // C++11 on gcc 6, and all other cases
|
|
|
|
#define OPENSSL_FALLTHROUGH
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// For convenience in testing 64-bit generic code, we allow disabling SSE2
|
|
|
|
// intrinsics via |OPENSSL_NO_SSE2_FOR_TESTING|. x86_64 always has SSE2
|
|
|
|
// available, so we would otherwise need to test such code on a non-x86_64
|
|
|
|
// platform.
|
|
|
|
#if defined(__SSE2__) && !defined(OPENSSL_NO_SSE2_FOR_TESTING)
|
|
|
|
#define OPENSSL_SSE2
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Pointer utility functions.
|
|
|
|
|
|
|
|
// buffers_alias returns one if |a| and |b| alias and zero otherwise.
|
|
|
|
static inline int buffers_alias(const uint8_t *a, size_t a_len,
|
|
|
|
const uint8_t *b, size_t b_len) {
|
|
|
|
// Cast |a| and |b| to integers. In C, pointer comparisons between unrelated
|
|
|
|
// objects are undefined whereas pointer to integer conversions are merely
|
|
|
|
// implementation-defined. We assume the implementation defined it in a sane
|
|
|
|
// way.
|
|
|
|
uintptr_t a_u = (uintptr_t)a;
|
|
|
|
uintptr_t b_u = (uintptr_t)b;
|
|
|
|
return a_u + a_len > b_u && b_u + b_len > a_u;
|
|
|
|
}
|
|
|
|
|
|
|
|
// align_pointer returns |ptr|, advanced to |alignment|. |alignment| must be a
|
|
|
|
// power of two, and |ptr| must have at least |alignment - 1| bytes of scratch
|
|
|
|
// space.
|
|
|
|
static inline void *align_pointer(void *ptr, size_t alignment) {
|
|
|
|
// |alignment| must be a power of two.
|
|
|
|
assert(alignment != 0 && (alignment & (alignment - 1)) == 0);
|
|
|
|
// Instead of aligning |ptr| as a |uintptr_t| and casting back, compute the
|
|
|
|
// offset and advance in pointer space. C guarantees that casting from pointer
|
|
|
|
// to |uintptr_t| and back gives the same pointer, but general
|
|
|
|
// integer-to-pointer conversions are implementation-defined. GCC does define
|
|
|
|
// it in the useful way, but this makes fewer assumptions.
|
|
|
|
uintptr_t offset = (0u - (uintptr_t)ptr) & (alignment - 1);
|
|
|
|
ptr = (char *)ptr + offset;
|
|
|
|
assert(((uintptr_t)ptr & (alignment - 1)) == 0);
|
|
|
|
return ptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Constant-time utility functions.
|
|
|
|
//
|
|
|
|
// The following methods return a bitmask of all ones (0xff...f) for true and 0
|
|
|
|
// for false. This is useful for choosing a value based on the result of a
|
|
|
|
// conditional in constant time. For example,
|
|
|
|
//
|
|
|
|
// if (a < b) {
|
|
|
|
// c = a;
|
|
|
|
// } else {
|
|
|
|
// c = b;
|
|
|
|
// }
|
|
|
|
//
|
|
|
|
// can be written as
|
|
|
|
//
|
|
|
|
// crypto_word_t lt = constant_time_lt_w(a, b);
|
|
|
|
// c = constant_time_select_w(lt, a, b);
|
|
|
|
|
|
|
|
// crypto_word_t is the type that most constant-time functions use. Ideally we
|
|
|
|
// would like it to be |size_t|, but NaCl builds in 64-bit mode with 32-bit
|
|
|
|
// pointers, which means that |size_t| can be 32 bits when |BN_ULONG| is 64
|
|
|
|
// bits. Since we want to be able to do constant-time operations on a
|
|
|
|
// |BN_ULONG|, |crypto_word_t| is defined as an unsigned value with the native
|
|
|
|
// word length.
|
|
|
|
#if defined(OPENSSL_64_BIT)
|
|
|
|
typedef uint64_t crypto_word_t;
|
|
|
|
#elif defined(OPENSSL_32_BIT)
|
|
|
|
typedef uint32_t crypto_word_t;
|
|
|
|
#else
|
|
|
|
#error "Must define either OPENSSL_32_BIT or OPENSSL_64_BIT"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#define CONSTTIME_TRUE_W ~((crypto_word_t)0)
|
|
|
|
#define CONSTTIME_FALSE_W ((crypto_word_t)0)
|
|
|
|
#define CONSTTIME_TRUE_8 ((uint8_t)0xff)
|
|
|
|
#define CONSTTIME_FALSE_8 ((uint8_t)0)
|
|
|
|
|
|
|
|
// value_barrier_w returns |a|, but prevents GCC and Clang from reasoning about
|
|
|
|
// the returned value. This is used to mitigate compilers undoing constant-time
|
|
|
|
// code, until we can express our requirements directly in the language.
|
|
|
|
//
|
|
|
|
// Note the compiler is aware that |value_barrier_w| has no side effects and
|
|
|
|
// always has the same output for a given input. This allows it to eliminate
|
|
|
|
// dead code, move computations across loops, and vectorize.
|
|
|
|
static inline crypto_word_t value_barrier_w(crypto_word_t a) {
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
|
|
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
|
|
#endif
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// value_barrier_u32 behaves like |value_barrier_w| but takes a |uint32_t|.
|
|
|
|
static inline uint32_t value_barrier_u32(uint32_t a) {
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
|
|
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
|
|
#endif
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// value_barrier_u64 behaves like |value_barrier_w| but takes a |uint64_t|.
|
|
|
|
static inline uint64_t value_barrier_u64(uint64_t a) {
|
|
|
|
#if !defined(OPENSSL_NO_ASM) && (defined(__GNUC__) || defined(__clang__))
|
|
|
|
__asm__("" : "+r"(a) : /* no inputs */);
|
|
|
|
#endif
|
|
|
|
return a;
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_msb_w returns the given value with the MSB copied to all the
|
|
|
|
// other bits.
