Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

6669 lines
249 KiB

/* Copyright (c) 2014, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <stdio.h>
#include <string.h>
#include <time.h>
#include <algorithm>
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include <gtest/gtest.h>
#include <openssl/aead.h>
#include <openssl/base64.h>
#include <openssl/bio.h>
#include <openssl/cipher.h>
#include <openssl/crypto.h>
#include <openssl/err.h>
#include <openssl/hmac.h>
#include <openssl/pem.h>
#include <openssl/sha.h>
#include <openssl/ssl.h>
#include <openssl/rand.h>
#include <openssl/x509.h>
#include "internal.h"
#include "../crypto/internal.h"
#include "../crypto/test/test_util.h"
#if defined(OPENSSL_WINDOWS)
// Windows defines struct timeval in winsock2.h.
OPENSSL_MSVC_PRAGMA(warning(push, 3))
#include <winsock2.h>
OPENSSL_MSVC_PRAGMA(warning(pop))
#else
#include <sys/time.h>
#endif
#if defined(OPENSSL_THREADS)
#include <thread>
#endif
BSSL_NAMESPACE_BEGIN
namespace {
#define TRACED_CALL(code) \
do { \
SCOPED_TRACE("<- called from here"); \
code; \
if (::testing::Test::HasFatalFailure()) { \
return; \
} \
} while (false)
struct VersionParam {
uint16_t version;
enum { is_tls, is_dtls } ssl_method;
const char name[8];
};
static const size_t kTicketKeyLen = 48;
static const VersionParam kAllVersions[] = {
{TLS1_VERSION, VersionParam::is_tls, "TLS1"},
{TLS1_1_VERSION, VersionParam::is_tls, "TLS1_1"},
{TLS1_2_VERSION, VersionParam::is_tls, "TLS1_2"},
{TLS1_3_VERSION, VersionParam::is_tls, "TLS1_3"},
{DTLS1_VERSION, VersionParam::is_dtls, "DTLS1"},
{DTLS1_2_VERSION, VersionParam::is_dtls, "DTLS1_2"},
};
struct ExpectedCipher {
unsigned long id;
int in_group_flag;
};
struct CipherTest {
// The rule string to apply.
const char *rule;
// The list of expected ciphers, in order.
std::vector<ExpectedCipher> expected;
// True if this cipher list should fail in strict mode.
bool strict_fail;
};
struct CurveTest {
// The rule string to apply.
const char *rule;
// The list of expected curves, in order.
std::vector<uint16_t> expected;
};
template <typename T>
class UnownedSSLExData {
public:
UnownedSSLExData() {
index_ = SSL_get_ex_new_index(0, nullptr, nullptr, nullptr, nullptr);
}
T *Get(const SSL *ssl) {
return index_ < 0 ? nullptr
: static_cast<T *>(SSL_get_ex_data(ssl, index_));
}
bool Set(SSL *ssl, T *t) {
return index_ >= 0 && SSL_set_ex_data(ssl, index_, t);
}
private:
int index_;
};
static const CipherTest kCipherTests[] = {
// Selecting individual ciphers should work.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// + reorders selected ciphers to the end, keeping their relative order.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"+aRSA",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// ! banishes ciphers from future selections.
{
"!aRSA:"
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// Multiple masks can be ANDed in a single rule.
{
"kRSA+AESGCM+AES128",
{
{TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// - removes selected ciphers, but preserves their order for future
// selections. Select AES_128_GCM, but order the key exchanges RSA,
// ECDHE_RSA.
{
"ALL:-kECDHE:"
"-kRSA:-ALL:"
"AESGCM+AES128+aRSA",
{
{TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// Unknown selectors are no-ops, except in strict mode.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"BOGUS1",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
true,
},
// Unknown selectors are no-ops, except in strict mode.
{
"ECDHE-ECDSA-CHACHA20-POLY1305:"
"ECDHE-RSA-CHACHA20-POLY1305:"
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"-BOGUS2:+BOGUS3:!BOGUS4",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
true,
},
// Square brackets specify equi-preference groups.
{
"[ECDHE-ECDSA-CHACHA20-POLY1305|ECDHE-ECDSA-AES128-GCM-SHA256]:"
"[ECDHE-RSA-CHACHA20-POLY1305]:"
"ECDHE-RSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// Standard names may be used instead of OpenSSL names.
{
"[TLS_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256|"
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256]:"
"[TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256]:"
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_CHACHA20_POLY1305_SHA256, 1},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// @STRENGTH performs a stable strength-sort of the selected ciphers and
// only the selected ciphers.
{
// To simplify things, banish all but {ECDHE_RSA,RSA} x
// {CHACHA20,AES_256_CBC,AES_128_CBC} x SHA1.
"!AESGCM:!3DES:"
// Order some ciphers backwards by strength.
"ALL:-CHACHA20:-AES256:-AES128:-ALL:"
// Select ECDHE ones and sort them by strength. Ties should resolve
// based on the order above.
"kECDHE:@STRENGTH:-ALL:"
// Now bring back everything uses RSA. ECDHE_RSA should be first, sorted
// by strength. Then RSA, backwards by strength.
"aRSA",
{
{TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA, 0},
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
{TLS1_CK_RSA_WITH_AES_256_SHA, 0},
},
false,
},
// Additional masks after @STRENGTH get silently discarded.
//
// TODO(davidben): Make this an error. If not silently discarded, they get
// interpreted as + opcodes which are very different.
{
"ECDHE-RSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES256-GCM-SHA384:"
"@STRENGTH+AES256",
{
{TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
{
"ECDHE-RSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES256-GCM-SHA384:"
"@STRENGTH+AES256:"
"ECDHE-RSA-CHACHA20-POLY1305",
{
{TLS1_CK_ECDHE_RSA_WITH_AES_256_GCM_SHA384, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256, 0},
},
false,
},
// Exact ciphers may not be used in multi-part rules; they are treated
// as unknown aliases.
{
"ECDHE-ECDSA-AES128-GCM-SHA256:"
"ECDHE-RSA-AES128-GCM-SHA256:"
"!ECDHE-RSA-AES128-GCM-SHA256+RSA:"
"!ECDSA+ECDHE-ECDSA-AES128-GCM-SHA256",
{
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
true,
},
// SSLv3 matches everything that existed before TLS 1.2.
{
"AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!SSLv3",
{
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// TLSv1.2 matches everything added in TLS 1.2.
{
"AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2",
{
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
},
false,
},
// The two directives have no intersection. But each component is valid, so
// even in strict mode it is accepted.
{
"AES128-SHA:ECDHE-RSA-AES128-GCM-SHA256:!TLSv1.2+SSLv3",
{
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
},
false,
},
// Spaces, semi-colons and commas are separators.
{
"AES128-SHA: ECDHE-RSA-AES128-GCM-SHA256 AES256-SHA ,ECDHE-ECDSA-AES128-GCM-SHA256 ; AES128-GCM-SHA256",
{
{TLS1_CK_RSA_WITH_AES_128_SHA, 0},
{TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_RSA_WITH_AES_256_SHA, 0},
{TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256, 0},
{TLS1_CK_RSA_WITH_AES_128_GCM_SHA256, 0},
},
// …but not in strict mode.
true,
},
};
static const char *kBadRules[] = {
// Invalid brackets.
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256",
"RSA]",
"[[RSA]]",
// Operators inside brackets.
"[+RSA]",
// Unknown directive.
"@BOGUS",
// Empty cipher lists error at SSL_CTX_set_cipher_list.
"",
"BOGUS",
// COMPLEMENTOFDEFAULT is empty.
"COMPLEMENTOFDEFAULT",
// Invalid command.
"?BAR",
// Special operators are not allowed if groups are used.
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:+FOO",
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:!FOO",
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:-FOO",
"[ECDHE-RSA-CHACHA20-POLY1305|ECDHE-RSA-AES128-GCM-SHA256]:@STRENGTH",
// Opcode supplied, but missing selector.
"+",
// Spaces are forbidden in equal-preference groups.
"[AES128-SHA | AES128-SHA256]",
};
static const char *kMustNotIncludeNull[] = {
"ALL",
"DEFAULT",
"HIGH",
"FIPS",
"SHA",
"SHA1",
"RSA",
"SSLv3",
"TLSv1",
"TLSv1.2",
};
static const CurveTest kCurveTests[] = {
{
"P-256",
{ SSL_CURVE_SECP256R1 },
},
{
"P-256:CECPQ2",
{ SSL_CURVE_SECP256R1, SSL_CURVE_CECPQ2 },
},
{
"P-256:P-384:P-521:X25519",
{
SSL_CURVE_SECP256R1,
SSL_CURVE_SECP384R1,
SSL_CURVE_SECP521R1,
SSL_CURVE_X25519,
},
},
{
"prime256v1:secp384r1:secp521r1:x25519",
{
SSL_CURVE_SECP256R1,
SSL_CURVE_SECP384R1,
SSL_CURVE_SECP521R1,
SSL_CURVE_X25519,
},
},
};
static const char *kBadCurvesLists[] = {
"",
":",
"::",
"P-256::X25519",
"RSA:P-256",
"P-256:RSA",
"X25519:P-256:",
":X25519:P-256",
};
static std::string CipherListToString(SSL_CTX *ctx) {
bool in_group = false;
std::string ret;
const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
for (size_t i = 0; i < sk_SSL_CIPHER_num(ciphers); i++) {
const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
if (!in_group && SSL_CTX_cipher_in_group(ctx, i)) {
ret += "\t[\n";
in_group = true;
}
ret += "\t";
if (in_group) {
ret += " ";
}
ret += SSL_CIPHER_get_name(cipher);
ret += "\n";
if (in_group && !SSL_CTX_cipher_in_group(ctx, i)) {
ret += "\t]\n";
in_group = false;
}
}
return ret;
}
static bool CipherListsEqual(SSL_CTX *ctx,
const std::vector<ExpectedCipher> &expected) {
const STACK_OF(SSL_CIPHER) *ciphers = SSL_CTX_get_ciphers(ctx);
if (sk_SSL_CIPHER_num(ciphers) != expected.size()) {
return false;
}
for (size_t i = 0; i < expected.size(); i++) {
const SSL_CIPHER *cipher = sk_SSL_CIPHER_value(ciphers, i);
if (expected[i].id != SSL_CIPHER_get_id(cipher) ||
expected[i].in_group_flag != !!SSL_CTX_cipher_in_group(ctx, i)) {
return false;
}
}
return true;
}
TEST(GrowableArrayTest, Resize) {
GrowableArray<size_t> array;
ASSERT_TRUE(array.empty());
EXPECT_EQ(array.size(), 0u);
ASSERT_TRUE(array.Push(42));
ASSERT_TRUE(!array.empty());
EXPECT_EQ(array.size(), 1u);
// Force a resize operation to occur
for (size_t i = 0; i < 16; i++) {
ASSERT_TRUE(array.Push(i + 1));
}
EXPECT_EQ(array.size(), 17u);
// Verify that expected values are still contained in array
for (size_t i = 0; i < array.size(); i++) {
EXPECT_EQ(array[i], i == 0 ? 42 : i);
}
}
TEST(GrowableArrayTest, MoveConstructor) {
GrowableArray<size_t> array;
for (size_t i = 0; i < 100; i++) {
ASSERT_TRUE(array.Push(i));
}
GrowableArray<size_t> array_moved(std::move(array));
for (size_t i = 0; i < 100; i++) {
EXPECT_EQ(array_moved[i], i);
}
}
TEST(GrowableArrayTest, GrowableArrayContainingGrowableArrays) {
// Representative example of a struct that contains a GrowableArray.
struct TagAndArray {
size_t tag;
GrowableArray<size_t> array;
};
GrowableArray<TagAndArray> array;
for (size_t i = 0; i < 100; i++) {
TagAndArray elem;
elem.tag = i;
for (size_t j = 0; j < i; j++) {
ASSERT_TRUE(elem.array.Push(j));
}
ASSERT_TRUE(array.Push(std::move(elem)));
}
EXPECT_EQ(array.size(), static_cast<size_t>(100));
GrowableArray<TagAndArray> array_moved(std::move(array));
EXPECT_EQ(array_moved.size(), static_cast<size_t>(100));
size_t count = 0;
for (const TagAndArray &elem : array_moved) {
// Test the square bracket operator returns the same value as iteration.
EXPECT_EQ(&elem, &array_moved[count]);
EXPECT_EQ(elem.tag, count);
EXPECT_EQ(elem.array.size(), count);
for (size_t j = 0; j < count; j++) {
EXPECT_EQ(elem.array[j], j);
}
count++;
}
}
TEST(SSLTest, CipherRules) {
for (const CipherTest &t : kCipherTests) {
SCOPED_TRACE(t.rule);
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Test lax mode.
ASSERT_TRUE(SSL_CTX_set_cipher_list(ctx.get(), t.rule));
EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
<< "Cipher rule evaluated to:\n"
<< CipherListToString(ctx.get());
// Test strict mode.
if (t.strict_fail) {
EXPECT_FALSE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
} else {
ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), t.rule));
EXPECT_TRUE(CipherListsEqual(ctx.get(), t.expected))
<< "Cipher rule evaluated to:\n"
<< CipherListToString(ctx.get());
}
}
for (const char *rule : kBadRules) {
SCOPED_TRACE(rule);
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), rule));
ERR_clear_error();
}
for (const char *rule : kMustNotIncludeNull) {
SCOPED_TRACE(rule);
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), rule));
for (const SSL_CIPHER *cipher : SSL_CTX_get_ciphers(ctx.get())) {
EXPECT_NE(NID_undef, SSL_CIPHER_get_cipher_nid(cipher));
}
}
}
TEST(SSLTest, CurveRules) {
for (const CurveTest &t : kCurveTests) {
SCOPED_TRACE(t.rule);
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
ASSERT_TRUE(SSL_CTX_set1_curves_list(ctx.get(), t.rule));
ASSERT_EQ(t.expected.size(), ctx->supported_group_list.size());
for (size_t i = 0; i < t.expected.size(); i++) {
EXPECT_EQ(t.expected[i], ctx->supported_group_list[i]);
}
}
for (const char *rule : kBadCurvesLists) {
SCOPED_TRACE(rule);
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
EXPECT_FALSE(SSL_CTX_set1_curves_list(ctx.get(), rule));
ERR_clear_error();
}
}
// kOpenSSLSession is a serialized SSL_SESSION.
static const char kOpenSSLSession[] =
"MIIFqgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASyjggR6MIIEdjCCA16gAwIBAgIIK9dUvsPWSlUwDQYJ"
"KoZIhvcNAQEFBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
"JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTQxMDA4"
"MTIwNzU3WhcNMTUwMTA2MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
"Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
"Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
"AQUAA4IBDwAwggEKAoIBAQCcKeLrplAC+Lofy8t/wDwtB6eu72CVp0cJ4V3lknN6"
"huH9ct6FFk70oRIh/VBNBBz900jYy+7111Jm1b8iqOTQ9aT5C7SEhNcQFJvqzH3e"
"MPkb6ZSWGm1yGF7MCQTGQXF20Sk/O16FSjAynU/b3oJmOctcycWYkY0ytS/k3LBu"
"Id45PJaoMqjB0WypqvNeJHC3q5JjCB4RP7Nfx5jjHSrCMhw8lUMW4EaDxjaR9KDh"
"PLgjsk+LDIySRSRDaCQGhEOWLJZVLzLo4N6/UlctCHEllpBUSvEOyFga52qroGjg"
"rf3WOQ925MFwzd6AK+Ich0gDRg8sQfdLH5OuP1cfLfU1AgMBAAGjggFBMIIBPTAd"
"BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
"b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
"Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
"czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBQ7a+CcxsZByOpc+xpYFcIbnUMZ"
"hTAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
"MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
"Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBBQUAA4IBAQCa"
"OXCBdoqUy5bxyq+Wrh1zsyyCFim1PH5VU2+yvDSWrgDY8ibRGJmfff3r4Lud5kal"
"dKs9k8YlKD3ITG7P0YT/Rk8hLgfEuLcq5cc0xqmE42xJ+Eo2uzq9rYorc5emMCxf"
"5L0TJOXZqHQpOEcuptZQ4OjdYMfSxk5UzueUhA3ogZKRcRkdB3WeWRp+nYRhx4St"
"o2rt2A0MKmY9165GHUqMK9YaaXHDXqBu7Sefr1uSoAP9gyIJKeihMivsGqJ1TD6Z"
"cc6LMe+dN2P8cZEQHtD1y296ul4Mivqk3jatUVL8/hCwgch9A8O4PGZq9WqBfEWm"
"IyHh1dPtbg1lOXdYCWtjpAIEAKUDAgEUqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36S"
"YTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9B"
"sNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yE"
"OTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdA"
"i4gv7Y5oliyntgMBAQA=";
// kCustomSession is a custom serialized SSL_SESSION generated by
// filling in missing fields from |kOpenSSLSession|. This includes
// providing |peer_sha256|, so |peer| is not serialized.
static const char kCustomSession[] =
"MIIBZAIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUqAcEBXdvcmxkqQUCAwGJwKqBpwSB"
"pBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0NxeLwjcDTpsuh3qXEaZ992r1N38"
"VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751CLoXFPoaMOe57dbBpXoro6Pd"
"3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyPq+Topyzvx9USFgRvyuoxn0Hg"
"b+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYGBgYGBgYGBgYGBgYGBgYGBgYG"
"BgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
// kBoringSSLSession is a serialized SSL_SESSION generated from bssl client.