|
|
|
|
static inline crypto_word_t constant_time_msb_w(crypto_word_t a) {
|
|
|
|
return 0u - (a >> (sizeof(a) * 8 - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_lt_w returns 0xff..f if a < b and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_lt_w(crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
// Consider the two cases of the problem:
|
|
|
|
// msb(a) == msb(b): a < b iff the MSB of a - b is set.
|
|
|
|
// msb(a) != msb(b): a < b iff the MSB of b is set.
|
|
|
|
//
|
|
|
|
// If msb(a) == msb(b) then the following evaluates as:
|
|
|
|
// msb(a^((a^b)|((a-b)^a))) ==
|
|
|
|
// msb(a^((a-b) ^ a)) == (because msb(a^b) == 0)
|
|
|
|
// msb(a^a^(a-b)) == (rearranging)
|
|
|
|
// msb(a-b) (because ∀x. x^x == 0)
|
|
|
|
//
|
|
|
|
// Else, if msb(a) != msb(b) then the following evaluates as:
|
|
|
|
// msb(a^((a^b)|((a-b)^a))) ==
|
|
|
|
// msb(a^(𝟙 | ((a-b)^a))) == (because msb(a^b) == 1 and 𝟙
|
|
|
|
// represents a value s.t. msb(𝟙) = 1)
|
|
|
|
// msb(a^𝟙) == (because ORing with 1 results in 1)
|
|
|
|
// msb(b)
|
|
|
|
//
|
|
|
|
//
|
|
|
|
// Here is an SMT-LIB verification of this formula:
|
|
|
|
//
|
|
|
|
// (define-fun lt ((a (_ BitVec 32)) (b (_ BitVec 32))) (_ BitVec 32)
|
|
|
|
// (bvxor a (bvor (bvxor a b) (bvxor (bvsub a b) a)))
|
|
|
|
// )
|
|
|
|
//
|
|
|
|
// (declare-fun a () (_ BitVec 32))
|
|
|
|
// (declare-fun b () (_ BitVec 32))
|
|
|
|
//
|
|
|
|
// (assert (not (= (= #x00000001 (bvlshr (lt a b) #x0000001f)) (bvult a b))))
|
|
|
|
// (check-sat)
|
|
|
|
// (get-model)
|
|
|
|
return constant_time_msb_w(a^((a^b)|((a-b)^a)));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_lt_8 acts like |constant_time_lt_w| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_lt_8(crypto_word_t a, crypto_word_t b) {
|
|
|
|
return (uint8_t)(constant_time_lt_w(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_ge_w returns 0xff..f if a >= b and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_ge_w(crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
return ~constant_time_lt_w(a, b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_ge_8 acts like |constant_time_ge_w| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_ge_8(crypto_word_t a, crypto_word_t b) {
|
|
|
|
return (uint8_t)(constant_time_ge_w(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_is_zero returns 0xff..f if a == 0 and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_is_zero_w(crypto_word_t a) {
|
|
|
|
// Here is an SMT-LIB verification of this formula:
|
|
|
|
//
|
|
|
|
// (define-fun is_zero ((a (_ BitVec 32))) (_ BitVec 32)
|
|
|
|
// (bvand (bvnot a) (bvsub a #x00000001))
|
|
|
|
// )
|
|
|
|
//
|
|
|
|
// (declare-fun a () (_ BitVec 32))
|
|
|
|
//
|
|
|
|
// (assert (not (= (= #x00000001 (bvlshr (is_zero a) #x0000001f)) (= a #x00000000))))
|
|
|
|
// (check-sat)
|
|
|
|
// (get-model)
|
|
|
|
return constant_time_msb_w(~a & (a - 1));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_is_zero_8 acts like |constant_time_is_zero_w| but returns an
|
|
|
|
// 8-bit mask.
|
|
|
|
static inline uint8_t constant_time_is_zero_8(crypto_word_t a) {
|
|
|
|
return (uint8_t)(constant_time_is_zero_w(a));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_w returns 0xff..f if a == b and 0 otherwise.
|
|
|
|
static inline crypto_word_t constant_time_eq_w(crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
return constant_time_is_zero_w(a ^ b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_8 acts like |constant_time_eq_w| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_eq_8(crypto_word_t a, crypto_word_t b) {
|
|
|
|
return (uint8_t)(constant_time_eq_w(a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_int acts like |constant_time_eq_w| but works on int
|
|
|
|
// values.
|
|
|
|
static inline crypto_word_t constant_time_eq_int(int a, int b) {
|
|
|
|
return constant_time_eq_w((crypto_word_t)(a), (crypto_word_t)(b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_eq_int_8 acts like |constant_time_eq_int| but returns an 8-bit
|
|
|
|
// mask.
|
|
|
|
static inline uint8_t constant_time_eq_int_8(int a, int b) {
|
|
|
|
return constant_time_eq_8((crypto_word_t)(a), (crypto_word_t)(b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_select_w returns (mask & a) | (~mask & b). When |mask| is all
|
|
|
|
// 1s or all 0s (as returned by the methods above), the select methods return
|
|
|
|
// either |a| (if |mask| is nonzero) or |b| (if |mask| is zero).
|
|
|
|
static inline crypto_word_t constant_time_select_w(crypto_word_t mask,
|
|
|
|
crypto_word_t a,
|
|
|
|
crypto_word_t b) {
|
|
|
|
// Clang recognizes this pattern as a select. While it usually transforms it
|
|
|
|
// to a cmov, it sometimes further transforms it into a branch, which we do
|
|
|
|
// not want.
|
|
|
|
//
|
|
|
|
// Adding barriers to both |mask| and |~mask| breaks the relationship between
|
|
|
|
// the two, which makes the compiler stick with bitmasks.
|
|
|
|
return (value_barrier_w(mask) & a) | (value_barrier_w(~mask) & b);
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_select_8 acts like |constant_time_select| but operates on
|
|
|
|
// 8-bit values.
|
|
|
|
static inline uint8_t constant_time_select_8(uint8_t mask, uint8_t a,
|
|
|
|
uint8_t b) {
|
|
|
|
return (uint8_t)(constant_time_select_w(mask, a, b));
|
|
|
|
}
|
|
|
|
|
|
|
|
// constant_time_select_int acts like |constant_time_select| but operates on
|
|
|
|
// ints.
|
|
|
|
static inline int constant_time_select_int(crypto_word_t mask, int a, int b) {
|
|
|
|
return (int)(constant_time_select_w(mask, (crypto_word_t)(a),
|
|
|
|
(crypto_word_t)(b)));
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_CONSTANT_TIME_VALIDATION)
|
|
|
|
|
|
|
|
// CONSTTIME_SECRET takes a pointer and a number of bytes and marks that region
|
|
|
|
// of memory as secret. Secret data is tracked as it flows to registers and
|
|
|
|
// other parts of a memory. If secret data is used as a condition for a branch,
|
|
|
|
// or as a memory index, it will trigger warnings in valgrind.
|
|
|
|
#define CONSTTIME_SECRET(x, y) VALGRIND_MAKE_MEM_UNDEFINED(x, y)
|
|
|
|
|
|
|
|
// CONSTTIME_DECLASSIFY takes a pointer and a number of bytes and marks that
|
|
|
|
// region of memory as public. Public data is not subject to constant-time
|
|
|
|
// rules.
|
|
|
|
#define CONSTTIME_DECLASSIFY(x, y) VALGRIND_MAKE_MEM_DEFINED(x, y)
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define CONSTTIME_SECRET(x, y)
|
|
|
|
#define CONSTTIME_DECLASSIFY(x, y)
|
|
|
|
|
|
|
|
#endif // BORINGSSL_CONSTANT_TIME_VALIDATION
|
|
|
|
|
|
|
|
|
|
|
|
// Thread-safe initialisation.
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_THREADS)
|
|
|
|
typedef uint32_t CRYPTO_once_t;
|
|
|
|
#define CRYPTO_ONCE_INIT 0
|
|
|
|
#elif defined(OPENSSL_WINDOWS_THREADS)
|
|
|
|
typedef INIT_ONCE CRYPTO_once_t;
|
|
|
|
#define CRYPTO_ONCE_INIT INIT_ONCE_STATIC_INIT
|
|
|
|
#elif defined(OPENSSL_PTHREADS)
|
|
|
|
typedef pthread_once_t CRYPTO_once_t;
|
|
|
|
#define CRYPTO_ONCE_INIT PTHREAD_ONCE_INIT
|
|
|
|
#else
|
|
|
|
#error "Unknown threading library"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// CRYPTO_once calls |init| exactly once per process. This is thread-safe: if
|
|
|
|
// concurrent threads call |CRYPTO_once| with the same |CRYPTO_once_t| argument
|
|
|
|
// then they will block until |init| completes, but |init| will have only been
|
|
|
|
// called once.
|
|
|
|
//
|
|
|
|
// The |once| argument must be a |CRYPTO_once_t| that has been initialised with
|
|
|
|
// the value |CRYPTO_ONCE_INIT|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_once(CRYPTO_once_t *once, void (*init)(void));
|
|
|
|
|
|
|
|
|
|
|
|
// Reference counting.
|
|
|
|
|
Automatically enable C11 atomics when available.
It's now 2021. Hopefully we can at least assume anyone building with
-std=c11 also has a corresponding set of headers. Plus, even if you
don't, Clang seems to provide a header. (So C11 atomics work in
clang-cl.) Also apparently atomics are optional, so this checks
__STDC_NO_ATOMICS__.
This does *not* set C11 as the minimum version. If you build with
-std=c99, we'll silently use the non-atomics implementation. That's a
little magical, so I've kept OPENSSL_C11_ATOMIC as a way to assert that
you really want C11 atomics. Mostly it turns into a -std=c11 && !MSVC
self-assert.
Update-Note: If something fails to compile, we'll revert this and adjust
the check, or add an opt-out, or give up. Also, if building with
-std=c99, consider -std=c11.
Change-Id: I1a8074c367a765c5a0f087db8c250e050df2dde8
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/46344
Reviewed-by: Adam Langley <agl@google.com>
4 years ago
|
|
|
// Automatically enable C11 atomics if implemented.
|
|
|
|
#if !defined(OPENSSL_C11_ATOMIC) && defined(OPENSSL_THREADS) && \
|
|
|
|
!defined(__STDC_NO_ATOMICS__) && defined(__STDC_VERSION__) && \
|
|
|
|
__STDC_VERSION__ >= 201112L
|
Automatically enable C11 atomics when available.
It's now 2021. Hopefully we can at least assume anyone building with
-std=c11 also has a corresponding set of headers. Plus, even if you
don't, Clang seems to provide a header. (So C11 atomics work in
clang-cl.) Also apparently atomics are optional, so this checks
__STDC_NO_ATOMICS__.
This does *not* set C11 as the minimum version. If you build with
-std=c99, we'll silently use the non-atomics implementation. That's a
little magical, so I've kept OPENSSL_C11_ATOMIC as a way to assert that
you really want C11 atomics. Mostly it turns into a -std=c11 && !MSVC
self-assert.
Update-Note: If something fails to compile, we'll revert this and adjust
the check, or add an opt-out, or give up. Also, if building with
-std=c99, consider -std=c11.