static const char kBoringSSLSession[] =
"MIIRwQIBAQICAwMEAsAvBCDdoGxGK26mR+8lM0uq6+k9xYuxPnwAjpcF9n0Yli9R"
"kQQwbyshfWhdi5XQ1++7n2L1qqrcVlmHBPpr6yknT/u4pUrpQB5FZ7vqvNn8MdHf"
"9rWgoQYCBFXgs7uiBAICHCCjggR6MIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJ"
"KoZIhvcNAQELBQAwSTELMAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMx"
"JTAjBgNVBAMTHEdvb2dsZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEy"
"MTQ1MzE1WhcNMTUxMTEwMDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwK"
"Q2FsaWZvcm5pYTEWMBQGA1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29v"
"Z2xlIEluYzEXMBUGA1UEAwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEB"
"AQUAA4IBDwAwggEKAoIBAQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpo"
"PLuBinvhkXZo3DC133NpCBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU"
"792c7hFyNXSUCG7At8Ifi3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mce"
"Tv9iGKqSkSTlp8puy/9SZ/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/"
"RCh8/UKc8PaL+cxlt531qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eL"
"EucWQ72YZU8mUzXBoXGn0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAd"
"BgNVHSUEFjAUBggrBgEFBQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdv"
"b2dsZS5jb20waAYIKwYBBQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtp"
"Lmdvb2dsZS5jb20vR0lBRzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50"
"czEuZ29vZ2xlLmNvbS9vY3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjG"
"GjAMBgNVHRMBAf8EAjAAMB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEv"
"MBcGA1UdIAQQMA4wDAYKKwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRw"
"Oi8vcGtpLmdvb2dsZS5jb20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAb"
"qdWPZEHk0X7iKPCTHL6S3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovE"
"kQZSHwT+pyOPWQhsSjO+1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXd"
"X+s0WdbOpn6MStKAiBVloPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+"
"n0OTucD9sHV7EVj9XUxi51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779a"
"f07vR03r349Iz/KTzk95rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1y"
"TTlM80jBMOwyjZXmjRAhpAIEAKUDAgEUqQUCAwGJwKqBpwSBpOgebbmn9NRUtMWH"
"+eJpqA5JLMFSMCChOsvKey3toBaCNGU7HfAEiiXNuuAdCBoK262BjQc2YYfqFzqH"
"zuppopXCvhohx7j/tnCNZIMgLYt/O9SXK2RYI5z8FhCCHvB4CbD5G0LGl5EFP27s"
"Jb6S3aTTYPkQe8yZSlxevg6NDwmTogLO9F7UUkaYmVcMQhzssEE2ZRYNwSOU6KjE"
"0Yj+8fAiBtbQriIEIN2L8ZlpaVrdN5KFNdvcmOxJu81P8q53X55xQyGTnGWwsgMC"
"ARezggvvMIIEdjCCA16gAwIBAgIIf+yfD7Y6UicwDQYJKoZIhvcNAQELBQAwSTEL"
"MAkGA1UEBhMCVVMxEzARBgNVBAoTCkdvb2dsZSBJbmMxJTAjBgNVBAMTHEdvb2ds"
"ZSBJbnRlcm5ldCBBdXRob3JpdHkgRzIwHhcNMTUwODEyMTQ1MzE1WhcNMTUxMTEw"
"MDAwMDAwWjBoMQswCQYDVQQGEwJVUzETMBEGA1UECAwKQ2FsaWZvcm5pYTEWMBQG"
"A1UEBwwNTW91bnRhaW4gVmlldzETMBEGA1UECgwKR29vZ2xlIEluYzEXMBUGA1UE"
"AwwOd3d3Lmdvb2dsZS5jb20wggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIB"
"AQC0MeG5YGQ0t+IeJeoneP/PrhEaieibeKYkbKVLNZpoPLuBinvhkXZo3DC133Np"
"CBpy6ZktBwamqyixAyuk/NU6OjgXqwwxfQ7di1AInLIU792c7hFyNXSUCG7At8If"
"i3YwBX9Ba6u/1d6rWTGZJrdCq3QU11RkKYyTq2KT5mceTv9iGKqSkSTlp8puy/9S"
"Z/3DbU3U+BuqCFqeSlz7zjwFmk35acdCilpJlVDDN5C/RCh8/UKc8PaL+cxlt531"
"qoTENvYrflBno14YEZlCBZsPiFeUSILpKEj3Ccwhy0eLEucWQ72YZU8mUzXBoXGn"
"0zA0crFl5ci/2sTBBGZsylNBAgMBAAGjggFBMIIBPTAdBgNVHSUEFjAUBggrBgEF"
"BQcDAQYIKwYBBQUHAwIwGQYDVR0RBBIwEIIOd3d3Lmdvb2dsZS5jb20waAYIKwYB"
"BQUHAQEEXDBaMCsGCCsGAQUFBzAChh9odHRwOi8vcGtpLmdvb2dsZS5jb20vR0lB"
"RzIuY3J0MCsGCCsGAQUFBzABhh9odHRwOi8vY2xpZW50czEuZ29vZ2xlLmNvbS9v"
"Y3NwMB0GA1UdDgQWBBS/bzHxcE73Q4j3slC4BLbMtLjGGjAMBgNVHRMBAf8EAjAA"
"MB8GA1UdIwQYMBaAFErdBhYbvPZotXb1gba7Yhq6WoEvMBcGA1UdIAQQMA4wDAYK"
"KwYBBAHWeQIFATAwBgNVHR8EKTAnMCWgI6Ahhh9odHRwOi8vcGtpLmdvb2dsZS5j"
"b20vR0lBRzIuY3JsMA0GCSqGSIb3DQEBCwUAA4IBAQAbqdWPZEHk0X7iKPCTHL6S"
"3w6q1eR67goxZGFSM1lk1hjwyu7XcLJuvALVV9uY3ovEkQZSHwT+pyOPWQhsSjO+"
"1GyjvCvK/CAwiUmBX+bQRGaqHsRcio7xSbdVcajQ3bXdX+s0WdbOpn6MStKAiBVl"
"oPlSxEI8pxY6x/BBCnTIk/+DMB17uZlOjG3vbAnkDkP+n0OTucD9sHV7EVj9XUxi"
"51nOfNBCN/s7lpUjDS/NJ4k3iwOtbCPswiot8vLO779af07vR03r349Iz/KTzk95"
"rlFtX0IU+KYNxFNsanIXZ+C9FYGRXkwhHcvFb4qMUB1yTTlM80jBMOwyjZXmjRAh"
"MIID8DCCAtigAwIBAgIDAjqDMA0GCSqGSIb3DQEBCwUAMEIxCzAJBgNVBAYTAlVT"
"MRYwFAYDVQQKEw1HZW9UcnVzdCBJbmMuMRswGQYDVQQDExJHZW9UcnVzdCBHbG9i"
"YWwgQ0EwHhcNMTMwNDA1MTUxNTU2WhcNMTYxMjMxMjM1OTU5WjBJMQswCQYDVQQG"
"EwJVUzETMBEGA1UEChMKR29vZ2xlIEluYzElMCMGA1UEAxMcR29vZ2xlIEludGVy"
"bmV0IEF1dGhvcml0eSBHMjCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEB"
"AJwqBHdc2FCROgajguDYUEi8iT/xGXAaiEZ+4I/F8YnOIe5a/mENtzJEiaB0C1NP"
"VaTOgmKV7utZX8bhBYASxF6UP7xbSDj0U/ck5vuR6RXEz/RTDfRK/J9U3n2+oGtv"
"h8DQUB8oMANA2ghzUWx//zo8pzcGjr1LEQTrfSTe5vn8MXH7lNVg8y5Kr0LSy+rE"
"ahqyzFPdFUuLH8gZYR/Nnag+YyuENWllhMgZxUYi+FOVvuOAShDGKuy6lyARxzmZ"
"EASg8GF6lSWMTlJ14rbtCMoU/M4iarNOz0YDl5cDfsCx3nuvRTPPuj5xt970JSXC"
"DTWJnZ37DhF5iR43xa+OcmkCAwEAAaOB5zCB5DAfBgNVHSMEGDAWgBTAephojYn7"
"qwVkDBF9qn1luMrMTjAdBgNVHQ4EFgQUSt0GFhu89mi1dvWBtrtiGrpagS8wDgYD"
"VR0PAQH/BAQDAgEGMC4GCCsGAQUFBwEBBCIwIDAeBggrBgEFBQcwAYYSaHR0cDov"
"L2cuc3ltY2QuY29tMBIGA1UdEwEB/wQIMAYBAf8CAQAwNQYDVR0fBC4wLDAqoCig"
"JoYkaHR0cDovL2cuc3ltY2IuY29tL2NybHMvZ3RnbG9iYWwuY3JsMBcGA1UdIAQQ"
"MA4wDAYKKwYBBAHWeQIFATANBgkqhkiG9w0BAQsFAAOCAQEAqvqpIM1qZ4PtXtR+"
"3h3Ef+AlBgDFJPupyC1tft6dgmUsgWM0Zj7pUsIItMsv91+ZOmqcUHqFBYx90SpI"
"hNMJbHzCzTWf84LuUt5oX+QAihcglvcpjZpNy6jehsgNb1aHA30DP9z6eX0hGfnI"
"Oi9RdozHQZJxjyXON/hKTAAj78Q1EK7gI4BzfE00LshukNYQHpmEcxpw8u1VDu4X"
"Bupn7jLrLN1nBz/2i8Jw3lsA5rsb0zYaImxssDVCbJAJPZPpZAkiDoUGn8JzIdPm"
"X4DkjYUiOnMDsWCOrmji9D6X52ASCWg23jrW4kOVWzeBkoEfu43XrVJkFleW2V40"
"fsg12DCCA30wggLmoAMCAQICAxK75jANBgkqhkiG9w0BAQUFADBOMQswCQYDVQQG"
"EwJVUzEQMA4GA1UEChMHRXF1aWZheDEtMCsGA1UECxMkRXF1aWZheCBTZWN1cmUg"
"Q2VydGlmaWNhdGUgQXV0aG9yaXR5MB4XDTAyMDUyMTA0MDAwMFoXDTE4MDgyMTA0"
"MDAwMFowQjELMAkGA1UEBhMCVVMxFjAUBgNVBAoTDUdlb1RydXN0IEluYy4xGzAZ"
"BgNVBAMTEkdlb1RydXN0IEdsb2JhbCBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEP"
"ADCCAQoCggEBANrMGGMw/fQXIxpWflvfPGw45HG3eJHUvKHYTPioQ7YD6U0hBwiI"
"2lgvZjkpvQV4i5046AW3an5xpObEYKaw74DkiSgPniXW7YPzraaRx5jJQhg1FJ2t"
"mEaSLk/K8YdDwRaVVy1Q74ktgHpXrfLuX2vSAI25FPgUFTXZwEaje3LIkb/JVSvN"
"0Jc+nCZkzN/Ogxlxyk7m1NV7qRnNVd7I7NJeOFPlXE+MLf5QIzb8ZubLjqQ5GQC3"
"lQI5kQsO/jgu0R0FmvZNPm8PBx2vLB6PYDni+jZTEznUXiYr2z2oFL0y6xgDKFIE"
"ceWrMz3hOLsHNoRinHnqFjD0X8Ar6HFr5PkCAwEAAaOB8DCB7TAfBgNVHSMEGDAW"
"gBRI5mj5K9KylddH2CMgEE8zmJCf1DAdBgNVHQ4EFgQUwHqYaI2J+6sFZAwRfap9"
"ZbjKzE4wDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMCAQYwOgYDVR0fBDMw"
"MTAvoC2gK4YpaHR0cDovL2NybC5nZW90cnVzdC5jb20vY3Jscy9zZWN1cmVjYS5j"
"cmwwTgYDVR0gBEcwRTBDBgRVHSAAMDswOQYIKwYBBQUHAgEWLWh0dHBzOi8vd3d3"
"Lmdlb3RydXN0LmNvbS9yZXNvdXJjZXMvcmVwb3NpdG9yeTANBgkqhkiG9w0BAQUF"
"AAOBgQB24RJuTksWEoYwBrKBCM/wCMfHcX5m7sLt1Dsf//DwyE7WQziwuTB9GNBV"
"g6JqyzYRnOhIZqNtf7gT1Ef+i1pcc/yu2RsyGTirlzQUqpbS66McFAhJtrvlke+D"
"NusdVm/K2rxzY5Dkf3s+Iss9B+1fOHSc4wNQTqGvmO5h8oQ/Eg==";
// kBadSessionExtraField is a custom serialized SSL_SESSION generated by replacing
// the final (optional) element of |kCustomSession| with tag number 99.
static const char kBadSessionExtraField[] =
"MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBOMDBAEF";
// kBadSessionVersion is a custom serialized SSL_SESSION generated by replacing
// the version of |kCustomSession| with 2.
static const char kBadSessionVersion[] =
"MIIBdgIBAgICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEF";
// kBadSessionTrailingData is a custom serialized SSL_SESSION with trailing data
// appended.
static const char kBadSessionTrailingData[] =
"MIIBdgIBAQICAwMEAsAvBCAG5Q1ndq4Yfmbeo1zwLkNRKmCXGdNgWvGT3cskV0yQ"
"kAQwJlrlzkAWBOWiLj/jJ76D7l+UXoizP2KI2C7I2FccqMmIfFmmkUy32nIJ0mZH"
"IWoJoQYCBFRDO46iBAICASykAwQBAqUDAgEUphAEDnd3dy5nb29nbGUuY29tqAcE"
"BXdvcmxkqQUCAwGJwKqBpwSBpBwUQvoeOk0Kg36SYTcLEkXqKwOBfF9vE4KX0Nxe"
"LwjcDTpsuh3qXEaZ992r1N38VDcyS6P7I6HBYN9BsNHM362zZnY27GpTw+Kwd751"
"CLoXFPoaMOe57dbBpXoro6Pd3BTbf/Tzr88K06yEOTDKPNj3+inbMaVigtK4PLyP"
"q+Topyzvx9USFgRvyuoxn0Hgb+R0A3j6SLRuyOdAi4gv7Y5oliynrSIEIAYGBgYG"
"BgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGBgYGrgMEAQevAwQBBLADBAEFAAAA";
static bool DecodeBase64(std::vector<uint8_t> *out, const char *in) {
size_t len;
if (!EVP_DecodedLength(&len, strlen(in))) {
fprintf(stderr, "EVP_DecodedLength failed\n");
return false;
}
out->resize(len);
if (!EVP_DecodeBase64(out->data(), &len, len, (const uint8_t *)in,
strlen(in))) {
fprintf(stderr, "EVP_DecodeBase64 failed\n");
return false;
}
out->resize(len);
return true;
}
TEST(SSLTest, SessionEncoding) {
for (const char *input_b64 : {
kOpenSSLSession,
kCustomSession,
kBoringSSLSession,
}) {
SCOPED_TRACE(std::string(input_b64));
// Decode the input.
std::vector<uint8_t> input;
ASSERT_TRUE(DecodeBase64(&input, input_b64));
// Verify the SSL_SESSION decodes.
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ssl_ctx);
bssl::UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
ASSERT_TRUE(session) << "SSL_SESSION_from_bytes failed";
// Verify the SSL_SESSION encoding round-trips.
size_t encoded_len;
bssl::UniquePtr<uint8_t> encoded;
uint8_t *encoded_raw;
ASSERT_TRUE(SSL_SESSION_to_bytes(session.get(), &encoded_raw, &encoded_len))
<< "SSL_SESSION_to_bytes failed";
encoded.reset(encoded_raw);
EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input))
<< "SSL_SESSION_to_bytes did not round-trip";
// Verify the SSL_SESSION also decodes with the legacy API.
const uint8_t *cptr = input.data();
session.reset(d2i_SSL_SESSION(NULL, &cptr, input.size()));
ASSERT_TRUE(session) << "d2i_SSL_SESSION failed";
EXPECT_EQ(cptr, input.data() + input.size());
// Verify the SSL_SESSION encoding round-trips via the legacy API.
int len = i2d_SSL_SESSION(session.get(), NULL);
ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed";
ASSERT_EQ(static_cast<size_t>(len), input.size())
<< "i2d_SSL_SESSION(NULL) returned invalid length";
encoded.reset((uint8_t *)OPENSSL_malloc(input.size()));
ASSERT_TRUE(encoded);
uint8_t *ptr = encoded.get();
len = i2d_SSL_SESSION(session.get(), &ptr);
ASSERT_GT(len, 0) << "i2d_SSL_SESSION failed";
ASSERT_EQ(static_cast<size_t>(len), input.size())
<< "i2d_SSL_SESSION(NULL) returned invalid length";
ASSERT_EQ(ptr, encoded.get() + input.size())
<< "i2d_SSL_SESSION did not advance ptr correctly";
EXPECT_EQ(Bytes(encoded.get(), encoded_len), Bytes(input))
<< "SSL_SESSION_to_bytes did not round-trip";
}
for (const char *input_b64 : {
kBadSessionExtraField,
kBadSessionVersion,
kBadSessionTrailingData,
}) {
SCOPED_TRACE(std::string(input_b64));
std::vector<uint8_t> input;
ASSERT_TRUE(DecodeBase64(&input, input_b64));
// Verify that the SSL_SESSION fails to decode.