Change-Id: I1a8074c367a765c5a0f087db8c250e050df2dde8
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/46344
Reviewed-by: Adam Langley <agl@google.com>
4 years ago
|
|
|
#define OPENSSL_C11_ATOMIC
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// CRYPTO_REFCOUNT_MAX is the value at which the reference count saturates.
|
|
|
|
#define CRYPTO_REFCOUNT_MAX 0xffffffff
|
|
|
|
|
|
|
|
// CRYPTO_refcount_inc atomically increments the value at |*count| unless the
|
|
|
|
// value would overflow. It's safe for multiple threads to concurrently call
|
|
|
|
// this or |CRYPTO_refcount_dec_and_test_zero| on the same
|
|
|
|
// |CRYPTO_refcount_t|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_refcount_inc(CRYPTO_refcount_t *count);
|
|
|
|
|
|
|
|
// CRYPTO_refcount_dec_and_test_zero tests the value at |*count|:
|
|
|
|
// if it's zero, it crashes the address space.
|
|
|
|
// if it's the maximum value, it returns zero.
|
|
|
|
// otherwise, it atomically decrements it and returns one iff the resulting
|
|
|
|
// value is zero.
|
|
|
|
//
|
|
|
|
// It's safe for multiple threads to concurrently call this or
|
|
|
|
// |CRYPTO_refcount_inc| on the same |CRYPTO_refcount_t|.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_refcount_dec_and_test_zero(CRYPTO_refcount_t *count);
|
|
|
|
|
|
|
|
|
|
|
|
// Locks.
|
|
|
|
//
|
|
|
|
// Two types of locks are defined: |CRYPTO_MUTEX|, which can be used in
|
|
|
|
// structures as normal, and |struct CRYPTO_STATIC_MUTEX|, which can be used as
|
|
|
|
// a global lock. A global lock must be initialised to the value
|
|
|
|
// |CRYPTO_STATIC_MUTEX_INIT|.
|
|
|
|
//
|
|
|
|
// |CRYPTO_MUTEX| can appear in public structures and so is defined in
|
|
|
|
// thread.h as a structure large enough to fit the real type. The global lock is
|
|
|
|
// a different type so it may be initialized with platform initializer macros.
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_THREADS)
|
|
|
|
struct CRYPTO_STATIC_MUTEX {
|
|
|
|
char padding; // Empty structs have different sizes in C and C++.
|
|
|
|
};
|
|
|
|
#define CRYPTO_STATIC_MUTEX_INIT { 0 }
|
|
|
|
#elif defined(OPENSSL_WINDOWS_THREADS)
|
|
|
|
struct CRYPTO_STATIC_MUTEX {
|
|
|
|
SRWLOCK lock;
|
|
|
|
};
|
|
|
|
#define CRYPTO_STATIC_MUTEX_INIT { SRWLOCK_INIT }
|
|
|
|
#elif defined(OPENSSL_PTHREADS)
|
|
|
|
struct CRYPTO_STATIC_MUTEX {
|
|
|
|
pthread_rwlock_t lock;
|
|
|
|
};
|
|
|
|
#define CRYPTO_STATIC_MUTEX_INIT { PTHREAD_RWLOCK_INITIALIZER }
|
|
|
|
#else
|
|
|
|
#error "Unknown threading library"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_init initialises |lock|. If |lock| is a static variable, use a
|
|
|
|
// |CRYPTO_STATIC_MUTEX|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_init(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_lock_read locks |lock| such that other threads may also have a
|
|
|
|
// read lock, but none may have a write lock.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_read(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_lock_write locks |lock| such that no other thread has any type
|
|
|
|
// of lock on it.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_lock_write(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_unlock_read unlocks |lock| for reading.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_read(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_unlock_write unlocks |lock| for writing.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_unlock_write(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_MUTEX_cleanup releases all resources held by |lock|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_MUTEX_cleanup(CRYPTO_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_lock_read locks |lock| such that other threads may also
|
|
|
|
// have a read lock, but none may have a write lock. The |lock| variable does
|
|
|
|
// not need to be initialised by any function, but must have been statically
|
|
|
|
// initialised with |CRYPTO_STATIC_MUTEX_INIT|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_read(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_lock_write locks |lock| such that no other thread has
|
|
|
|
// any type of lock on it. The |lock| variable does not need to be initialised
|
|
|
|
// by any function, but must have been statically initialised with
|
|
|
|
// |CRYPTO_STATIC_MUTEX_INIT|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_lock_write(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_unlock_read unlocks |lock| for reading.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_read(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
// CRYPTO_STATIC_MUTEX_unlock_write unlocks |lock| for writing.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_STATIC_MUTEX_unlock_write(
|
|
|
|
struct CRYPTO_STATIC_MUTEX *lock);
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C++" {
|
|
|
|
|
|
|
|
BSSL_NAMESPACE_BEGIN
|
|
|
|
|
|
|
|
namespace internal {
|
|
|
|
|
|
|
|
// MutexLockBase is a RAII helper for CRYPTO_MUTEX locking.
|
|
|
|
template <void (*LockFunc)(CRYPTO_MUTEX *), void (*ReleaseFunc)(CRYPTO_MUTEX *)>
|
|
|
|
class MutexLockBase {
|
|
|
|
public:
|
|
|
|
explicit MutexLockBase(CRYPTO_MUTEX *mu) : mu_(mu) {
|
|
|
|
assert(mu_ != nullptr);
|
|
|
|
LockFunc(mu_);
|
|
|
|
}
|
|
|
|
~MutexLockBase() { ReleaseFunc(mu_); }
|
|
|
|
MutexLockBase(const MutexLockBase<LockFunc, ReleaseFunc> &) = delete;
|
|
|
|
MutexLockBase &operator=(const MutexLockBase<LockFunc, ReleaseFunc> &) =
|
|
|
|
delete;
|
|
|
|
|
|
|
|
private:
|
|
|
|
CRYPTO_MUTEX *const mu_;
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace internal
|
|
|
|
|
|
|
|
using MutexWriteLock =
|
|
|
|
internal::MutexLockBase<CRYPTO_MUTEX_lock_write, CRYPTO_MUTEX_unlock_write>;
|
|
|
|
using MutexReadLock =
|
|
|
|
internal::MutexLockBase<CRYPTO_MUTEX_lock_read, CRYPTO_MUTEX_unlock_read>;
|
|
|
|
|
|
|
|
BSSL_NAMESPACE_END
|
|
|
|
|
|
|
|
} // extern "C++"
|
|
|
|
#endif // defined(__cplusplus)
|
|
|
|
|
|
|
|
|
|
|
|
// Thread local storage.
|
|
|
|
|
|
|
|
// thread_local_data_t enumerates the types of thread-local data that can be
|
|
|
|
// stored.
|
|
|
|
typedef enum {
|
|
|
|
OPENSSL_THREAD_LOCAL_ERR = 0,
|
|
|
|
OPENSSL_THREAD_LOCAL_RAND,
|
|
|
|
OPENSSL_THREAD_LOCAL_FIPS_COUNTERS,
|
|
|
|
OPENSSL_THREAD_LOCAL_TEST,
|
|
|
|
NUM_OPENSSL_THREAD_LOCALS,
|
|
|
|
} thread_local_data_t;
|
|
|
|
|
|
|
|
// thread_local_destructor_t is the type of a destructor function that will be
|
|
|
|
// called when a thread exits and its thread-local storage needs to be freed.
|
|
|
|
typedef void (*thread_local_destructor_t)(void *);
|
|
|
|
|
|
|
|
// CRYPTO_get_thread_local gets the pointer value that is stored for the
|
|
|
|
// current thread for the given index, or NULL if none has been set.
|
|
|
|
OPENSSL_EXPORT void *CRYPTO_get_thread_local(thread_local_data_t value);
|
|
|
|
|
|
|
|
// CRYPTO_set_thread_local sets a pointer value for the current thread at the
|
|
|
|
// given index. This function should only be called once per thread for a given
|
|
|
|
// |index|: rather than update the pointer value itself, update the data that
|
|
|
|
// is pointed to.
|
|
|
|
//
|
|
|
|
// The destructor function will be called when a thread exits to free this
|
|
|
|
// thread-local data. All calls to |CRYPTO_set_thread_local| with the same
|
|
|
|
// |index| should have the same |destructor| argument. The destructor may be
|
|
|
|
// called with a NULL argument if a thread that never set a thread-local
|
|
|
|
// pointer for |index|, exits. The destructor may be called concurrently with
|
|
|
|
// different arguments.
|
|
|
|
//
|
|
|
|
// This function returns one on success or zero on error. If it returns zero
|
|
|
|
// then |destructor| has been called with |value| already.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_set_thread_local(
|
|
|
|
thread_local_data_t index, void *value,
|
|
|
|
thread_local_destructor_t destructor);
|
|
|
|
|
|
|
|
|
|
|
|
// ex_data
|
|
|
|
|
|
|
|
typedef struct crypto_ex_data_func_st CRYPTO_EX_DATA_FUNCS;
|
|
|
|
|
|
|
|
DECLARE_STACK_OF(CRYPTO_EX_DATA_FUNCS)
|
|
|
|
|
|
|
|
// CRYPTO_EX_DATA_CLASS tracks the ex_indices registered for a type which
|
|
|
|
// supports ex_data. It should defined as a static global within the module
|
|
|
|
// which defines that type.
|
|
|
|
typedef struct {
|
|
|
|
struct CRYPTO_STATIC_MUTEX lock;
|
|
|
|
STACK_OF(CRYPTO_EX_DATA_FUNCS) *meth;
|
|
|
|
// num_reserved is one if the ex_data index zero is reserved for legacy
|
|
|
|
// |TYPE_get_app_data| functions.
|
|
|
|
uint8_t num_reserved;
|
|
|
|
} CRYPTO_EX_DATA_CLASS;
|
|
|
|
|
|
|
|
#define CRYPTO_EX_DATA_CLASS_INIT {CRYPTO_STATIC_MUTEX_INIT, NULL, 0}
|
|
|
|
#define CRYPTO_EX_DATA_CLASS_INIT_WITH_APP_DATA \
|
|
|
|
{CRYPTO_STATIC_MUTEX_INIT, NULL, 1}
|
|
|
|
|
|
|
|
// CRYPTO_get_ex_new_index allocates a new index for |ex_data_class| and writes
|
|
|
|
// it to |*out_index|. Each class of object should provide a wrapper function
|
|
|
|
// that uses the correct |CRYPTO_EX_DATA_CLASS|. It returns one on success and
|
|
|
|
// zero otherwise.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_get_ex_new_index(CRYPTO_EX_DATA_CLASS *ex_data_class,
|
|
|
|
int *out_index, long argl,
|
|
|
|
void *argp,
|
|
|
|
CRYPTO_EX_free *free_func);
|
|
|
|
|
|
|
|
// CRYPTO_set_ex_data sets an extra data pointer on a given object. Each class
|
|
|
|
// of object should provide a wrapper function.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_set_ex_data(CRYPTO_EX_DATA *ad, int index, void *val);
|
|
|
|
|
|
|
|
// CRYPTO_get_ex_data returns an extra data pointer for a given object, or NULL
|
|
|
|
// if no such index exists. Each class of object should provide a wrapper
|
|
|
|
// function.
|
|
|
|
OPENSSL_EXPORT void *CRYPTO_get_ex_data(const CRYPTO_EX_DATA *ad, int index);
|
|
|
|
|
|
|
|
// CRYPTO_new_ex_data initialises a newly allocated |CRYPTO_EX_DATA|.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_new_ex_data(CRYPTO_EX_DATA *ad);
|
|
|
|
|
|
|
|
// CRYPTO_free_ex_data frees |ad|, which is embedded inside |obj|, which is an
|
|
|
|
// object of the given class.