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ssl_ctx);
bssl::UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(input.data(), input.size(), ssl_ctx.get()));
EXPECT_FALSE(session) << "SSL_SESSION_from_bytes unexpectedly succeeded";
ERR_clear_error();
}
}
static void ExpectDefaultVersion(uint16_t min_version, uint16_t max_version,
const SSL_METHOD *(*method)(void)) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method()));
ASSERT_TRUE(ctx);
EXPECT_EQ(min_version, SSL_CTX_get_min_proto_version(ctx.get()));
EXPECT_EQ(max_version, SSL_CTX_get_max_proto_version(ctx.get()));
}
TEST(SSLTest, DefaultVersion) {
ExpectDefaultVersion(TLS1_VERSION, TLS1_3_VERSION, &TLS_method);
ExpectDefaultVersion(TLS1_VERSION, TLS1_VERSION, &TLSv1_method);
ExpectDefaultVersion(TLS1_1_VERSION, TLS1_1_VERSION, &TLSv1_1_method);
ExpectDefaultVersion(TLS1_2_VERSION, TLS1_2_VERSION, &TLSv1_2_method);
ExpectDefaultVersion(DTLS1_VERSION, DTLS1_2_VERSION, &DTLS_method);
ExpectDefaultVersion(DTLS1_VERSION, DTLS1_VERSION, &DTLSv1_method);
ExpectDefaultVersion(DTLS1_2_VERSION, DTLS1_2_VERSION, &DTLSv1_2_method);
}
TEST(SSLTest, CipherProperties) {
static const struct {
int id;
const char *standard_name;
int cipher_nid;
int digest_nid;
int kx_nid;
int auth_nid;
int prf_nid;
} kTests[] = {
{
SSL3_CK_RSA_DES_192_CBC3_SHA,
"TLS_RSA_WITH_3DES_EDE_CBC_SHA",
NID_des_ede3_cbc,
NID_sha1,
NID_kx_rsa,
NID_auth_rsa,
NID_md5_sha1,
},
{
TLS1_CK_RSA_WITH_AES_128_SHA,
"TLS_RSA_WITH_AES_128_CBC_SHA",
NID_aes_128_cbc,
NID_sha1,
NID_kx_rsa,
NID_auth_rsa,
NID_md5_sha1,
},
{
TLS1_CK_PSK_WITH_AES_256_CBC_SHA,
"TLS_PSK_WITH_AES_256_CBC_SHA",
NID_aes_256_cbc,
NID_sha1,
NID_kx_psk,
NID_auth_psk,
NID_md5_sha1,
},
{
TLS1_CK_ECDHE_RSA_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_128_CBC_SHA",
NID_aes_128_cbc,
NID_sha1,
NID_kx_ecdhe,
NID_auth_rsa,
NID_md5_sha1,
},
{
TLS1_CK_ECDHE_RSA_WITH_AES_256_CBC_SHA,
"TLS_ECDHE_RSA_WITH_AES_256_CBC_SHA",
NID_aes_256_cbc,
NID_sha1,
NID_kx_ecdhe,
NID_auth_rsa,
NID_md5_sha1,
},
{
TLS1_CK_ECDHE_RSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256",
NID_aes_128_gcm,
NID_undef,
NID_kx_ecdhe,
NID_auth_rsa,
NID_sha256,
},
{
TLS1_CK_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256,
"TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256",
NID_aes_128_gcm,
NID_undef,
NID_kx_ecdhe,
NID_auth_ecdsa,
NID_sha256,
},
{
TLS1_CK_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384,
"TLS_ECDHE_ECDSA_WITH_AES_256_GCM_SHA384",
NID_aes_256_gcm,
NID_undef,
NID_kx_ecdhe,
NID_auth_ecdsa,
NID_sha384,
},
{
TLS1_CK_ECDHE_PSK_WITH_AES_128_CBC_SHA,
"TLS_ECDHE_PSK_WITH_AES_128_CBC_SHA",
NID_aes_128_cbc,
NID_sha1,
NID_kx_ecdhe,
NID_auth_psk,
NID_md5_sha1,
},
{
TLS1_CK_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256,
"TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256",
NID_chacha20_poly1305,
NID_undef,
NID_kx_ecdhe,
NID_auth_rsa,
NID_sha256,
},
{
TLS1_CK_AES_256_GCM_SHA384,
"TLS_AES_256_GCM_SHA384",
NID_aes_256_gcm,
NID_undef,
NID_kx_any,
NID_auth_any,
NID_sha384,
},
{
TLS1_CK_AES_128_GCM_SHA256,
"TLS_AES_128_GCM_SHA256",
NID_aes_128_gcm,
NID_undef,
NID_kx_any,
NID_auth_any,
NID_sha256,
},
{
TLS1_CK_CHACHA20_POLY1305_SHA256,
"TLS_CHACHA20_POLY1305_SHA256",
NID_chacha20_poly1305,
NID_undef,
NID_kx_any,
NID_auth_any,
NID_sha256,
},
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.standard_name);
const SSL_CIPHER *cipher = SSL_get_cipher_by_value(t.id & 0xffff);
ASSERT_TRUE(cipher);
EXPECT_STREQ(t.standard_name, SSL_CIPHER_standard_name(cipher));
bssl::UniquePtr<char> rfc_name(SSL_CIPHER_get_rfc_name(cipher));
ASSERT_TRUE(rfc_name);
EXPECT_STREQ(t.standard_name, rfc_name.get());
EXPECT_EQ(t.cipher_nid, SSL_CIPHER_get_cipher_nid(cipher));
EXPECT_EQ(t.digest_nid, SSL_CIPHER_get_digest_nid(cipher));
EXPECT_EQ(t.kx_nid, SSL_CIPHER_get_kx_nid(cipher));
EXPECT_EQ(t.auth_nid, SSL_CIPHER_get_auth_nid(cipher));
EXPECT_EQ(t.prf_nid, SSL_CIPHER_get_prf_nid(cipher));
}
}
// CreateSessionWithTicket returns a sample |SSL_SESSION| with the specified
// version and ticket length or nullptr on failure.
static bssl::UniquePtr<SSL_SESSION> CreateSessionWithTicket(uint16_t version,
size_t ticket_len) {
std::vector<uint8_t> der;
if (!DecodeBase64(&der, kOpenSSLSession)) {
return nullptr;
}
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
// Use a garbage ticket.
std::vector<uint8_t> ticket(ticket_len, 'a');
bssl::UniquePtr<SSL_SESSION> session(
SSL_SESSION_from_bytes(der.data(), der.size(), ssl_ctx.get()));
if (!session ||
!SSL_SESSION_set_protocol_version(session.get(), version) ||
!SSL_SESSION_set_ticket(session.get(), ticket.data(), ticket.size())) {
return nullptr;
}
// Fix up the timeout.
#if defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
SSL_SESSION_set_time(session.get(), 1234);
#else
SSL_SESSION_set_time(session.get(), time(nullptr));
#endif
return session;
}
static bool GetClientHello(SSL *ssl, std::vector<uint8_t> *out) {
bssl::UniquePtr<BIO> bio(BIO_new(BIO_s_mem()));
if (!bio) {
return false;
}
// Do not configure a reading BIO, but record what's written to a memory BIO.
BIO_up_ref(bio.get());
SSL_set_bio(ssl, nullptr /* rbio */, bio.get());
int ret = SSL_connect(ssl);
if (ret > 0) {
// SSL_connect should fail without a BIO to write to.
return false;
}
ERR_clear_error();
const uint8_t *client_hello;
size_t client_hello_len;
if (!BIO_mem_contents(bio.get(), &client_hello, &client_hello_len)) {
return false;
}
*out = std::vector<uint8_t>(client_hello, client_hello + client_hello_len);
return true;
}
// GetClientHelloLen creates a client SSL connection with the specified version
// and ticket length. It returns the length of the ClientHello, not including
// the record header, on success and zero on error.
static size_t GetClientHelloLen(uint16_t max_version, uint16_t session_version,
size_t ticket_len) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_SESSION> session =
CreateSessionWithTicket(session_version, ticket_len);
if (!ctx || !session) {
return 0;
}
// Set a one-element cipher list so the baseline ClientHello is unpadded.
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
if (!ssl || !SSL_set_session(ssl.get(), session.get()) ||
!SSL_set_strict_cipher_list(ssl.get(), "ECDHE-RSA-AES128-GCM-SHA256") ||
!SSL_set_max_proto_version(ssl.get(), max_version)) {
return 0;
}
std::vector<uint8_t> client_hello;
if (!GetClientHello(ssl.get(), &client_hello) ||
client_hello.size() <= SSL3_RT_HEADER_LENGTH) {
return 0;
}
return client_hello.size() - SSL3_RT_HEADER_LENGTH;
}
TEST(SSLTest, Padding) {
struct PaddingVersions {
uint16_t max_version, session_version;
};
static const PaddingVersions kPaddingVersions[] = {
// Test the padding extension at TLS 1.2.
{TLS1_2_VERSION, TLS1_2_VERSION},
// Test the padding extension at TLS 1.3 with a TLS 1.2 session, so there
// will be no PSK binder after the padding extension.
{TLS1_3_VERSION, TLS1_2_VERSION},
// Test the padding extension at TLS 1.3 with a TLS 1.3 session, so there
// will be a PSK binder after the padding extension.
{TLS1_3_VERSION, TLS1_3_VERSION},
};
struct PaddingTest {
size_t input_len, padded_len;
};
static const PaddingTest kPaddingTests[] = {
// ClientHellos of length below 0x100 do not require padding.
{0xfe, 0xfe},
{0xff, 0xff},
// ClientHellos of length 0x100 through 0x1fb are padded up to 0x200.
{0x100, 0x200},
{0x123, 0x200},
{0x1fb, 0x200},
// ClientHellos of length 0x1fc through 0x1ff get padded beyond 0x200. The
// padding extension takes a minimum of four bytes plus one required
// content
// byte. (To work around yet more server bugs, we avoid empty final
// extensions.)
{0x1fc, 0x201},
{0x1fd, 0x202},
{0x1fe, 0x203},
{0x1ff, 0x204},
// Finally, larger ClientHellos need no padding.
{0x200, 0x200},
{0x201, 0x201},
};
for (const PaddingVersions &versions : kPaddingVersions) {
SCOPED_TRACE(versions.max_version);
SCOPED_TRACE(versions.session_version);
// Sample a baseline length.
size_t base_len =
GetClientHelloLen(versions.max_version, versions.session_version, 1);
ASSERT_NE(base_len, 0u) << "Baseline length could not be sampled";
for (const PaddingTest &test : kPaddingTests) {
SCOPED_TRACE(test.input_len);
ASSERT_LE(base_len, test.input_len) << "Baseline ClientHello too long";
size_t padded_len =
GetClientHelloLen(versions.max_version, versions.session_version,
1 + test.input_len - base_len);
EXPECT_EQ(padded_len, test.padded_len)
<< "ClientHello was not padded to expected length";
}
}
}
static bssl::UniquePtr<X509> GetTestCertificate() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIICWDCCAcGgAwIBAgIJAPuwTC6rEJsMMA0GCSqGSIb3DQEBBQUAMEUxCzAJBgNV\n"
"BAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5ldCBX\n"
"aWRnaXRzIFB0eSBMdGQwHhcNMTQwNDIzMjA1MDQwWhcNMTcwNDIyMjA1MDQwWjBF\n"
"MQswCQYDVQQGEwJBVTETMBEGA1UECAwKU29tZS1TdGF0ZTEhMB8GA1UECgwYSW50\n"
"ZXJuZXQgV2lkZ2l0cyBQdHkgTHRkMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB\n"
"gQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92kWdGMdAQhLci\n"
"HnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiFKKAnHmUcrgfV\n"
"W28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQABo1AwTjAdBgNV\n"
"HQ4EFgQUi3XVrMsIvg4fZbf6Vr5sp3Xaha8wHwYDVR0jBBgwFoAUi3XVrMsIvg4f\n"
"Zbf6Vr5sp3Xaha8wDAYDVR0TBAUwAwEB/zANBgkqhkiG9w0BAQUFAAOBgQA76Hht\n"
"ldY9avcTGSwbwoiuIqv0jTL1fHFnzy3RHMLDh+Lpvolc5DSrSJHCP5WuK0eeJXhr\n"
"T5oQpHL9z/cCDLAKCKRa4uV0fhEdOWBqyR9p8y5jJtye72t6CuFUV5iqcpF4BH4f\n"
"j2VNHwsSrJwkD4QUGlUtH7vwnQmyCFxZMmWAJg==\n"
"-----END CERTIFICATE-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
return bssl::UniquePtr<X509>(
PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<EVP_PKEY> GetTestKey() {
static const char kKeyPEM[] =
"-----BEGIN RSA PRIVATE KEY-----\n"
"MIICXgIBAAKBgQDYK8imMuRi/03z0K1Zi0WnvfFHvwlYeyK9Na6XJYaUoIDAtB92\n"
"kWdGMdAQhLciHnAjkXLI6W15OoV3gA/ElRZ1xUpxTMhjP6PyY5wqT5r6y8FxbiiF\n"
"KKAnHmUcrgfVW28tQ+0rkLGMryRtrukXOgXBv7gcrmU7G1jC2a7WqmeI8QIDAQAB\n"
"AoGBAIBy09Fd4DOq/Ijp8HeKuCMKTHqTW1xGHshLQ6jwVV2vWZIn9aIgmDsvkjCe\n"
"i6ssZvnbjVcwzSoByhjN8ZCf/i15HECWDFFh6gt0P5z0MnChwzZmvatV/FXCT0j+\n"
"WmGNB/gkehKjGXLLcjTb6dRYVJSCZhVuOLLcbWIV10gggJQBAkEA8S8sGe4ezyyZ\n"
"m4e9r95g6s43kPqtj5rewTsUxt+2n4eVodD+ZUlCULWVNAFLkYRTBCASlSrm9Xhj\n"
"QpmWAHJUkQJBAOVzQdFUaewLtdOJoPCtpYoY1zd22eae8TQEmpGOR11L6kbxLQsk\n"
"aMly/DOnOaa82tqAGTdqDEZgSNmCeKKknmECQAvpnY8GUOVAubGR6c+W90iBuQLj\n"
"LtFp/9ihd2w/PoDwrHZaoUYVcT4VSfJQog/k7kjE4MYXYWL8eEKg3WTWQNECQQDk\n"
"104Wi91Umd1PzF0ijd2jXOERJU1wEKe6XLkYYNHWQAe5l4J4MWj9OdxFXAxIuuR/\n"
"tfDwbqkta4xcux67//khAkEAvvRXLHTaa6VFzTaiiO8SaFsHV3lQyXOtMrBpB5jd\n"
"moZWgjHvB2W9Ckn7sDqsPB+U2tyX0joDdQEyuiMECDY8oQ==\n"
"-----END RSA PRIVATE KEY-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<X509> GetECDSATestCertificate() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIBzzCCAXagAwIBAgIJANlMBNpJfb/rMAkGByqGSM49BAEwRTELMAkGA1UEBhMC\n"
"QVUxEzARBgNVBAgMClNvbWUtU3RhdGUxITAfBgNVBAoMGEludGVybmV0IFdpZGdp\n"
"dHMgUHR5IEx0ZDAeFw0xNDA0MjMyMzIxNTdaFw0xNDA1MjMyMzIxNTdaMEUxCzAJ\n"
"BgNVBAYTAkFVMRMwEQYDVQQIDApTb21lLVN0YXRlMSEwHwYDVQQKDBhJbnRlcm5l\n"
"dCBXaWRnaXRzIFB0eSBMdGQwWTATBgcqhkjOPQIBBggqhkjOPQMBBwNCAATmK2ni\n"
"v2Wfl74vHg2UikzVl2u3qR4NRvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYa\n"
"HPUdfvGULUvPciLBo1AwTjAdBgNVHQ4EFgQUq4TSrKuV8IJOFngHVVdf5CaNgtEw\n"
"HwYDVR0jBBgwFoAUq4TSrKuV8IJOFngHVVdf5CaNgtEwDAYDVR0TBAUwAwEB/zAJ\n"
"BgcqhkjOPQQBA0gAMEUCIQDyoDVeUTo2w4J5m+4nUIWOcAZ0lVfSKXQA9L4Vh13E\n"
"BwIgfB55FGohg/B6dGh5XxSZmmi08cueFV7mHzJSYV51yRQ=\n"
"-----END CERTIFICATE-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kCertPEM, strlen(kCertPEM)));
return bssl::UniquePtr<X509>(PEM_read_bio_X509(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<EVP_PKEY> GetECDSATestKey() {
static const char kKeyPEM[] =
"-----BEGIN PRIVATE KEY-----\n"
"MIGHAgEAMBMGByqGSM49AgEGCCqGSM49AwEHBG0wawIBAQQgBw8IcnrUoEqc3VnJ\n"
"TYlodwi1b8ldMHcO6NHJzgqLtGqhRANCAATmK2niv2Wfl74vHg2UikzVl2u3qR4N\n"
"Rvvdqakendy6WgHn1peoChj5w8SjHlbifINI2xYaHPUdfvGULUvPciLB\n"
"-----END PRIVATE KEY-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
static bssl::UniquePtr<CRYPTO_BUFFER> BufferFromPEM(const char *pem) {
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(pem, strlen(pem)));
char *name, *header;
uint8_t *data;
long data_len;
if (!PEM_read_bio(bio.get(), &name, &header, &data,
&data_len)) {
return nullptr;
}
OPENSSL_free(name);
OPENSSL_free(header);
auto ret = bssl::UniquePtr<CRYPTO_BUFFER>(
CRYPTO_BUFFER_new(data, data_len, nullptr));
OPENSSL_free(data);
return ret;
}
static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestCertificateBuffer() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIIC0jCCAbqgAwIBAgICEAAwDQYJKoZIhvcNAQELBQAwDzENMAsGA1UEAwwEQiBD\n"
"QTAeFw0xNjAyMjgyMDI3MDNaFw0yNjAyMjUyMDI3MDNaMBgxFjAUBgNVBAMMDUNs\n"
"aWVudCBDZXJ0IEEwggEiMA0GCSqGSIb3DQEBAQUAA4IBDwAwggEKAoIBAQDRvaz8\n"
"CC/cshpCafJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/\n"
"kLRcH89M/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3\n"
"tHb+xs2PSs8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+c\n"