|
|
|
|
OPENSSL_EXPORT void CRYPTO_free_ex_data(CRYPTO_EX_DATA_CLASS *ex_data_class,
|
|
|
|
void *obj, CRYPTO_EX_DATA *ad);
|
|
|
|
|
|
|
|
|
|
|
|
// Endianness conversions.
|
|
|
|
|
|
|
|
#if defined(__GNUC__) && __GNUC__ >= 2
|
|
|
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
|
|
|
|
return __builtin_bswap16(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
|
|
return __builtin_bswap32(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
|
|
return __builtin_bswap64(x);
|
|
|
|
}
|
|
|
|
#elif defined(_MSC_VER)
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(push, 3))
|
|
|
|
#include <stdlib.h>
|
|
|
|
OPENSSL_MSVC_PRAGMA(warning(pop))
|
|
|
|
#pragma intrinsic(_byteswap_uint64, _byteswap_ulong, _byteswap_ushort)
|
|
|
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
|
|
|
|
return _byteswap_ushort(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
|
|
return _byteswap_ulong(x);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
|
|
return _byteswap_uint64(x);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
static inline uint16_t CRYPTO_bswap2(uint16_t x) {
|
|
|
|
return (x >> 8) | (x << 8);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_bswap4(uint32_t x) {
|
|
|
|
x = (x >> 16) | (x << 16);
|
|
|
|
x = ((x & 0xff00ff00) >> 8) | ((x & 0x00ff00ff) << 8);
|
|
|
|
return x;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_bswap8(uint64_t x) {
|
|
|
|
return CRYPTO_bswap4(x >> 32) | (((uint64_t)CRYPTO_bswap4(x)) << 32);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// Language bug workarounds.
|
|
|
|
//
|
|
|
|
// Most C standard library functions are undefined if passed NULL, even when the
|
|
|
|
// corresponding length is zero. This gives them (and, in turn, all functions
|
|
|
|
// which call them) surprising behavior on empty arrays. Some compilers will
|
|
|
|
// miscompile code due to this rule. See also
|
|
|
|
// https://www.imperialviolet.org/2016/06/26/nonnull.html
|
|
|
|
//
|
|
|
|
// These wrapper functions behave the same as the corresponding C standard
|
|
|
|
// functions, but behave as expected when passed NULL if the length is zero.
|
|
|
|
//
|
|
|
|
// Note |OPENSSL_memcmp| is a different function from |CRYPTO_memcmp|.
|
|
|
|
|
|
|
|
// C++ defines |memchr| as a const-correct overload.
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C++" {
|
|
|
|
|
|
|
|
static inline const void *OPENSSL_memchr(const void *s, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memchr(s, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memchr(void *s, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memchr(s, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
} // extern "C++"
|
|
|
|
#else // __cplusplus
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memchr(const void *s, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memchr(s, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // __cplusplus
|
|
|
|
|
|
|
|
static inline int OPENSSL_memcmp(const void *s1, const void *s2, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memcmp(s1, s2, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memcpy(void *dst, const void *src, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memcpy(dst, src, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memmove(void *dst, const void *src, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memmove(dst, src, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void *OPENSSL_memset(void *dst, int c, size_t n) {
|
|
|
|
if (n == 0) {
|
|
|
|
return dst;
|
|
|
|
}
|
|
|
|
|
|
|
|
return memset(dst, c, n);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Loads and stores.
|
|
|
|
//
|
|
|
|
// The following functions load and store sized integers with the specified
|
|
|
|
// endianness. They use |memcpy|, and so avoid alignment or strict aliasing
|
|
|
|
// requirements on the input and output pointers.
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_load_u32_le(const void *in) {
|
|
|
|
uint32_t v;
|
|
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_u32_le(void *out, uint32_t v) {
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_load_u32_be(const void *in) {
|
|
|
|
uint32_t v;
|
|
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
|
|
return CRYPTO_bswap4(v);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_u32_be(void *out, uint32_t v) {
|
|
|
|
v = CRYPTO_bswap4(v);
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_load_u64_be(const void *ptr) {
|
|
|
|
uint64_t ret;
|
|
|
|
OPENSSL_memcpy(&ret, ptr, sizeof(ret));
|
|
|
|
return CRYPTO_bswap8(ret);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_u64_be(void *out, uint64_t v) {
|
|
|
|
v = CRYPTO_bswap8(v);
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline crypto_word_t CRYPTO_load_word_le(const void *in) {
|
|
|
|
crypto_word_t v;
|
|
|
|
OPENSSL_memcpy(&v, in, sizeof(v));
|
|
|
|
return v;
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void CRYPTO_store_word_le(void *out, crypto_word_t v) {
|
|
|
|
OPENSSL_memcpy(out, &v, sizeof(v));
|
|
|
|
}
|
|
|
|
|
|
|
|
|
Extract common rotl/rotr functions.
We have a ton of per-file rotation functions, often with generic names
that do not tell you whether they are uint32_t vs uint64_t, or rotl vs
rotr.
Additionally, (x >> r) | (x << (32 - r)) is UB at r = 0.
(x >> r) | (x << ((-r) & 31)) works for 0 <= r < 32, which is what
cast.c does. GCC and Clang recognize this pattern as a rotate, but MSVC
doesn't. MSVC does, however, provide functions for this.
We usually rotate by a non-zero constant, which makes this moot, but
rotation comes up often enough that it's worth extracting out. Some
particular changes to call out:
- I've switched sha256.c from rotl to rotr. There was a comment
explaining why it differed from the specification. Now that we have
both functions, it's simpler to just match the specification.
- I've dropped all the inline assembly from sha512.c. Compilers should
be able to recognize rotations in 2021.