"IDs2rQ+lP7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1\n"
"z7C8jU50Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9V\n"
"iLeXANgZi+Xx9KgfAgMBAAGjLzAtMAwGA1UdEwEB/wQCMAAwHQYDVR0lBBYwFAYI\n"
"KwYBBQUHAwEGCCsGAQUFBwMCMA0GCSqGSIb3DQEBCwUAA4IBAQBFEVbmYl+2RtNw\n"
"rDftRDF1v2QUbcN2ouSnQDHxeDQdSgasLzT3ui8iYu0Rw2WWcZ0DV5e0ztGPhWq7\n"
"AO0B120aFRMOY+4+bzu9Q2FFkQqc7/fKTvTDzIJI5wrMnFvUfzzvxh3OHWMYSs/w\n"
"giq33hTKeHEq6Jyk3btCny0Ycecyc3yGXH10sizUfiHlhviCkDuESk8mFDwDDzqW\n"
"ZF0IipzFbEDHoIxLlm3GQxpiLoEV4k8KYJp3R5KBLFyxM6UGPz8h72mIPCJp2RuK\n"
"MYgF91UDvVzvnYm6TfseM2+ewKirC00GOrZ7rEcFvtxnKSqYf4ckqfNdSU1Y+RRC\n"
"1ngWZ7Ih\n"
"-----END CERTIFICATE-----\n";
return BufferFromPEM(kCertPEM);
}
static bssl::UniquePtr<X509> X509FromBuffer(
bssl::UniquePtr<CRYPTO_BUFFER> buffer) {
if (!buffer) {
return nullptr;
}
const uint8_t *derp = CRYPTO_BUFFER_data(buffer.get());
return bssl::UniquePtr<X509>(
d2i_X509(NULL, &derp, CRYPTO_BUFFER_len(buffer.get())));
}
static bssl::UniquePtr<X509> GetChainTestCertificate() {
return X509FromBuffer(GetChainTestCertificateBuffer());
}
static bssl::UniquePtr<CRYPTO_BUFFER> GetChainTestIntermediateBuffer() {
static const char kCertPEM[] =
"-----BEGIN CERTIFICATE-----\n"
"MIICwjCCAaqgAwIBAgICEAEwDQYJKoZIhvcNAQELBQAwFDESMBAGA1UEAwwJQyBS\n"
"b290IENBMB4XDTE2MDIyODIwMjcwM1oXDTI2MDIyNTIwMjcwM1owDzENMAsGA1UE\n"
"AwwEQiBDQTCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALsSCYmDip2D\n"
"GkjFxw7ykz26JSjELkl6ArlYjFJ3aT/SCh8qbS4gln7RH8CPBd78oFdfhIKQrwtZ\n"
"3/q21ykD9BAS3qHe2YdcJfm8/kWAy5DvXk6NXU4qX334KofBAEpgdA/igEFq1P1l\n"
"HAuIfZCpMRfT+i5WohVsGi8f/NgpRvVaMONLNfgw57mz1lbtFeBEISmX0kbsuJxF\n"
"Qj/Bwhi5/0HAEXG8e7zN4cEx0yPRvmOATRdVb/8dW2pwOHRJq9R5M0NUkIsTSnL7\n"
"6N/z8hRAHMsV3IudC5Yd7GXW1AGu9a+iKU+Q4xcZCoj0DC99tL4VKujrV1kAeqsM\n"
"cz5/dKzi6+cCAwEAAaMjMCEwDwYDVR0TAQH/BAUwAwEB/zAOBgNVHQ8BAf8EBAMC\n"
"AQYwDQYJKoZIhvcNAQELBQADggEBAIIeZiEeNhWWQ8Y4D+AGDwqUUeG8NjCbKrXQ\n"
"BlHg5wZ8xftFaiP1Dp/UAezmx2LNazdmuwrYB8lm3FVTyaPDTKEGIPS4wJKHgqH1\n"
"QPDhqNm85ey7TEtI9oYjsNim/Rb+iGkIAMXaxt58SzxbjvP0kMr1JfJIZbic9vye\n"
"NwIspMFIpP3FB8ywyu0T0hWtCQgL4J47nigCHpOu58deP88fS/Nyz/fyGVWOZ76b\n"
"WhWwgM3P3X95fQ3d7oFPR/bVh0YV+Cf861INwplokXgXQ3/TCQ+HNXeAMWn3JLWv\n"
"XFwk8owk9dq/kQGdndGgy3KTEW4ctPX5GNhf3LJ9Q7dLji4ReQ4=\n"
"-----END CERTIFICATE-----\n";
return BufferFromPEM(kCertPEM);
}
static bssl::UniquePtr<X509> GetChainTestIntermediate() {
return X509FromBuffer(GetChainTestIntermediateBuffer());
}
static bssl::UniquePtr<EVP_PKEY> GetChainTestKey() {
static const char kKeyPEM[] =
"-----BEGIN PRIVATE KEY-----\n"
"MIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDRvaz8CC/cshpC\n"
"afJo4jLkHEoBqDLhdgFelJoAiQUyIqyWl2O7YHPnpJH+TgR7oelzNzt/kLRcH89M\n"
"/TszB6zqyLTC4aqmvzKL0peD/jL2LWBucR0WXIvjA3zoRuF/x86+rYH3tHb+xs2P\n"
"Ss8EGL/Ev+ss+qTzTGEn26fuGNHkNw6tOwPpc+o8+wUtzf/kAthamo+cIDs2rQ+l\n"
"P7+aLZTLeU/q4gcLutlzcK5imex5xy2jPkweq48kijK0kIzl1cPlA5d1z7C8jU50\n"
"Pj9X9sQDJTN32j7UYRisJeeYQF8GaaN8SbrDI6zHgKzrRLyxDt/KQa9ViLeXANgZ\n"
"i+Xx9KgfAgMBAAECggEBAK0VjSJzkyPaamcyTVSWjo7GdaBGcK60lk657RjR+lK0\n"
"YJ7pkej4oM2hdsVZFsP8Cs4E33nXLa/0pDsRov/qrp0WQm2skwqGMC1I/bZ0WRPk\n"
"wHaDrBBfESWnJDX/AGpVtlyOjPmgmK6J2usMPihQUDkKdAYrVWJePrMIxt1q6BMe\n"
"iczs3qriMmtY3bUc4UyUwJ5fhDLjshHvfuIpYQyI6EXZM6dZksn9LylXJnigY6QJ\n"
"HxOYO0BDwOsZ8yQ8J8afLk88i0GizEkgE1z3REtQUwgWfxr1WV/ud+T6/ZhSAgH9\n"
"042mQvSFZnIUSEsmCvjhWuAunfxHKCTcAoYISWfzWpkCgYEA7gpf3HHU5Tn+CgUn\n"
"1X5uGpG3DmcMgfeGgs2r2f/IIg/5Ac1dfYILiybL1tN9zbyLCJfcbFpWBc9hJL6f\n"
"CPc5hUiwWFJqBJewxQkC1Ae/HakHbip+IZ+Jr0842O4BAArvixk4Lb7/N2Ct9sTE\n"
"NJO6RtK9lbEZ5uK61DglHy8CS2UCgYEA4ZC1o36kPAMQBggajgnucb2yuUEelk0f\n"
"AEr+GI32MGE+93xMr7rAhBoqLg4AITyIfEnOSQ5HwagnIHonBbv1LV/Gf9ursx8Z\n"
"YOGbvT8zzzC+SU1bkDzdjAYnFQVGIjMtKOBJ3K07++ypwX1fr4QsQ8uKL8WSOWwt\n"
"Z3Bym6XiZzMCgYADnhy+2OwHX85AkLt+PyGlPbmuelpyTzS4IDAQbBa6jcuW/2wA\n"
"UE2km75VUXmD+u2R/9zVuLm99NzhFhSMqlUxdV1YukfqMfP5yp1EY6m/5aW7QuIP\n"
"2MDa7TVL9rIFMiVZ09RKvbBbQxjhuzPQKL6X/PPspnhiTefQ+dl2k9xREQKBgHDS\n"
"fMfGNEeAEKezrfSVqxphE9/tXms3L+ZpnCaT+yu/uEr5dTIAawKoQ6i9f/sf1/Sy\n"
"xedsqR+IB+oKrzIDDWMgoJybN4pkZ8E5lzhVQIjFjKgFdWLzzqyW9z1gYfABQPlN\n"
"FiS20WX0vgP1vcKAjdNrHzc9zyHBpgQzDmAj3NZZAoGBAI8vKCKdH7w3aL5CNkZQ\n"
"2buIeWNA2HZazVwAGG5F2TU/LmXfRKnG6dX5bkU+AkBZh56jNZy//hfFSewJB4Kk\n"
"buB7ERSdaNbO21zXt9FEA3+z0RfMd/Zv2vlIWOSB5nzl/7UKti3sribK6s9ZVLfi\n"
"SxpiPQ8d/hmSGwn4ksrWUsJD\n"
"-----END PRIVATE KEY-----\n";
bssl::UniquePtr<BIO> bio(BIO_new_mem_buf(kKeyPEM, strlen(kKeyPEM)));
return bssl::UniquePtr<EVP_PKEY>(
PEM_read_bio_PrivateKey(bio.get(), nullptr, nullptr, nullptr));
}
// Test that |SSL_get_client_CA_list| echoes back the configured parameter even
// before configuring as a server.
TEST(SSLTest, ClientCAList) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
bssl::UniquePtr<X509_NAME> name(X509_NAME_new());
ASSERT_TRUE(name);
bssl::UniquePtr<X509_NAME> name_dup(X509_NAME_dup(name.get()));
ASSERT_TRUE(name_dup);
bssl::UniquePtr<STACK_OF(X509_NAME)> stack(sk_X509_NAME_new_null());
ASSERT_TRUE(stack);
ASSERT_TRUE(PushToStack(stack.get(), std::move(name_dup)));
// |SSL_set_client_CA_list| takes ownership.
SSL_set_client_CA_list(ssl.get(), stack.release());
STACK_OF(X509_NAME) *result = SSL_get_client_CA_list(ssl.get());
ASSERT_TRUE(result);
ASSERT_EQ(1u, sk_X509_NAME_num(result));
EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(result, 0), name.get()));
}
TEST(SSLTest, AddClientCA) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
bssl::UniquePtr<X509> cert1 = GetTestCertificate();
bssl::UniquePtr<X509> cert2 = GetChainTestCertificate();
ASSERT_TRUE(cert1 && cert2);
X509_NAME *name1 = X509_get_subject_name(cert1.get());
X509_NAME *name2 = X509_get_subject_name(cert2.get());
EXPECT_EQ(0u, sk_X509_NAME_num(SSL_get_client_CA_list(ssl.get())));
ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert2.get()));
STACK_OF(X509_NAME) *list = SSL_get_client_CA_list(ssl.get());
ASSERT_EQ(2u, sk_X509_NAME_num(list));
EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
ASSERT_TRUE(SSL_add_client_CA(ssl.get(), cert1.get()));
list = SSL_get_client_CA_list(ssl.get());
ASSERT_EQ(3u, sk_X509_NAME_num(list));
EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 0), name1));
EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 1), name2));
EXPECT_EQ(0, X509_NAME_cmp(sk_X509_NAME_value(list, 2), name1));
}
static void AppendSession(SSL_SESSION *session, void *arg) {
std::vector<SSL_SESSION*> *out =
reinterpret_cast<std::vector<SSL_SESSION*>*>(arg);
out->push_back(session);
}
// CacheEquals returns true if |ctx|'s session cache consists of |expected|, in
// order.
static bool CacheEquals(SSL_CTX *ctx,
const std::vector<SSL_SESSION*> &expected) {
// Check the linked list.
SSL_SESSION *ptr = ctx->session_cache_head;
for (SSL_SESSION *session : expected) {
if (ptr != session) {
return false;
}
// TODO(davidben): This is an absurd way to denote the end of the list.
if (ptr->next ==
reinterpret_cast<SSL_SESSION *>(&ctx->session_cache_tail)) {
ptr = nullptr;
} else {
ptr = ptr->next;
}
}
if (ptr != nullptr) {
return false;
}
// Check the hash table.
std::vector<SSL_SESSION*> actual, expected_copy;
lh_SSL_SESSION_doall_arg(ctx->sessions, AppendSession, &actual);
expected_copy = expected;
std::sort(actual.begin(), actual.end());
std::sort(expected_copy.begin(), expected_copy.end());
return actual == expected_copy;
}
static bssl::UniquePtr<SSL_SESSION> CreateTestSession(uint32_t number) {
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return nullptr;
}
bssl::UniquePtr<SSL_SESSION> ret(SSL_SESSION_new(ssl_ctx.get()));
if (!ret) {
return nullptr;
}
uint8_t id[SSL3_SSL_SESSION_ID_LENGTH] = {0};
OPENSSL_memcpy(id, &number, sizeof(number));
if (!SSL_SESSION_set1_id(ret.get(), id, sizeof(id))) {
return nullptr;
}
return ret;
}
// Test that the internal session cache behaves as expected.
TEST(SSLTest, InternalSessionCache) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Prepare 10 test sessions.
std::vector<bssl::UniquePtr<SSL_SESSION>> sessions;
for (int i = 0; i < 10; i++) {
bssl::UniquePtr<SSL_SESSION> session = CreateTestSession(i);
ASSERT_TRUE(session);
sessions.push_back(std::move(session));
}
SSL_CTX_sess_set_cache_size(ctx.get(), 5);
// Insert all the test sessions.
for (const auto &session : sessions) {
ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), session.get()));
}
// Only the last five should be in the list.
ASSERT_TRUE(CacheEquals(
ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
sessions[6].get(), sessions[5].get()}));
// Inserting an element already in the cache should fail and leave the cache
// unchanged.
ASSERT_FALSE(SSL_CTX_add_session(ctx.get(), sessions[7].get()));
ASSERT_TRUE(CacheEquals(
ctx.get(), {sessions[9].get(), sessions[8].get(), sessions[7].get(),
sessions[6].get(), sessions[5].get()}));
// Although collisions should be impossible (256-bit session IDs), the cache
// must handle them gracefully.
bssl::UniquePtr<SSL_SESSION> collision(CreateTestSession(7));
ASSERT_TRUE(collision);
ASSERT_TRUE(SSL_CTX_add_session(ctx.get(), collision.get()));
ASSERT_TRUE(CacheEquals(
ctx.get(), {collision.get(), sessions[9].get(), sessions[8].get(),
sessions[6].get(), sessions[5].get()}));
// Removing sessions behaves correctly.
ASSERT_TRUE(SSL_CTX_remove_session(ctx.get(), sessions[6].get()));
ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
sessions[8].get(), sessions[5].get()}));
// Removing sessions requires an exact match.
ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[0].get()));
ASSERT_FALSE(SSL_CTX_remove_session(ctx.get(), sessions[7].get()));
// The cache remains unchanged.
ASSERT_TRUE(CacheEquals(ctx.get(), {collision.get(), sessions[9].get(),
sessions[8].get(), sessions[5].get()}));
}
static uint16_t EpochFromSequence(uint64_t seq) {
return static_cast<uint16_t>(seq >> 48);
}
static const uint8_t kTestName[] = {
0x30, 0x45, 0x31, 0x0b, 0x30, 0x09, 0x06, 0x03, 0x55, 0x04, 0x06, 0x13,
0x02, 0x41, 0x55, 0x31, 0x13, 0x30, 0x11, 0x06, 0x03, 0x55, 0x04, 0x08,
0x0c, 0x0a, 0x53, 0x6f, 0x6d, 0x65, 0x2d, 0x53, 0x74, 0x61, 0x74, 0x65,
0x31, 0x21, 0x30, 0x1f, 0x06, 0x03, 0x55, 0x04, 0x0a, 0x0c, 0x18, 0x49,
0x6e, 0x74, 0x65, 0x72, 0x6e, 0x65, 0x74, 0x20, 0x57, 0x69, 0x64, 0x67,
0x69, 0x74, 0x73, 0x20, 0x50, 0x74, 0x79, 0x20, 0x4c, 0x74, 0x64,
};
static bool CompleteHandshakes(SSL *client, SSL *server) {
// Drive both their handshakes to completion.
for (;;) {
int client_ret = SSL_do_handshake(client);
int client_err = SSL_get_error(client, client_ret);
if (client_err != SSL_ERROR_NONE &&
client_err != SSL_ERROR_WANT_READ &&
client_err != SSL_ERROR_WANT_WRITE &&
client_err != SSL_ERROR_PENDING_TICKET) {
fprintf(stderr, "Client error: %s\n", SSL_error_description(client_err));
return false;
}
int server_ret = SSL_do_handshake(server);
int server_err = SSL_get_error(server, server_ret);
if (server_err != SSL_ERROR_NONE &&
server_err != SSL_ERROR_WANT_READ &&
server_err != SSL_ERROR_WANT_WRITE &&
server_err != SSL_ERROR_PENDING_TICKET) {
fprintf(stderr, "Server error: %s\n", SSL_error_description(server_err));
return false;
}
if (client_ret == 1 && server_ret == 1) {
break;
}
}
return true;
}
static bool FlushNewSessionTickets(SSL *client, SSL *server) {
// NewSessionTickets are deferred on the server to |SSL_write|, and clients do
// not pick them up until |SSL_read|.
for (;;) {
int server_ret = SSL_write(server, nullptr, 0);
int server_err = SSL_get_error(server, server_ret);
// The server may either succeed (|server_ret| is zero) or block on write
// (|server_ret| is -1 and |server_err| is |SSL_ERROR_WANT_WRITE|).
if (server_ret > 0 ||
(server_ret < 0 && server_err != SSL_ERROR_WANT_WRITE)) {
fprintf(stderr, "Unexpected server result: %d %d\n", server_ret,
server_err);
return false;
}
int client_ret = SSL_read(client, nullptr, 0);
int client_err = SSL_get_error(client, client_ret);
// The client must always block on read.
if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) {
fprintf(stderr, "Unexpected client result: %d %d\n", client_ret,
client_err);
return false;
}
// The server flushed everything it had to write.
if (server_ret == 0) {
return true;
}
}
}
struct ClientConfig {
SSL_SESSION *session = nullptr;
std::string servername;
bool early_data = false;
};
static bool ConnectClientAndServer(bssl::UniquePtr<SSL> *out_client,
bssl::UniquePtr<SSL> *out_server,
SSL_CTX *client_ctx, SSL_CTX *server_ctx,
const ClientConfig &config = ClientConfig(),
bool do_handshake = true,
bool shed_handshake_config = true) {
bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
if (!client || !server) {
return false;
}
if (config.early_data) {
SSL_set_early_data_enabled(client.get(), 1);
}
SSL_set_connect_state(client.get());
SSL_set_accept_state(server.get());
if (config.session) {
SSL_set_session(client.get(), config.session);
}
if (!config.servername.empty() &&
!SSL_set_tlsext_host_name(client.get(), config.servername.c_str())) {
return false;
}
BIO *bio1, *bio2;
if (!BIO_new_bio_pair(&bio1, 0, &bio2, 0)) {
return false;
}
// SSL_set_bio takes ownership.
SSL_set_bio(client.get(), bio1, bio1);
SSL_set_bio(server.get(), bio2, bio2);
SSL_set_shed_handshake_config(client.get(), shed_handshake_config);
SSL_set_shed_handshake_config(server.get(), shed_handshake_config);
if (do_handshake && !CompleteHandshakes(client.get(), server.get())) {
return false;
}
*out_client = std::move(client);
*out_server = std::move(server);
return true;
}
// SSLVersionTest executes its test cases under all available protocol versions.
// Test cases call |Connect| to create a connection using context objects with
// the protocol version fixed to the current version under test.
class SSLVersionTest : public ::testing::TestWithParam<VersionParam> {
protected:
SSLVersionTest() : cert_(GetTestCertificate()), key_(GetTestKey()) {}
void SetUp() { ResetContexts(); }
bssl::UniquePtr<SSL_CTX> CreateContext() const {
const SSL_METHOD *method = is_dtls() ? DTLS_method() : TLS_method();
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(method));
if (!ctx || !SSL_CTX_set_min_proto_version(ctx.get(), version()) ||
!SSL_CTX_set_max_proto_version(ctx.get(), version())) {
return nullptr;
}
return ctx;
}
void ResetContexts() {
ASSERT_TRUE(cert_);
ASSERT_TRUE(key_);
client_ctx_ = CreateContext();
ASSERT_TRUE(client_ctx_);
server_ctx_ = CreateContext();
ASSERT_TRUE(server_ctx_);
// Set up a server cert. Client certs can be set up explicitly.
ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
}
bool UseCertAndKey(SSL_CTX *ctx) const {
return SSL_CTX_use_certificate(ctx, cert_.get()) &&
SSL_CTX_use_PrivateKey(ctx, key_.get());
}
bool Connect(const ClientConfig &config = ClientConfig()) {
return ConnectClientAndServer(&client_, &server_, client_ctx_.get(),
server_ctx_.get(), config, true,
shed_handshake_config_);
}
uint16_t version() const { return GetParam().version; }
bool is_dtls() const {
return GetParam().ssl_method == VersionParam::is_dtls;
}
bool shed_handshake_config_ = true;
bssl::UniquePtr<SSL> client_, server_;
bssl::UniquePtr<SSL_CTX> server_ctx_, client_ctx_;
bssl::UniquePtr<X509> cert_;
bssl::UniquePtr<EVP_PKEY> key_;
};
INSTANTIATE_TEST_SUITE_P(WithVersion, SSLVersionTest,
testing::ValuesIn(kAllVersions),
[](const testing::TestParamInfo<VersionParam> &i) {
return i.param.name;
});
TEST_P(SSLVersionTest, SequenceNumber) {
ASSERT_TRUE(Connect());
// Drain any post-handshake messages to ensure there are no unread records
// on either end.
ASSERT_TRUE(FlushNewSessionTickets(client_.get(), server_.get()));
uint64_t client_read_seq = SSL_get_read_sequence(client_.get());
uint64_t client_write_seq = SSL_get_write_sequence(client_.get());
uint64_t server_read_seq = SSL_get_read_sequence(server_.get());
uint64_t server_write_seq = SSL_get_write_sequence(server_.get());
if (is_dtls()) {
// Both client and server must be at epoch 1.
EXPECT_EQ(EpochFromSequence(client_read_seq), 1);
EXPECT_EQ(EpochFromSequence(client_write_seq), 1);
EXPECT_EQ(EpochFromSequence(server_read_seq), 1);
EXPECT_EQ(EpochFromSequence(server_write_seq), 1);
// The next record to be written should exceed the largest received.
EXPECT_GT(client_write_seq, server_read_seq);
EXPECT_GT(server_write_seq, client_read_seq);
} else {
// The next record to be written should equal the next to be received.
EXPECT_EQ(client_write_seq, server_read_seq);
EXPECT_EQ(server_write_seq, client_read_seq);
}
// Send a record from client to server.
uint8_t byte = 0;
EXPECT_EQ(SSL_write(client_.get(), &byte, 1), 1);
EXPECT_EQ(SSL_read(server_.get(), &byte, 1), 1);
// The client write and server read sequence numbers should have
// incremented.
EXPECT_EQ(client_write_seq + 1, SSL_get_write_sequence(client_.get()));
EXPECT_EQ(server_read_seq + 1, SSL_get_read_sequence(server_.get()));
}
TEST_P(SSLVersionTest, OneSidedShutdown) {
// SSL_shutdown is a no-op in DTLS.
if (is_dtls()) {
return;
}
ASSERT_TRUE(Connect());
// Shut down half the connection. SSL_shutdown will return 0 to signal only
// one side has shut down.
ASSERT_EQ(SSL_shutdown(client_.get()), 0);
// Reading from the server should consume the EOF.
uint8_t byte;
ASSERT_EQ(SSL_read(server_.get(), &byte, 1), 0);
ASSERT_EQ(SSL_get_error(server_.get(), 0), SSL_ERROR_ZERO_RETURN);
// However, the server may continue to write data and then shut down the
// connection.
byte = 42;
ASSERT_EQ(SSL_write(server_.get(), &byte, 1), 1);
ASSERT_EQ(SSL_read(client_.get(), &byte, 1), 1);
ASSERT_EQ(byte, 42);
// The server may then shutdown the connection.
EXPECT_EQ(SSL_shutdown(server_.get()), 1);
EXPECT_EQ(SSL_shutdown(client_.get()), 1);
}
TEST(SSLTest, SessionDuplication) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
SSL_SESSION *session0 = SSL_get_session(client.get());
bssl::UniquePtr<SSL_SESSION> session1 =
bssl::SSL_SESSION_dup(session0, SSL_SESSION_DUP_ALL);
ASSERT_TRUE(session1);
session1->not_resumable = false;
uint8_t *s0_bytes, *s1_bytes;
size_t s0_len, s1_len;
ASSERT_TRUE(SSL_SESSION_to_bytes(session0, &s0_bytes, &s0_len));
bssl::UniquePtr<uint8_t> free_s0(s0_bytes);
ASSERT_TRUE(SSL_SESSION_to_bytes(session1.get(), &s1_bytes, &s1_len));
bssl::UniquePtr<uint8_t> free_s1(s1_bytes);
EXPECT_EQ(Bytes(s0_bytes, s0_len), Bytes(s1_bytes, s1_len));
}
static void ExpectFDs(const SSL *ssl, int rfd, int wfd) {
EXPECT_EQ(rfd, SSL_get_fd(ssl));
EXPECT_EQ(rfd, SSL_get_rfd(ssl));
EXPECT_EQ(wfd, SSL_get_wfd(ssl));
// The wrapper BIOs are always equal when fds are equal, even if set
// individually.
if (rfd == wfd) {
EXPECT_EQ(SSL_get_rbio(ssl), SSL_get_wbio(ssl));
}
}
TEST(SSLTest, SetFD) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Test setting different read and write FDs.
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
ExpectFDs(ssl.get(), 1, 2);
// Test setting the same FD.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test setting the same FD one side at a time.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test setting the same FD in the other order.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test changing the read FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 2));
ExpectFDs(ssl.get(), 2, 1);
// Test changing the write FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 2));
ExpectFDs(ssl.get(), 1, 2);
// Test a no-op change to the read FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_rfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// Test a no-op change to the write FD partway through.
ssl.reset(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
EXPECT_TRUE(SSL_set_fd(ssl.get(), 1));
EXPECT_TRUE(SSL_set_wfd(ssl.get(), 1));
ExpectFDs(ssl.get(), 1, 1);
// ASan builds will implicitly test that the internal |BIO| reference-counting
// is correct.
}
TEST(SSLTest, SetBIO) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
bssl::UniquePtr<BIO> bio1(BIO_new(BIO_s_mem())), bio2(BIO_new(BIO_s_mem())),
bio3(BIO_new(BIO_s_mem()));
ASSERT_TRUE(ssl);
ASSERT_TRUE(bio1);
ASSERT_TRUE(bio2);
ASSERT_TRUE(bio3);
// SSL_set_bio takes one reference when the parameters are the same.
BIO_up_ref(bio1.get());
SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
// Repeating the call does nothing.
SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
// It takes one reference each when the parameters are different.
BIO_up_ref(bio2.get());
BIO_up_ref(bio3.get());
SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
// Repeating the call does nothing.
SSL_set_bio(ssl.get(), bio2.get(), bio3.get());
// It takes one reference when changing only wbio.
BIO_up_ref(bio1.get());
SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
// It takes one reference when changing only rbio and the two are different.
BIO_up_ref(bio3.get());
SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
// If setting wbio to rbio, it takes no additional references.
SSL_set_bio(ssl.get(), bio3.get(), bio3.get());
// From there, wbio may be switched to something else.
BIO_up_ref(bio1.get());
SSL_set_bio(ssl.get(), bio3.get(), bio1.get());
// If setting rbio to wbio, it takes no additional references.
SSL_set_bio(ssl.get(), bio1.get(), bio1.get());
// From there, rbio may be switched to something else, but, for historical
// reasons, it takes a reference to both parameters.
BIO_up_ref(bio1.get());
BIO_up_ref(bio2.get());
SSL_set_bio(ssl.get(), bio2.get(), bio1.get());
// ASAN builds will implicitly test that the internal |BIO| reference-counting
// is correct.
}
static int VerifySucceed(X509_STORE_CTX *store_ctx, void *arg) { return 1; }
TEST_P(SSLVersionTest, GetPeerCertificate) {
ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
// Configure both client and server to accept any certificate.
SSL_CTX_set_verify(client_ctx_.get(),
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
nullptr);
SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
SSL_CTX_set_verify(server_ctx_.get(),
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
nullptr);
SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
ASSERT_TRUE(Connect());
// Client and server should both see the leaf certificate.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
ASSERT_TRUE(peer);
ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
peer.reset(SSL_get_peer_certificate(client_.get()));
ASSERT_TRUE(peer);
ASSERT_EQ(X509_cmp(cert_.get(), peer.get()), 0);
// However, for historical reasons, the X509 chain includes the leaf on the
// client, but does not on the server.
EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(client_.get())), 1u);
EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(client_.get())),
1u);
EXPECT_EQ(sk_X509_num(SSL_get_peer_cert_chain(server_.get())), 0u);
EXPECT_EQ(sk_CRYPTO_BUFFER_num(SSL_get0_peer_certificates(server_.get())),
1u);
}
TEST_P(SSLVersionTest, NoPeerCertificate) {
SSL_CTX_set_verify(server_ctx_.get(), SSL_VERIFY_PEER, nullptr);
SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
ASSERT_TRUE(Connect());
// Server should not see a peer certificate.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
ASSERT_FALSE(peer);
ASSERT_FALSE(SSL_get0_peer_certificates(server_.get()));
}
TEST_P(SSLVersionTest, RetainOnlySHA256OfCerts) {
uint8_t *cert_der = NULL;
int cert_der_len = i2d_X509(cert_.get(), &cert_der);
ASSERT_GE(cert_der_len, 0);
bssl::UniquePtr<uint8_t> free_cert_der(cert_der);
uint8_t cert_sha256[SHA256_DIGEST_LENGTH];
SHA256(cert_der, cert_der_len, cert_sha256);
ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
// Configure both client and server to accept any certificate, but the
// server must retain only the SHA-256 of the peer.
SSL_CTX_set_verify(client_ctx_.get(),
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
nullptr);
SSL_CTX_set_verify(server_ctx_.get(),
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
nullptr);
SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
SSL_CTX_set_retain_only_sha256_of_client_certs(server_ctx_.get(), 1);
ASSERT_TRUE(Connect());
// The peer certificate has been dropped.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(server_.get()));
EXPECT_FALSE(peer);
SSL_SESSION *session = SSL_get_session(server_.get());
EXPECT_TRUE(SSL_SESSION_has_peer_sha256(session));
const uint8_t *peer_sha256;
size_t peer_sha256_len;
SSL_SESSION_get0_peer_sha256(session, &peer_sha256, &peer_sha256_len);
EXPECT_EQ(Bytes(cert_sha256), Bytes(peer_sha256, peer_sha256_len));
}
// Tests that our ClientHellos do not change unexpectedly. These are purely
// change detection tests. If they fail as part of an intentional ClientHello
// change, update the test vector.
TEST(SSLTest, ClientHello) {
struct {
uint16_t max_version;
std::vector<uint8_t> expected;
} kTests[] = {
{TLS1_VERSION,
{0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x01, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
0x01, 0x00, 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01,
0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00,
0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}},
{TLS1_1_VERSION,
{0x16, 0x03, 0x01, 0x00, 0x5a, 0x01, 0x00, 0x00, 0x56, 0x03, 0x02, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x0e, 0xc0, 0x09,
0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a,
0x01, 0x00, 0x00, 0x1f, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01,
0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00,
0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00}},
{TLS1_2_VERSION,
{0x16, 0x03, 0x01, 0x00, 0x82, 0x01, 0x00, 0x00, 0x7e, 0x03, 0x03, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1e, 0xcc, 0xa9,
0xcc, 0xa8, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30, 0xc0, 0x09,
0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14, 0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f,
0x00, 0x35, 0x00, 0x0a, 0x01, 0x00, 0x00, 0x37, 0x00, 0x17, 0x00, 0x00,
0xff, 0x01, 0x00, 0x01, 0x00, 0x00, 0x0a, 0x00, 0x08, 0x00, 0x06, 0x00,
0x1d, 0x00, 0x17, 0x00, 0x18, 0x00, 0x0b, 0x00, 0x02, 0x01, 0x00, 0x00,
0x23, 0x00, 0x00, 0x00, 0x0d, 0x00, 0x14, 0x00, 0x12, 0x04, 0x03, 0x08,
0x04, 0x04, 0x01, 0x05, 0x03, 0x08, 0x05, 0x05, 0x01, 0x08, 0x06, 0x06,
0x01, 0x02, 0x01}},
// TODO(davidben): Add a change detector for TLS 1.3 once the spec and our
// implementation has settled enough that it won't change.
};
for (const auto &t : kTests) {
SCOPED_TRACE(t.max_version);
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Our default cipher list varies by CPU capabilities, so manually place the
// ChaCha20 ciphers in front.
const char *cipher_list = "CHACHA20:ALL";
ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), t.max_version));
ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(ctx.get(), cipher_list));
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
std::vector<uint8_t> client_hello;
ASSERT_TRUE(GetClientHello(ssl.get(), &client_hello));
// Zero the client_random.
constexpr size_t kRandomOffset = 1 + 2 + 2 + // record header
1 + 3 + // handshake message header
2; // client_version
ASSERT_GE(client_hello.size(), kRandomOffset + SSL3_RANDOM_SIZE);
OPENSSL_memset(client_hello.data() + kRandomOffset, 0, SSL3_RANDOM_SIZE);
if (client_hello != t.expected) {
ADD_FAILURE() << "ClientHellos did not match.";
// Print the value manually so it is easier to update the test vector.
for (size_t i = 0; i < client_hello.size(); i += 12) {
printf(" %c", i == 0 ? '{' : ' ');
for (size_t j = i; j < client_hello.size() && j < i + 12; j++) {
if (j > i) {
printf(" ");
}
printf("0x%02x", client_hello[j]);
if (j < client_hello.size() - 1) {
printf(",");
}
}
if (i + 12 >= client_hello.size()) {
printf("}},");
}
printf("\n");
}
}
}
}
static bssl::UniquePtr<SSL_SESSION> g_last_session;
static int SaveLastSession(SSL *ssl, SSL_SESSION *session) {
// Save the most recent session.
g_last_session.reset(session);
return 1;
}
static bssl::UniquePtr<SSL_SESSION> CreateClientSession(
SSL_CTX *client_ctx, SSL_CTX *server_ctx,
const ClientConfig &config = ClientConfig()) {
g_last_session = nullptr;
SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
// Connect client and server to get a session.
bssl::UniquePtr<SSL> client, server;
if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
config) ||
!FlushNewSessionTickets(client.get(), server.get())) {
fprintf(stderr, "Failed to connect client and server.\n");
return nullptr;
}
SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
if (!g_last_session) {
fprintf(stderr, "Client did not receive a session.\n");
return nullptr;
}
return std::move(g_last_session);
}
static void ExpectSessionReused(SSL_CTX *client_ctx, SSL_CTX *server_ctx,
SSL_SESSION *session, bool want_reused) {
bssl::UniquePtr<SSL> client, server;
ClientConfig config;
config.session = session;
EXPECT_TRUE(
ConnectClientAndServer(&client, &server, client_ctx, server_ctx, config));
EXPECT_EQ(SSL_session_reused(client.get()), SSL_session_reused(server.get()));
bool was_reused = !!SSL_session_reused(client.get());
EXPECT_EQ(was_reused, want_reused);
}
static bssl::UniquePtr<SSL_SESSION> ExpectSessionRenewed(SSL_CTX *client_ctx,
SSL_CTX *server_ctx,
SSL_SESSION *session) {
g_last_session = nullptr;
SSL_CTX_sess_set_new_cb(client_ctx, SaveLastSession);
bssl::UniquePtr<SSL> client, server;
ClientConfig config;
config.session = session;
if (!ConnectClientAndServer(&client, &server, client_ctx, server_ctx,
config) ||
!FlushNewSessionTickets(client.get(), server.get())) {
fprintf(stderr, "Failed to connect client and server.\n");
return nullptr;
}
if (SSL_session_reused(client.get()) != SSL_session_reused(server.get())) {
fprintf(stderr, "Client and server were inconsistent.\n");
return nullptr;
}
if (!SSL_session_reused(client.get())) {
fprintf(stderr, "Session was not reused.\n");
return nullptr;
}
SSL_CTX_sess_set_new_cb(client_ctx, nullptr);
if (!g_last_session) {
fprintf(stderr, "Client did not receive a renewed session.\n");
return nullptr;
}
return std::move(g_last_session);
}
static void ExpectTicketKeyChanged(SSL_CTX *ctx, uint8_t *inout_key,
bool changed) {
uint8_t new_key[kTicketKeyLen];
// May return 0, 1 or 48.