Change-Id: Ia1030e8bfe94dad92514ed1c28777447c48b82f9
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/49765
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
// Bit rotation functions.
|
|
|
|
//
|
|
|
|
// Note these functions use |(-shift) & 31|, etc., because shifting by the bit
|
|
|
|
// width is undefined. Both Clang and GCC recognize this pattern as a rotation,
|
|
|
|
// but MSVC does not. Instead, we call MSVC's built-in functions.
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_rotl_u32(uint32_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotl(value, shift);
|
|
|
|
#else
|
|
|
|
return (value << shift) | (value >> ((-shift) & 31));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint32_t CRYPTO_rotr_u32(uint32_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotr(value, shift);
|
|
|
|
#else
|
|
|
|
return (value >> shift) | (value << ((-shift) & 31));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_rotl_u64(uint64_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotl64(value, shift);
|
|
|
|
#else
|
|
|
|
return (value << shift) | (value >> ((-shift) & 63));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline uint64_t CRYPTO_rotr_u64(uint64_t value, int shift) {
|
|
|
|
#if defined(_MSC_VER)
|
|
|
|
return _rotr64(value, shift);
|
|
|
|
#else
|
|
|
|
return (value >> shift) | (value << ((-shift) & 63));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// FIPS functions.
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
|
|
|
|
// BORINGSSL_FIPS_abort is called when a FIPS power-on or continuous test
|
|
|
|
// fails. It prevents any further cryptographic operations by the current
|
|
|
|
// process.
|
|
|
|
void BORINGSSL_FIPS_abort(void) __attribute__((noreturn));
|
|
|
|
|
|
|
|
// boringssl_self_test_startup runs all startup self tests and returns one on
|
|
|
|
// success or zero on error. Startup self tests do not include lazy tests.
|
|
|
|
// Call |BORINGSSL_self_test| to run every self test.
|
|
|
|
int boringssl_self_test_startup(void);
|
|
|
|
|
|
|
|
// boringssl_ensure_rsa_self_test checks whether the RSA self-test has been run
|
|
|
|
// in this address space. If not, it runs it and crashes the address space if
|
|
|
|
// unsuccessful.
|
|
|
|
void boringssl_ensure_rsa_self_test(void);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// Outside of FIPS mode, the lazy tests are no-ops.
|
|
|
|
|
|
|
|
OPENSSL_INLINE void boringssl_ensure_rsa_self_test(void) {}
|
|
|
|
|
|
|
|
#endif // FIPS
|
|
|
|
|
|
|
|
// boringssl_self_test_sha256 performs a SHA-256 KAT.
|
|
|
|
int boringssl_self_test_sha256(void);
|
|
|
|
|
|
|
|
// boringssl_self_test_sha512 performs a SHA-512 KAT.
|
|
|
|
int boringssl_self_test_sha512(void);
|
|
|
|
|
|
|
|
// boringssl_self_test_hmac_sha256 performs an HMAC-SHA-256 KAT.
|
|
|
|
int boringssl_self_test_hmac_sha256(void);
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_COUNTERS)
|
|
|
|
void boringssl_fips_inc_counter(enum fips_counter_t counter);
|
|
|
|
#else
|
|
|
|
OPENSSL_INLINE void boringssl_fips_inc_counter(enum fips_counter_t counter) {}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_TESTS)
|
|
|
|
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
|
|
|
|
const char *const value = getenv("BORINGSSL_FIPS_BREAK_TEST");
|
|
|
|
return value != NULL && strcmp(value, test) == 0;
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
OPENSSL_INLINE int boringssl_fips_break_test(const char *test) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
#endif // BORINGSSL_FIPS_BREAK_TESTS
|
|
|
|
|
|
|
|
|
|
|
|
// Runtime CPU feature support
|
|
|
|
|
|
|
|
#if defined(OPENSSL_X86) || defined(OPENSSL_X86_64)
|
|
|
|
// OPENSSL_ia32cap_P contains the Intel CPUID bits when running on an x86 or
|
|
|
|
// x86-64 system.
|
|
|
|
//
|
|
|
|
// Index 0:
|
|
|
|
// EDX for CPUID where EAX = 1
|
|
|
|
// Bit 20 is always zero
|
|
|
|
// Bit 28 is adjusted to reflect whether the data cache is shared between
|
|
|
|
// multiple logical cores
|
|
|
|
// Bit 30 is used to indicate an Intel CPU
|
|
|
|
// Index 1:
|
|
|
|
// ECX for CPUID where EAX = 1
|
|
|
|
// Bit 11 is used to indicate AMD XOP support, not SDBG
|
|
|
|
// Index 2:
|
|
|
|
// EBX for CPUID where EAX = 7
|
|
|
|
// Index 3:
|
|
|
|
// ECX for CPUID where EAX = 7
|
|
|
|
//
|
|
|
|
// Note: the CPUID bits are pre-adjusted for the OSXSAVE bit and the YMM and XMM
|
|
|
|
// bits in XCR0, so it is not necessary to check those.
|
|
|
|
extern uint32_t OPENSSL_ia32cap_P[4];
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS) && !defined(BORINGSSL_SHARED_LIBRARY)
|
|
|
|
const uint32_t *OPENSSL_ia32cap_get(void);
|
|
|
|
#else
|
|
|
|
OPENSSL_INLINE const uint32_t *OPENSSL_ia32cap_get(void) {
|
|
|
|
return OPENSSL_ia32cap_P;
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(OPENSSL_ARM) || defined(OPENSSL_AARCH64)
|
|
|
|
|
|
|
|
#if defined(OPENSSL_APPLE) && defined(OPENSSL_ARM)
|
|
|
|
// We do not detect any features at runtime for Apple's 32-bit ARM platforms. On
|
|
|
|
// 64-bit ARM, we detect some post-ARMv8.0 features.
|
|
|
|
#define OPENSSL_STATIC_ARMCAP
|
|
|
|
#endif
|
|
|
|
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
// Normalize some older feature flags to their modern ACLE values.