ASSERT_EQ(SSL_CTX_get_tlsext_ticket_keys(ctx, new_key, kTicketKeyLen), 1);
if (changed) {
ASSERT_NE(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
} else {
ASSERT_EQ(Bytes(inout_key, kTicketKeyLen), Bytes(new_key));
}
OPENSSL_memcpy(inout_key, new_key, kTicketKeyLen);
}
static int SwitchSessionIDContextSNI(SSL *ssl, int *out_alert, void *arg) {
static const uint8_t kContext[] = {3};
if (!SSL_set_session_id_context(ssl, kContext, sizeof(kContext))) {
return SSL_TLSEXT_ERR_ALERT_FATAL;
}
return SSL_TLSEXT_ERR_OK;
}
TEST_P(SSLVersionTest, SessionIDContext) {
static const uint8_t kContext1[] = {1};
static const uint8_t kContext2[] = {2};
ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
sizeof(kContext1)));
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
true /* expect session reused */));
// Change the session ID context.
ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext2,
sizeof(kContext2)));
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
false /* expect session not reused */));
// Change the session ID context back and install an SNI callback to switch
// it.
ASSERT_TRUE(SSL_CTX_set_session_id_context(server_ctx_.get(), kContext1,
sizeof(kContext1)));
SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(),
SwitchSessionIDContextSNI);
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
false /* expect session not reused */));
// Switch the session ID context with the early callback instead.
SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), nullptr);
SSL_CTX_set_select_certificate_cb(
server_ctx_.get(),
[](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
static const uint8_t kContext[] = {3};
if (!SSL_set_session_id_context(client_hello->ssl, kContext,
sizeof(kContext))) {
return ssl_select_cert_error;
}
return ssl_select_cert_success;
});
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
false /* expect session not reused */));
}
static timeval g_current_time;
static void CurrentTimeCallback(const SSL *ssl, timeval *out_clock) {
*out_clock = g_current_time;
}
static void FrozenTimeCallback(const SSL *ssl, timeval *out_clock) {
out_clock->tv_sec = 1000;
out_clock->tv_usec = 0;
}
static int RenewTicketCallback(SSL *ssl, uint8_t *key_name, uint8_t *iv,
EVP_CIPHER_CTX *ctx, HMAC_CTX *hmac_ctx,
int encrypt) {
static const uint8_t kZeros[16] = {0};
if (encrypt) {
OPENSSL_memcpy(key_name, kZeros, sizeof(kZeros));
RAND_bytes(iv, 16);
} else if (OPENSSL_memcmp(key_name, kZeros, 16) != 0) {
return 0;
}
if (!HMAC_Init_ex(hmac_ctx, kZeros, sizeof(kZeros), EVP_sha256(), NULL) ||
!EVP_CipherInit_ex(ctx, EVP_aes_128_cbc(), NULL, kZeros, iv, encrypt)) {
return -1;
}
// Returning two from the callback in decrypt mode renews the
// session in TLS 1.2 and below.
return encrypt ? 1 : 2;
}
static bool GetServerTicketTime(long *out, const SSL_SESSION *session) {
const uint8_t *ticket;
size_t ticket_len;
SSL_SESSION_get0_ticket(session, &ticket, &ticket_len);
if (ticket_len < 16 + 16 + SHA256_DIGEST_LENGTH) {
return false;
}
const uint8_t *ciphertext = ticket + 16 + 16;
size_t len = ticket_len - 16 - 16 - SHA256_DIGEST_LENGTH;
std::unique_ptr<uint8_t[]> plaintext(new uint8_t[len]);
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
// Fuzzer-mode tickets are unencrypted.
OPENSSL_memcpy(plaintext.get(), ciphertext, len);
#else
static const uint8_t kZeros[16] = {0};
const uint8_t *iv = ticket + 16;
bssl::ScopedEVP_CIPHER_CTX ctx;
int len1, len2;
if (!EVP_DecryptInit_ex(ctx.get(), EVP_aes_128_cbc(), nullptr, kZeros, iv) ||
!EVP_DecryptUpdate(ctx.get(), plaintext.get(), &len1, ciphertext, len) ||
!EVP_DecryptFinal_ex(ctx.get(), plaintext.get() + len1, &len2)) {
return false;
}
len = static_cast<size_t>(len1 + len2);
#endif
bssl::UniquePtr<SSL_CTX> ssl_ctx(SSL_CTX_new(TLS_method()));
if (!ssl_ctx) {
return false;
}
bssl::UniquePtr<SSL_SESSION> server_session(
SSL_SESSION_from_bytes(plaintext.get(), len, ssl_ctx.get()));
if (!server_session) {
return false;
}
*out = SSL_SESSION_get_time(server_session.get());
return true;
}
TEST_P(SSLVersionTest, SessionTimeout) {
for (bool server_test : {false, true}) {
SCOPED_TRACE(server_test);
ResetContexts();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
static const time_t kStartTime = 1000;
g_current_time.tv_sec = kStartTime;
// We are willing to use a longer lifetime for TLS 1.3 sessions as
// resumptions still perform ECDHE.
const time_t timeout = version() == TLS1_3_VERSION
? SSL_DEFAULT_SESSION_PSK_DHE_TIMEOUT
: SSL_DEFAULT_SESSION_TIMEOUT;
// Both client and server must enforce session timeouts. We configure the
// other side with a frozen clock so it never expires tickets.
if (server_test) {
SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
} else {
SSL_CTX_set_current_time_cb(client_ctx_.get(), CurrentTimeCallback);
SSL_CTX_set_current_time_cb(server_ctx_.get(), FrozenTimeCallback);
}
// Configure a ticket callback which renews tickets.
SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
// Advance the clock just behind the timeout.
g_current_time.tv_sec += timeout - 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
true /* expect session reused */));
// Advance the clock one more second.
g_current_time.tv_sec++;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
false /* expect session not reused */));
// Rewind the clock to before the session was minted.
g_current_time.tv_sec = kStartTime - 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(),
false /* expect session not reused */));
// Renew the session 10 seconds before expiration.
time_t new_start_time = kStartTime + timeout - 10;
g_current_time.tv_sec = new_start_time;
bssl::UniquePtr<SSL_SESSION> new_session = ExpectSessionRenewed(
client_ctx_.get(), server_ctx_.get(), session.get());
ASSERT_TRUE(new_session);
// This new session is not the same object as before.
EXPECT_NE(session.get(), new_session.get());
// Check the sessions have timestamps measured from issuance.
long session_time = 0;
if (server_test) {
ASSERT_TRUE(GetServerTicketTime(&session_time, new_session.get()));
} else {
session_time = SSL_SESSION_get_time(new_session.get());
}
ASSERT_EQ(session_time, g_current_time.tv_sec);
if (version() == TLS1_3_VERSION) {
// Renewal incorporates fresh key material in TLS 1.3, so we extend the
// lifetime TLS 1.3.
g_current_time.tv_sec = new_start_time + timeout - 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(),
true /* expect session reused */));
// The new session expires after the new timeout.
g_current_time.tv_sec = new_start_time + timeout + 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(),
false /* expect session ot reused */));
// Renew the session until it begins just past the auth timeout.
time_t auth_end_time = kStartTime + SSL_DEFAULT_SESSION_AUTH_TIMEOUT;
while (new_start_time < auth_end_time - 1000) {
// Get as close as possible to target start time.
new_start_time =
std::min(auth_end_time - 1000, new_start_time + timeout - 1);
g_current_time.tv_sec = new_start_time;
new_session = ExpectSessionRenewed(client_ctx_.get(), server_ctx_.get(),
new_session.get());
ASSERT_TRUE(new_session);
}
// Now the session's lifetime is bound by the auth timeout.
g_current_time.tv_sec = auth_end_time - 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(),
true /* expect session reused */));
g_current_time.tv_sec = auth_end_time + 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(),
false /* expect session ot reused */));
} else {
// The new session is usable just before the old expiration.
g_current_time.tv_sec = kStartTime + timeout - 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(),
true /* expect session reused */));
// Renewal does not extend the lifetime, so it is not usable beyond the
// old expiration.
g_current_time.tv_sec = kStartTime + timeout + 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(),
false /* expect session not reused */));
}
}
}
TEST_P(SSLVersionTest, DefaultTicketKeyInitialization) {
static const uint8_t kZeroKey[kTicketKeyLen] = {};
uint8_t ticket_key[kTicketKeyLen];
ASSERT_EQ(1, SSL_CTX_get_tlsext_ticket_keys(server_ctx_.get(), ticket_key,
kTicketKeyLen));
ASSERT_NE(0, OPENSSL_memcmp(ticket_key, kZeroKey, kTicketKeyLen));
}
TEST_P(SSLVersionTest, DefaultTicketKeyRotation) {
static const time_t kStartTime = 1001;
g_current_time.tv_sec = kStartTime;
// We use session reuse as a proxy for ticket decryption success, hence
// disable session timeouts.
SSL_CTX_set_timeout(server_ctx_.get(), std::numeric_limits<uint32_t>::max());
SSL_CTX_set_session_psk_dhe_timeout(server_ctx_.get(),
std::numeric_limits<uint32_t>::max());
SSL_CTX_set_current_time_cb(client_ctx_.get(), FrozenTimeCallback);
SSL_CTX_set_current_time_cb(server_ctx_.get(), CurrentTimeCallback);
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_OFF);
// Initialize ticket_key with the current key and check that it was
// initialized to something, not all zeros.
uint8_t ticket_key[kTicketKeyLen] = {0};
TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
true /* changed */));
// Verify ticket resumption actually works.
bssl::UniquePtr<SSL> client, server;
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(), true /* reused */));
// Advance time to just before key rotation.
g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL - 1;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(), true /* reused */));
TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
false /* NOT changed */));
// Force key rotation.
g_current_time.tv_sec += 1;
bssl::UniquePtr<SSL_SESSION> new_session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
true /* changed */));
// Resumption with both old and new ticket should work.
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(), true /* reused */));
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(), true /* reused */));
TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
false /* NOT changed */));
// Force key rotation again. Resumption with the old ticket now fails.
g_current_time.tv_sec += SSL_DEFAULT_TICKET_KEY_ROTATION_INTERVAL;
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
session.get(), false /* NOT reused */));
TRACED_CALL(ExpectTicketKeyChanged(server_ctx_.get(), ticket_key,
true /* changed */));
// But resumption with the newer session still works.
TRACED_CALL(ExpectSessionReused(client_ctx_.get(), server_ctx_.get(),
new_session.get(), true /* reused */));
}
static int SwitchContext(SSL *ssl, int *out_alert, void *arg) {
SSL_CTX *ctx = reinterpret_cast<SSL_CTX *>(arg);
SSL_set_SSL_CTX(ssl, ctx);
return SSL_TLSEXT_ERR_OK;
}
TEST_P(SSLVersionTest, SNICallback) {
bssl::UniquePtr<X509> cert2 = GetECDSATestCertificate();
ASSERT_TRUE(cert2);
bssl::UniquePtr<EVP_PKEY> key2 = GetECDSATestKey();
ASSERT_TRUE(key2);
// Test that switching the |SSL_CTX| at the SNI callback behaves correctly.
static const uint16_t kECDSAWithSHA256 = SSL_SIGN_ECDSA_SECP256R1_SHA256;
static const uint8_t kSCTList[] = {0, 6, 0, 4, 5, 6, 7, 8};
static const uint8_t kOCSPResponse[] = {1, 2, 3, 4};
bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
ASSERT_TRUE(server_ctx2);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx2.get(), cert2.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx2.get(), key2.get()));
ASSERT_TRUE(SSL_CTX_set_signed_cert_timestamp_list(
server_ctx2.get(), kSCTList, sizeof(kSCTList)));
ASSERT_TRUE(SSL_CTX_set_ocsp_response(server_ctx2.get(), kOCSPResponse,
sizeof(kOCSPResponse)));
// Historically signing preferences would be lost in some cases with the
// SNI callback, which triggers the TLS 1.2 SHA-1 default. To ensure
// this doesn't happen when |version| is TLS 1.2, configure the private
// key to only sign SHA-256.
ASSERT_TRUE(SSL_CTX_set_signing_algorithm_prefs(server_ctx2.get(),
&kECDSAWithSHA256, 1));
SSL_CTX_set_tlsext_servername_callback(server_ctx_.get(), SwitchContext);
SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), server_ctx2.get());
SSL_CTX_enable_signed_cert_timestamps(client_ctx_.get());
SSL_CTX_enable_ocsp_stapling(client_ctx_.get());
ASSERT_TRUE(Connect());
// The client should have received |cert2|.
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(client_.get()));
ASSERT_TRUE(peer);
EXPECT_EQ(X509_cmp(peer.get(), cert2.get()), 0);
// The client should have received |server_ctx2|'s SCT list.
const uint8_t *data;
size_t len;
SSL_get0_signed_cert_timestamp_list(client_.get(), &data, &len);
EXPECT_EQ(Bytes(kSCTList), Bytes(data, len));
// The client should have received |server_ctx2|'s OCSP response.
SSL_get0_ocsp_response(client_.get(), &data, &len);
EXPECT_EQ(Bytes(kOCSPResponse), Bytes(data, len));
}
// Test that the early callback can swap the maximum version.
TEST(SSLTest, EarlyCallbackVersionSwitch) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(server_ctx);
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
SSL_CTX_set_select_certificate_cb(
server_ctx.get(),
[](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
if (!SSL_set_max_proto_version(client_hello->ssl, TLS1_2_VERSION)) {
return ssl_select_cert_error;
}
return ssl_select_cert_success;
});
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
EXPECT_EQ(TLS1_2_VERSION, SSL_version(client.get()));
}
TEST(SSLTest, SetVersion) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Set valid TLS versions.
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_1_VERSION));
// Invalid TLS versions are rejected.
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x0200));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x0200));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
// Zero is the default version.
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
EXPECT_EQ(TLS1_3_VERSION, SSL_CTX_get_max_proto_version(ctx.get()));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
EXPECT_EQ(TLS1_VERSION, SSL_CTX_get_min_proto_version(ctx.get()));
// TLS 1.3 is available, but not by default.
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
EXPECT_EQ(TLS1_3_VERSION, SSL_CTX_get_max_proto_version(ctx.get()));
// SSL 3.0 is not available.
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), SSL3_VERSION));
ctx.reset(SSL_CTX_new(DTLS_method()));
ASSERT_TRUE(ctx);
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), DTLS1_2_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), DTLS1_2_VERSION));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
EXPECT_FALSE(SSL_CTX_set_max_proto_version(ctx.get(), 0x1234));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_VERSION));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfefe /* DTLS 1.1 */));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0xfffe /* DTLS 0.1 */));
EXPECT_FALSE(SSL_CTX_set_min_proto_version(ctx.get(), 0x1234));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), 0));
EXPECT_EQ(DTLS1_2_VERSION, SSL_CTX_get_max_proto_version(ctx.get()));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), 0));
EXPECT_EQ(DTLS1_VERSION, SSL_CTX_get_min_proto_version(ctx.get()));
}
static const char *GetVersionName(uint16_t version) {
switch (version) {
case TLS1_VERSION:
return "TLSv1";
case TLS1_1_VERSION:
return "TLSv1.1";
case TLS1_2_VERSION:
return "TLSv1.2";
case TLS1_3_VERSION:
return "TLSv1.3";
case DTLS1_VERSION:
return "DTLSv1";
case DTLS1_2_VERSION:
return "DTLSv1.2";
default:
return "???";
}
}
TEST_P(SSLVersionTest, Version) {
ASSERT_TRUE(Connect());
EXPECT_EQ(SSL_version(client_.get()), version());
EXPECT_EQ(SSL_version(server_.get()), version());
// Test the version name is reported as expected.
const char *version_name = GetVersionName(version());
EXPECT_EQ(strcmp(version_name, SSL_get_version(client_.get())), 0);
EXPECT_EQ(strcmp(version_name, SSL_get_version(server_.get())), 0);
// Test SSL_SESSION reports the same name.
const char *client_name =
SSL_SESSION_get_version(SSL_get_session(client_.get()));
const char *server_name =
SSL_SESSION_get_version(SSL_get_session(server_.get()));
EXPECT_EQ(strcmp(version_name, client_name), 0);
EXPECT_EQ(strcmp(version_name, server_name), 0);
}
// Tests that that |SSL_get_pending_cipher| is available during the ALPN
// selection callback.
TEST_P(SSLVersionTest, ALPNCipherAvailable) {
ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos,
sizeof(kALPNProtos)),
0);
// The ALPN callback does not fail the handshake on error, so have the
// callback write a boolean.
std::pair<uint16_t, bool> callback_state(version(), false);
SSL_CTX_set_alpn_select_cb(
server_ctx_.get(),
[](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
unsigned in_len, void *arg) -> int {
auto state = reinterpret_cast<std::pair<uint16_t, bool> *>(arg);
if (SSL_get_pending_cipher(ssl) != nullptr &&
SSL_version(ssl) == state->first) {
state->second = true;
}
return SSL_TLSEXT_ERR_NOACK;
},
&callback_state);
ASSERT_TRUE(Connect());
ASSERT_TRUE(callback_state.second);
}
TEST_P(SSLVersionTest, SSLClearSessionResumption) {
// Skip this for TLS 1.3. TLS 1.3's ticket mechanism is incompatible with this
// API pattern.
if (version() == TLS1_3_VERSION) {
return;
}
shed_handshake_config_ = false;
ASSERT_TRUE(Connect());
EXPECT_FALSE(SSL_session_reused(client_.get()));
EXPECT_FALSE(SSL_session_reused(server_.get()));
// Reset everything.
ASSERT_TRUE(SSL_clear(client_.get()));
ASSERT_TRUE(SSL_clear(server_.get()));
// Attempt to connect a second time.
ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
// |SSL_clear| should implicitly offer the previous session to the server.
EXPECT_TRUE(SSL_session_reused(client_.get()));
EXPECT_TRUE(SSL_session_reused(server_.get()));
}
TEST_P(SSLVersionTest, SSLClearFailsWithShedding) {
shed_handshake_config_ = false;
ASSERT_TRUE(Connect());
ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
// Reset everything.
ASSERT_TRUE(SSL_clear(client_.get()));
ASSERT_TRUE(SSL_clear(server_.get()));
// Now enable shedding, and connect a second time.
shed_handshake_config_ = true;
ASSERT_TRUE(Connect());
ASSERT_TRUE(CompleteHandshakes(client_.get(), server_.get()));
// |SSL_clear| should now fail.
ASSERT_FALSE(SSL_clear(client_.get()));
ASSERT_FALSE(SSL_clear(server_.get()));
}
static bool ChainsEqual(STACK_OF(X509) * chain,
const std::vector<X509 *> &expected) {
if (sk_X509_num(chain) != expected.size()) {
return false;
}
for (size_t i = 0; i < expected.size(); i++) {
if (X509_cmp(sk_X509_value(chain, i), expected[i]) != 0) {
return false;
}
}
return true;
}
TEST_P(SSLVersionTest, AutoChain) {
cert_ = GetChainTestCertificate();
ASSERT_TRUE(cert_);
key_ = GetChainTestKey();
ASSERT_TRUE(key_);
bssl::UniquePtr<X509> intermediate = GetChainTestIntermediate();
ASSERT_TRUE(intermediate);
ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
// Configure both client and server to accept any certificate. Add
// |intermediate| to the cert store.
ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(client_ctx_.get()),
intermediate.get()));
ASSERT_TRUE(X509_STORE_add_cert(SSL_CTX_get_cert_store(server_ctx_.get()),
intermediate.get()));
SSL_CTX_set_verify(client_ctx_.get(),
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
nullptr);
SSL_CTX_set_verify(server_ctx_.get(),
SSL_VERIFY_PEER | SSL_VERIFY_FAIL_IF_NO_PEER_CERT,
nullptr);
SSL_CTX_set_cert_verify_callback(client_ctx_.get(), VerifySucceed, NULL);
SSL_CTX_set_cert_verify_callback(server_ctx_.get(), VerifySucceed, NULL);
// By default, the client and server should each only send the leaf.
ASSERT_TRUE(Connect());
EXPECT_TRUE(
ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()), {cert_.get()}));
EXPECT_TRUE(
ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()), {cert_.get()}));
// If auto-chaining is enabled, then the intermediate is sent.
SSL_CTX_clear_mode(client_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
SSL_CTX_clear_mode(server_ctx_.get(), SSL_MODE_NO_AUTO_CHAIN);
ASSERT_TRUE(Connect());
EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
{cert_.get(), intermediate.get()}));
EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
{cert_.get(), intermediate.get()}));
// Auto-chaining does not override explicitly-configured intermediates.
ASSERT_TRUE(SSL_CTX_add1_chain_cert(client_ctx_.get(), cert_.get()));
ASSERT_TRUE(SSL_CTX_add1_chain_cert(server_ctx_.get(), cert_.get()));
ASSERT_TRUE(Connect());
EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(client_.get()),
{cert_.get(), cert_.get()}));
EXPECT_TRUE(ChainsEqual(SSL_get_peer_full_cert_chain(server_.get()),
{cert_.get(), cert_.get()}));
}
static bool ExpectBadWriteRetry() {
int err = ERR_get_error();
if (ERR_GET_LIB(err) != ERR_LIB_SSL ||
ERR_GET_REASON(err) != SSL_R_BAD_WRITE_RETRY) {
char buf[ERR_ERROR_STRING_BUF_LEN];
ERR_error_string_n(err, buf, sizeof(buf));
fprintf(stderr, "Wanted SSL_R_BAD_WRITE_RETRY, got: %s.\n", buf);
return false;
}
if (ERR_peek_error() != 0) {
fprintf(stderr, "Unexpected error following SSL_R_BAD_WRITE_RETRY.\n");
return false;
}
return true;
}
TEST_P(SSLVersionTest, SSLWriteRetry) {
if (is_dtls()) {
return;
}
for (bool enable_partial_write : {false, true}) {
SCOPED_TRACE(enable_partial_write);
// Connect a client and server.
ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
ASSERT_TRUE(Connect());
if (enable_partial_write) {
SSL_set_mode(client_.get(), SSL_MODE_ENABLE_PARTIAL_WRITE);
}
// Write without reading until the buffer is full and we have an unfinished
// write. Keep a count so we may reread it again later. "hello!" will be
// written in two chunks, "hello" and "!".
char data[] = "hello!";
static const int kChunkLen = 5; // The length of "hello".
unsigned count = 0;
for (;;) {
int ret = SSL_write(client_.get(), data, kChunkLen);
if (ret <= 0) {
ASSERT_EQ(SSL_get_error(client_.get(), ret), SSL_ERROR_WANT_WRITE);
break;
}
ASSERT_EQ(ret, 5);
count++;
}
// Retrying with the same parameters is legal.
ASSERT_EQ(
SSL_get_error(client_.get(), SSL_write(client_.get(), data, kChunkLen)),
SSL_ERROR_WANT_WRITE);
// Retrying with the same buffer but shorter length is not legal.
ASSERT_EQ(SSL_get_error(client_.get(),
SSL_write(client_.get(), data, kChunkLen - 1)),
SSL_ERROR_SSL);
ASSERT_TRUE(ExpectBadWriteRetry());
// Retrying with a different buffer pointer is not legal.
char data2[] = "hello";
ASSERT_EQ(SSL_get_error(client_.get(),
SSL_write(client_.get(), data2, kChunkLen)),
SSL_ERROR_SSL);
ASSERT_TRUE(ExpectBadWriteRetry());
// With |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER|, the buffer may move.
SSL_set_mode(client_.get(), SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER);
ASSERT_EQ(SSL_get_error(client_.get(),
SSL_write(client_.get(), data2, kChunkLen)),
SSL_ERROR_WANT_WRITE);
// |SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER| does not disable length checks.
ASSERT_EQ(SSL_get_error(client_.get(),
SSL_write(client_.get(), data2, kChunkLen - 1)),
SSL_ERROR_SSL);
ASSERT_TRUE(ExpectBadWriteRetry());
// Retrying with a larger buffer is legal.
ASSERT_EQ(SSL_get_error(client_.get(),
SSL_write(client_.get(), data, kChunkLen + 1)),
SSL_ERROR_WANT_WRITE);
// Drain the buffer.
char buf[20];
for (unsigned i = 0; i < count; i++) {
ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
}
// Now that there is space, a retry with a larger buffer should flush the
// pending record, skip over that many bytes of input (on assumption they
// are the same), and write the remainder. If SSL_MODE_ENABLE_PARTIAL_WRITE
// is set, this will complete in two steps.
char data3[] = "_____!";
if (enable_partial_write) {
ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen);
ASSERT_EQ(SSL_write(client_.get(), data3 + kChunkLen, 1), 1);
} else {
ASSERT_EQ(SSL_write(client_.get(), data3, kChunkLen + 1), kChunkLen + 1);
}
// Check the last write was correct. The data will be spread over two
// records, so SSL_read returns twice.
ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), kChunkLen);
ASSERT_EQ(OPENSSL_memcmp(buf, "hello", kChunkLen), 0);
ASSERT_EQ(SSL_read(server_.get(), buf, sizeof(buf)), 1);
ASSERT_EQ(buf[0], '!');
}
}
TEST_P(SSLVersionTest, RecordCallback) {
for (bool test_server : {true, false}) {
SCOPED_TRACE(test_server);
ResetContexts();
bool read_seen = false;
bool write_seen = false;
auto cb = [&](int is_write, int cb_version, int cb_type, const void *buf,
size_t len, SSL *ssl) {
if (cb_type != SSL3_RT_HEADER) {
return;
}
// The callback does not report a version for records.
EXPECT_EQ(0, cb_version);
if (is_write) {
write_seen = true;
} else {
read_seen = true;
}
// Sanity-check that the record header is plausible.
CBS cbs;
CBS_init(&cbs, reinterpret_cast<const uint8_t *>(buf), len);
uint8_t type;
uint16_t record_version, length;
ASSERT_TRUE(CBS_get_u8(&cbs, &type));
ASSERT_TRUE(CBS_get_u16(&cbs, &record_version));
EXPECT_EQ(record_version & 0xff00, version() & 0xff00);
if (is_dtls()) {
uint16_t epoch;
ASSERT_TRUE(CBS_get_u16(&cbs, &epoch));
EXPECT_TRUE(epoch == 0 || epoch == 1) << "Invalid epoch: " << epoch;
ASSERT_TRUE(CBS_skip(&cbs, 6));
}
ASSERT_TRUE(CBS_get_u16(&cbs, &length));
EXPECT_EQ(0u, CBS_len(&cbs));
};
using CallbackType = decltype(cb);
SSL_CTX *ctx = test_server ? server_ctx_.get() : client_ctx_.get();
SSL_CTX_set_msg_callback(
ctx, [](int is_write, int cb_version, int cb_type, const void *buf,
size_t len, SSL *ssl, void *arg) {
CallbackType *cb_ptr = reinterpret_cast<CallbackType *>(arg);
(*cb_ptr)(is_write, cb_version, cb_type, buf, len, ssl);
});
SSL_CTX_set_msg_callback_arg(ctx, &cb);
ASSERT_TRUE(Connect());
EXPECT_TRUE(read_seen);
EXPECT_TRUE(write_seen);
}
}
TEST_P(SSLVersionTest, GetServerName) {
ClientConfig config;
config.servername = "host1";
SSL_CTX_set_tlsext_servername_callback(
server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int {
// During the handshake, |SSL_get_servername| must match |config|.
ClientConfig *config_p = reinterpret_cast<ClientConfig *>(arg);
EXPECT_STREQ(config_p->servername.c_str(),
SSL_get_servername(ssl, TLSEXT_NAMETYPE_host_name));
return SSL_TLSEXT_ERR_OK;
});
SSL_CTX_set_tlsext_servername_arg(server_ctx_.get(), &config);
ASSERT_TRUE(Connect(config));
// After the handshake, it must also be available.
EXPECT_STREQ(config.servername.c_str(),
SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
// Establish a session under host1.
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get(), config);
// If the client resumes a session with a different name, |SSL_get_servername|
// must return the new name.
ASSERT_TRUE(session);
config.session = session.get();
config.servername = "host2";
ASSERT_TRUE(Connect(config));
EXPECT_STREQ(config.servername.c_str(),
SSL_get_servername(server_.get(), TLSEXT_NAMETYPE_host_name));
}
// Test that session cache mode bits are honored in the client session callback.
TEST_P(SSLVersionTest, ClientSessionCacheMode) {
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_OFF);
EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_CLIENT);
EXPECT_TRUE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_SERVER);
EXPECT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
}
// Test that all versions survive tiny write buffers. In particular, TLS 1.3
// NewSessionTickets are written post-handshake. Servers that block
// |SSL_do_handshake| on writing them will deadlock if clients are not draining
// the buffer. Test that we do not do this.
TEST_P(SSLVersionTest, SmallBuffer) {
// DTLS is a datagram protocol and requires packet-sized buffers.
if (is_dtls()) {
return;
}
// Test both flushing NewSessionTickets with a zero-sized write and
// non-zero-sized write.
for (bool use_zero_write : {false, true}) {
SCOPED_TRACE(use_zero_write);
g_last_session = nullptr;
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
bssl::UniquePtr<SSL> client(SSL_new(client_ctx_.get())),
server(SSL_new(server_ctx_.get()));
ASSERT_TRUE(client);
ASSERT_TRUE(server);
SSL_set_connect_state(client.get());
SSL_set_accept_state(server.get());
// Use a tiny buffer.
BIO *bio1, *bio2;
ASSERT_TRUE(BIO_new_bio_pair(&bio1, 1, &bio2, 1));
// SSL_set_bio takes ownership.
SSL_set_bio(client.get(), bio1, bio1);
SSL_set_bio(server.get(), bio2, bio2);
ASSERT_TRUE(CompleteHandshakes(client.get(), server.get()));
if (version() >= TLS1_3_VERSION) {
// The post-handshake ticket should not have been processed yet.
EXPECT_FALSE(g_last_session);
}
if (use_zero_write) {
ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get()));
EXPECT_TRUE(g_last_session);
}
// Send some data from server to client. If |use_zero_write| is false, this
// will also flush the NewSessionTickets.
static const char kMessage[] = "hello world";
char buf[sizeof(kMessage)];
for (;;) {
int server_ret = SSL_write(server.get(), kMessage, sizeof(kMessage));
int server_err = SSL_get_error(server.get(), server_ret);
int client_ret = SSL_read(client.get(), buf, sizeof(buf));
int client_err = SSL_get_error(client.get(), client_ret);
// The server will write a single record, so every iteration should see
// |SSL_ERROR_WANT_WRITE| and |SSL_ERROR_WANT_READ|, until the final
// iteration, where both will complete.
if (server_ret > 0) {
EXPECT_EQ(server_ret, static_cast<int>(sizeof(kMessage)));
EXPECT_EQ(client_ret, static_cast<int>(sizeof(kMessage)));
EXPECT_EQ(Bytes(buf), Bytes(kMessage));
break;
}
ASSERT_EQ(server_ret, -1);
ASSERT_EQ(server_err, SSL_ERROR_WANT_WRITE);
ASSERT_EQ(client_ret, -1);
ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
}
// The NewSessionTickets should have been flushed and processed.
EXPECT_TRUE(g_last_session);
}
}
TEST(SSLTest, AddChainCertHack) {
// Ensure that we don't accidently break the hack that we have in place to
// keep curl and serf happy when they use an |X509| even after transfering
// ownership.
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
X509 *cert = GetTestCertificate().release();
ASSERT_TRUE(cert);
SSL_CTX_add0_chain_cert(ctx.get(), cert);
// This should not trigger a use-after-free.
X509_cmp(cert, cert);
}
TEST(SSLTest, GetCertificate) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
ASSERT_TRUE(cert);
ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
ASSERT_TRUE(cert2);
X509 *cert3 = SSL_get_certificate(ssl.get());
ASSERT_TRUE(cert3);
// The old and new certificates must be identical.
EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
EXPECT_EQ(0, X509_cmp(cert.get(), cert3));
uint8_t *der = nullptr;
long der_len = i2d_X509(cert.get(), &der);
ASSERT_LT(0, der_len);
bssl::UniquePtr<uint8_t> free_der(der);
uint8_t *der2 = nullptr;
long der2_len = i2d_X509(cert2, &der2);
ASSERT_LT(0, der2_len);
bssl::UniquePtr<uint8_t> free_der2(der2);
uint8_t *der3 = nullptr;
long der3_len = i2d_X509(cert3, &der3);
ASSERT_LT(0, der3_len);
bssl::UniquePtr<uint8_t> free_der3(der3);
// They must also encode identically.
EXPECT_EQ(Bytes(der, der_len), Bytes(der2, der2_len));
EXPECT_EQ(Bytes(der, der_len), Bytes(der3, der3_len));
}
TEST(SSLTest, SetChainAndKeyMismatch) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(key);
bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
ASSERT_TRUE(leaf);
std::vector<CRYPTO_BUFFER*> chain = {
leaf.get(),
};
// Should fail because |GetTestKey| doesn't match the chain-test certificate.
ASSERT_FALSE(SSL_CTX_set_chain_and_key(ctx.get(), &chain[0], chain.size(),
key.get(), nullptr));
ERR_clear_error();
}
TEST(SSLTest, SetChainAndKey) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(client_ctx);
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(server_ctx);
ASSERT_EQ(nullptr, SSL_CTX_get0_chain(server_ctx.get()));
bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
ASSERT_TRUE(key);
bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
ASSERT_TRUE(leaf);
bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
GetChainTestIntermediateBuffer();
ASSERT_TRUE(intermediate);
std::vector<CRYPTO_BUFFER*> chain = {
leaf.get(), intermediate.get(),
};
ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
chain.size(), key.get(), nullptr));
ASSERT_EQ(chain.size(),
sk_CRYPTO_BUFFER_num(SSL_CTX_get0_chain(server_ctx.get())));
SSL_CTX_set_custom_verify(
client_ctx.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_ok;
});
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
}
TEST(SSLTest, BuffersFailWithoutCustomVerify) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(client_ctx);
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
ASSERT_TRUE(key);
bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
ASSERT_TRUE(leaf);
std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
chain.size(), key.get(), nullptr));
// Without SSL_CTX_set_custom_verify(), i.e. with everything in the default
// configuration, certificate verification should fail.
bssl::UniquePtr<SSL> client, server;
ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
// Whereas with a verifier, the connection should succeed.