|
|
|
|
// https://developer.arm.com/architectures/system-architectures/software-standards/acle
|
|
|
|
#if defined(__ARM_NEON__) && !defined(__ARM_NEON)
|
|
|
|
#define __ARM_NEON 1
|
|
|
|
#endif
|
|
|
|
#if defined(__ARM_FEATURE_CRYPTO)
|
|
|
|
#if !defined(__ARM_FEATURE_AES)
|
|
|
|
#define __ARM_FEATURE_AES 1
|
|
|
|
#endif
|
|
|
|
#if !defined(__ARM_FEATURE_SHA2)
|
|
|
|
#define __ARM_FEATURE_SHA2 1
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if !defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
// CRYPTO_is_NEON_capable_at_runtime returns true if the current CPU has a NEON
|
|
|
|
// unit. Note that |OPENSSL_armcap_P| also exists and contains the same
|
|
|
|
// information in a form that's easier for assembly to use.
|
|
|
|
OPENSSL_EXPORT int CRYPTO_is_NEON_capable_at_runtime(void);
|
|
|
|
|
|
|
|
// CRYPTO_is_ARMv8_AES_capable_at_runtime returns true if the current CPU
|
|
|
|
// supports the ARMv8 AES instruction.
|
|
|
|
int CRYPTO_is_ARMv8_AES_capable_at_runtime(void);
|
|
|
|
|
|
|
|
// CRYPTO_is_ARMv8_PMULL_capable_at_runtime returns true if the current CPU
|
|
|
|
// supports the ARMv8 PMULL instruction.
|
|
|
|
int CRYPTO_is_ARMv8_PMULL_capable_at_runtime(void);
|
|
|
|
#endif // !OPENSSL_STATIC_ARMCAP
|
|
|
|
|
|
|
|
// CRYPTO_is_NEON_capable returns true if the current CPU has a NEON unit. If
|
|
|
|
// this is known statically, it is a constant inline function.
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_NEON_capable(void) {
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
#if defined(OPENSSL_STATIC_ARMCAP_NEON) || defined(__ARM_NEON)
|
|
|
|
return 1;
|
|
|
|
#elif defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
return CRYPTO_is_NEON_capable_at_runtime();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_ARMv8_AES_capable(void) {
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
#if defined(OPENSSL_STATIC_ARMCAP_AES) || defined(__ARM_FEATURE_AES)
|
|
|
|
return 1;
|
|
|
|
#elif defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
return CRYPTO_is_ARMv8_AES_capable_at_runtime();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE int CRYPTO_is_ARMv8_PMULL_capable(void) {
|
Switch __ARM_FEATURE_CRYPTO to __ARM_FEATURE_{AES,SHA2}.
The latest version of ACLE splits __ARM_FEATURE_CRYPTO into two defines
to reflect that, starting ARMv8.2, the cryptography extension can
include {AES,PMULL} and {SHA1,SHA256} separately.
Also standardize on __ARM_NEON, which is the recommended symbol from
ACLE, and the only one defined on non-Apple aarch64 targets. Digging
through GCC history, __ARM_NEON__ is a bit older. __ARM_NEON was added
in GCC's 9e94a7fc5ab770928b9e6a2b74e292d35b4c94da from 2012, part of GCC
4.8.0.
I suspect we can stop paying attention to __ARM_NEON__ at this point,
but I've left both working for now. __ARM_FEATURE_{AES,SHA2} is definite
too new to fully replace __ARM_FEATURE_CRYPTO.
Tested on Linux that -march=armv8-a+aes now also drops the fallback AES
code. Previously, we would pick up -march=armv8-a+crypto, but not
-march=armv8-a+aes. Also tested that, on an OPENSSL_STATIC_ARMCAP build,
-march=armv8-a+sha2 sets the SHA-1 and SHA-256 features.
Change-Id: I749bdbc501ba2da23177ddb823547efcd77e5c98
Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50847
Reviewed-by: Adam Langley <agl@google.com>
3 years ago
|
|
|
#if defined(OPENSSL_STATIC_ARMCAP_PMULL) || defined(__ARM_FEATURE_AES)
|
|
|
|
return 1;
|
|
|
|
#elif defined(OPENSSL_STATIC_ARMCAP)
|
|
|
|
return 0;
|
|
|
|
#else
|
|
|
|
return CRYPTO_is_ARMv8_PMULL_capable_at_runtime();
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // OPENSSL_ARM || OPENSSL_AARCH64
|
|
|
|
|
|
|
|
#if defined(OPENSSL_PPC64LE)
|
|
|
|
|
|
|
|
// CRYPTO_is_PPC64LE_vcrypto_capable returns true iff the current CPU supports
|
|
|
|
// the Vector.AES category of instructions.
|
|
|
|
int CRYPTO_is_PPC64LE_vcrypto_capable(void);
|
|
|
|
|
|
|
|
extern unsigned long OPENSSL_ppc64le_hwcap2;
|
|
|
|
|
|
|
|
#endif // OPENSSL_PPC64LE
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_DISPATCH_TEST)
|
|
|
|
// Runtime CPU dispatch testing support
|
|
|
|
|
|
|
|
// BORINGSSL_function_hit is an array of flags. The following functions will
|
|
|
|
// set these flags if BORINGSSL_DISPATCH_TEST is defined.
|
|
|
|
// 0: aes_hw_ctr32_encrypt_blocks
|
|
|
|
// 1: aes_hw_encrypt
|
|
|
|
// 2: aesni_gcm_encrypt
|
|
|
|
// 3: aes_hw_set_encrypt_key
|
|
|
|
// 4: vpaes_encrypt
|
|
|
|
// 5: vpaes_set_encrypt_key
|
|
|
|
extern uint8_t BORINGSSL_function_hit[7];
|
|
|
|
#endif // BORINGSSL_DISPATCH_TEST
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
} // extern C
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // OPENSSL_HEADER_CRYPTO_INTERNAL_H
|