SSL_CTX_set_custom_verify(
client_ctx.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_ok;
});
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
}
TEST(SSLTest, CustomVerify) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(client_ctx);
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
ASSERT_TRUE(key);
bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
ASSERT_TRUE(leaf);
std::vector<CRYPTO_BUFFER*> chain = { leaf.get() };
ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
chain.size(), key.get(), nullptr));
SSL_CTX_set_custom_verify(
client_ctx.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_ok;
});
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
// With SSL_VERIFY_PEER, ssl_verify_invalid should result in a dropped
// connection.
SSL_CTX_set_custom_verify(
client_ctx.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_invalid;
});
ASSERT_FALSE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
// But with SSL_VERIFY_NONE, ssl_verify_invalid should not cause a dropped
// connection.
SSL_CTX_set_custom_verify(
client_ctx.get(), SSL_VERIFY_NONE,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_invalid;
});
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
}
TEST(SSLTest, ClientCABuffers) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(client_ctx);
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_with_buffers_method()));
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<EVP_PKEY> key = GetChainTestKey();
ASSERT_TRUE(key);
bssl::UniquePtr<CRYPTO_BUFFER> leaf = GetChainTestCertificateBuffer();
ASSERT_TRUE(leaf);
bssl::UniquePtr<CRYPTO_BUFFER> intermediate =
GetChainTestIntermediateBuffer();
ASSERT_TRUE(intermediate);
std::vector<CRYPTO_BUFFER *> chain = {
leaf.get(),
intermediate.get(),
};
ASSERT_TRUE(SSL_CTX_set_chain_and_key(server_ctx.get(), &chain[0],
chain.size(), key.get(), nullptr));
bssl::UniquePtr<CRYPTO_BUFFER> ca_name(
CRYPTO_BUFFER_new(kTestName, sizeof(kTestName), nullptr));
ASSERT_TRUE(ca_name);
bssl::UniquePtr<STACK_OF(CRYPTO_BUFFER)> ca_names(
sk_CRYPTO_BUFFER_new_null());
ASSERT_TRUE(ca_names);
ASSERT_TRUE(PushToStack(ca_names.get(), std::move(ca_name)));
SSL_CTX_set0_client_CAs(server_ctx.get(), ca_names.release());
// Configure client and server to accept all certificates.
SSL_CTX_set_custom_verify(
client_ctx.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_ok;
});
SSL_CTX_set_custom_verify(
server_ctx.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_ok;
});
bool cert_cb_called = false;
SSL_CTX_set_cert_cb(
client_ctx.get(),
[](SSL *ssl, void *arg) -> int {
const STACK_OF(CRYPTO_BUFFER) *peer_names =
SSL_get0_server_requested_CAs(ssl);
EXPECT_EQ(1u, sk_CRYPTO_BUFFER_num(peer_names));
CRYPTO_BUFFER *peer_name = sk_CRYPTO_BUFFER_value(peer_names, 0);
EXPECT_EQ(Bytes(kTestName), Bytes(CRYPTO_BUFFER_data(peer_name),
CRYPTO_BUFFER_len(peer_name)));
*reinterpret_cast<bool *>(arg) = true;
return 1;
},
&cert_cb_called);
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
EXPECT_TRUE(cert_cb_called);
}
// Configuring the empty cipher list, though an error, should still modify the
// configuration.
TEST(SSLTest, EmptyCipherList) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Initially, the cipher list is not empty.
EXPECT_NE(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
// Configuring the empty cipher list fails.
EXPECT_FALSE(SSL_CTX_set_cipher_list(ctx.get(), ""));
ERR_clear_error();
// But the cipher list is still updated to empty.
EXPECT_EQ(0u, sk_SSL_CIPHER_num(SSL_CTX_get_ciphers(ctx.get())));
}
// ssl_test_ticket_aead_failure_mode enumerates the possible ways in which the
// test |SSL_TICKET_AEAD_METHOD| can fail.
enum ssl_test_ticket_aead_failure_mode {
ssl_test_ticket_aead_ok = 0,
ssl_test_ticket_aead_seal_fail,
ssl_test_ticket_aead_open_soft_fail,
ssl_test_ticket_aead_open_hard_fail,
};
struct ssl_test_ticket_aead_state {
unsigned retry_count;
ssl_test_ticket_aead_failure_mode failure_mode;
};
static int ssl_test_ticket_aead_ex_index_dup(CRYPTO_EX_DATA *to,
const CRYPTO_EX_DATA *from,
void **from_d, int index,
long argl, void *argp) {
abort();
}
static void ssl_test_ticket_aead_ex_index_free(void *parent, void *ptr,
CRYPTO_EX_DATA *ad, int index,
long argl, void *argp) {
auto state = reinterpret_cast<ssl_test_ticket_aead_state*>(ptr);
if (state == nullptr) {
return;
}
OPENSSL_free(state);
}
static CRYPTO_once_t g_ssl_test_ticket_aead_ex_index_once = CRYPTO_ONCE_INIT;
static int g_ssl_test_ticket_aead_ex_index;
static int ssl_test_ticket_aead_get_ex_index() {
CRYPTO_once(&g_ssl_test_ticket_aead_ex_index_once, [] {
g_ssl_test_ticket_aead_ex_index = SSL_get_ex_new_index(
0, nullptr, nullptr, ssl_test_ticket_aead_ex_index_dup,
ssl_test_ticket_aead_ex_index_free);
});
return g_ssl_test_ticket_aead_ex_index;
}
static size_t ssl_test_ticket_aead_max_overhead(SSL *ssl) {
return 1;
}
static int ssl_test_ticket_aead_seal(SSL *ssl, uint8_t *out, size_t *out_len,
size_t max_out_len, const uint8_t *in,
size_t in_len) {
auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
if (state->failure_mode == ssl_test_ticket_aead_seal_fail ||
max_out_len < in_len + 1) {
return 0;
}
OPENSSL_memmove(out, in, in_len);
out[in_len] = 0xff;
*out_len = in_len + 1;
return 1;
}
static ssl_ticket_aead_result_t ssl_test_ticket_aead_open(
SSL *ssl, uint8_t *out, size_t *out_len, size_t max_out_len,
const uint8_t *in, size_t in_len) {
auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
SSL_get_ex_data(ssl, ssl_test_ticket_aead_get_ex_index()));
if (state->retry_count > 0) {
state->retry_count--;
return ssl_ticket_aead_retry;
}
switch (state->failure_mode) {
case ssl_test_ticket_aead_ok:
break;
case ssl_test_ticket_aead_seal_fail:
// If |seal| failed then there shouldn't be any ticket to try and
// decrypt.
abort();
break;
case ssl_test_ticket_aead_open_soft_fail:
return ssl_ticket_aead_ignore_ticket;
case ssl_test_ticket_aead_open_hard_fail:
return ssl_ticket_aead_error;
}
if (in_len == 0 || in[in_len - 1] != 0xff) {
return ssl_ticket_aead_ignore_ticket;
}
if (max_out_len < in_len - 1) {
return ssl_ticket_aead_error;
}
OPENSSL_memmove(out, in, in_len - 1);
*out_len = in_len - 1;
return ssl_ticket_aead_success;
}
static const SSL_TICKET_AEAD_METHOD kSSLTestTicketMethod = {
ssl_test_ticket_aead_max_overhead,
ssl_test_ticket_aead_seal,
ssl_test_ticket_aead_open,
};
static void ConnectClientAndServerWithTicketMethod(
bssl::UniquePtr<SSL> *out_client, bssl::UniquePtr<SSL> *out_server,
SSL_CTX *client_ctx, SSL_CTX *server_ctx, unsigned retry_count,
ssl_test_ticket_aead_failure_mode failure_mode, SSL_SESSION *session) {
bssl::UniquePtr<SSL> client(SSL_new(client_ctx)), server(SSL_new(server_ctx));
ASSERT_TRUE(client);
ASSERT_TRUE(server);
SSL_set_connect_state(client.get());
SSL_set_accept_state(server.get());
auto state = reinterpret_cast<ssl_test_ticket_aead_state *>(
OPENSSL_malloc(sizeof(ssl_test_ticket_aead_state)));
ASSERT_TRUE(state);
OPENSSL_memset(state, 0, sizeof(ssl_test_ticket_aead_state));
state->retry_count = retry_count;
state->failure_mode = failure_mode;
ASSERT_TRUE(SSL_set_ex_data(server.get(), ssl_test_ticket_aead_get_ex_index(),
state));
SSL_set_session(client.get(), session);
BIO *bio1, *bio2;
ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0));
// SSL_set_bio takes ownership.
SSL_set_bio(client.get(), bio1, bio1);
SSL_set_bio(server.get(), bio2, bio2);
if (CompleteHandshakes(client.get(), server.get())) {
*out_client = std::move(client);
*out_server = std::move(server);
} else {
out_client->reset();
out_server->reset();
}
}
using TicketAEADMethodParam =
testing::tuple<uint16_t, unsigned, ssl_test_ticket_aead_failure_mode>;
class TicketAEADMethodTest
: public ::testing::TestWithParam<TicketAEADMethodParam> {};
TEST_P(TicketAEADMethodTest, Resume) {
bssl::UniquePtr<X509> cert = GetTestCertificate();
ASSERT_TRUE(cert);
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(key);
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
const uint16_t version = testing::get<0>(GetParam());
const unsigned retry_count = testing::get<1>(GetParam());
const ssl_test_ticket_aead_failure_mode failure_mode =
testing::get<2>(GetParam());
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), version));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), version));
ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), version));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), version));
SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_current_time_cb(client_ctx.get(), FrozenTimeCallback);
SSL_CTX_set_current_time_cb(server_ctx.get(), FrozenTimeCallback);
SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession);
SSL_CTX_set_ticket_aead_method(server_ctx.get(), &kSSLTestTicketMethod);
bssl::UniquePtr<SSL> client, server;
ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
server_ctx.get(), retry_count,
failure_mode, nullptr);
switch (failure_mode) {
case ssl_test_ticket_aead_ok:
case ssl_test_ticket_aead_open_hard_fail:
case ssl_test_ticket_aead_open_soft_fail:
ASSERT_TRUE(client);
break;
case ssl_test_ticket_aead_seal_fail:
EXPECT_FALSE(client);
return;
}
EXPECT_FALSE(SSL_session_reused(client.get()));
EXPECT_FALSE(SSL_session_reused(server.get()));
ASSERT_TRUE(FlushNewSessionTickets(client.get(), server.get()));
bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
ConnectClientAndServerWithTicketMethod(&client, &server, client_ctx.get(),
server_ctx.get(), retry_count,
failure_mode, session.get());
switch (failure_mode) {
case ssl_test_ticket_aead_ok:
ASSERT_TRUE(client);
EXPECT_TRUE(SSL_session_reused(client.get()));
EXPECT_TRUE(SSL_session_reused(server.get()));
break;
case ssl_test_ticket_aead_seal_fail:
abort();
break;
case ssl_test_ticket_aead_open_hard_fail:
EXPECT_FALSE(client);
break;
case ssl_test_ticket_aead_open_soft_fail:
ASSERT_TRUE(client);
EXPECT_FALSE(SSL_session_reused(client.get()));
EXPECT_FALSE(SSL_session_reused(server.get()));
}
}
std::string TicketAEADMethodParamToString(
const testing::TestParamInfo<TicketAEADMethodParam> &params) {
std::string ret = GetVersionName(std::get<0>(params.param));
// GTest only allows alphanumeric characters and '_' in the parameter
// string. Additionally filter out the 'v' to get "TLS13" over "TLSv13".
for (auto it = ret.begin(); it != ret.end();) {
if (*it == '.' || *it == 'v') {
it = ret.erase(it);
} else {
++it;
}
}
char retry_count[256];
snprintf(retry_count, sizeof(retry_count), "%d", std::get<1>(params.param));
ret += "_";
ret += retry_count;
ret += "Retries_";
switch (std::get<2>(params.param)) {
case ssl_test_ticket_aead_ok:
ret += "OK";
break;
case ssl_test_ticket_aead_seal_fail:
ret += "SealFail";
break;
case ssl_test_ticket_aead_open_soft_fail:
ret += "OpenSoftFail";
break;
case ssl_test_ticket_aead_open_hard_fail:
ret += "OpenHardFail";
break;
}
return ret;
}
INSTANTIATE_TEST_SUITE_P(
TicketAEADMethodTests, TicketAEADMethodTest,
testing::Combine(testing::Values(TLS1_2_VERSION, TLS1_3_VERSION),
testing::Values(0, 1, 2),
testing::Values(ssl_test_ticket_aead_ok,
ssl_test_ticket_aead_seal_fail,
ssl_test_ticket_aead_open_soft_fail,
ssl_test_ticket_aead_open_hard_fail)),
TicketAEADMethodParamToString);
TEST(SSLTest, SelectNextProto) {
uint8_t *result;
uint8_t result_len;
// If there is an overlap, it should be returned.
EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
SSL_select_next_proto(&result, &result_len,
(const uint8_t *)"\1a\2bb\3ccc", 9,
(const uint8_t *)"\1x\1y\1a\1z", 8));
EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
SSL_select_next_proto(&result, &result_len,
(const uint8_t *)"\1a\2bb\3ccc", 9,
(const uint8_t *)"\1x\1y\2bb\1z", 9));
EXPECT_EQ(Bytes("bb"), Bytes(result, result_len));
EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
SSL_select_next_proto(&result, &result_len,
(const uint8_t *)"\1a\2bb\3ccc", 9,
(const uint8_t *)"\1x\1y\3ccc\1z", 10));
EXPECT_EQ(Bytes("ccc"), Bytes(result, result_len));
// Peer preference order takes precedence over local.
EXPECT_EQ(OPENSSL_NPN_NEGOTIATED,
SSL_select_next_proto(&result, &result_len,
(const uint8_t *)"\1a\2bb\3ccc", 9,
(const uint8_t *)"\3ccc\2bb\1a", 9));
EXPECT_EQ(Bytes("a"), Bytes(result, result_len));
// If there is no overlap, return the first local protocol.
EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
SSL_select_next_proto(&result, &result_len,
(const uint8_t *)"\1a\2bb\3ccc", 9,
(const uint8_t *)"\1x\2yy\3zzz", 9));
EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
EXPECT_EQ(OPENSSL_NPN_NO_OVERLAP,
SSL_select_next_proto(&result, &result_len, nullptr, 0,
(const uint8_t *)"\1x\2yy\3zzz", 9));
EXPECT_EQ(Bytes("x"), Bytes(result, result_len));
}
TEST(SSLTest, SealRecord) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLSv1_2_method())),
server_ctx(SSL_CTX_new(TLSv1_2_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
const std::vector<uint8_t> record = {1, 2, 3, 4, 5};
std::vector<uint8_t> prefix(
bssl::SealRecordPrefixLen(client.get(), record.size())),
body(record.size()),
suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
bssl::MakeSpan(body), bssl::MakeSpan(suffix),
record));
std::vector<uint8_t> sealed;
sealed.insert(sealed.end(), prefix.begin(), prefix.end());
sealed.insert(sealed.end(), body.begin(), body.end());
sealed.insert(sealed.end(), suffix.begin(), suffix.end());
std::vector<uint8_t> sealed_copy = sealed;
bssl::Span<uint8_t> plaintext;
size_t record_len;
uint8_t alert = 255;
EXPECT_EQ(bssl::OpenRecord(server.get(), &plaintext, &record_len, &alert,
bssl::MakeSpan(sealed)),
bssl::OpenRecordResult::kOK);
EXPECT_EQ(record_len, sealed.size());
EXPECT_EQ(plaintext, record);
EXPECT_EQ(255, alert);
}
TEST(SSLTest, SealRecordInPlace) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLSv1_2_method())),
server_ctx(SSL_CTX_new(TLSv1_2_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
std::vector<uint8_t> record = plaintext;
std::vector<uint8_t> prefix(
bssl::SealRecordPrefixLen(client.get(), record.size())),
suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
bssl::MakeSpan(record), bssl::MakeSpan(suffix),
record));
record.insert(record.begin(), prefix.begin(), prefix.end());
record.insert(record.end(), suffix.begin(), suffix.end());
bssl::Span<uint8_t> result;
size_t record_len;
uint8_t alert;
EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
bssl::MakeSpan(record)),
bssl::OpenRecordResult::kOK);
EXPECT_EQ(record_len, record.size());
EXPECT_EQ(plaintext, result);
}
TEST(SSLTest, SealRecordTrailingData) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLSv1_2_method())),
server_ctx(SSL_CTX_new(TLSv1_2_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
const std::vector<uint8_t> plaintext = {1, 2, 3, 4, 5};
std::vector<uint8_t> record = plaintext;
std::vector<uint8_t> prefix(
bssl::SealRecordPrefixLen(client.get(), record.size())),
suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
ASSERT_TRUE(bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
bssl::MakeSpan(record), bssl::MakeSpan(suffix),
record));
record.insert(record.begin(), prefix.begin(), prefix.end());
record.insert(record.end(), suffix.begin(), suffix.end());
record.insert(record.end(), {5, 4, 3, 2, 1});
bssl::Span<uint8_t> result;
size_t record_len;
uint8_t alert;
EXPECT_EQ(bssl::OpenRecord(server.get(), &result, &record_len, &alert,
bssl::MakeSpan(record)),
bssl::OpenRecordResult::kOK);
EXPECT_EQ(record_len, record.size() - 5);
EXPECT_EQ(plaintext, result);
}
TEST(SSLTest, SealRecordInvalidSpanSize) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLSv1_2_method())),
server_ctx(SSL_CTX_new(TLSv1_2_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
std::vector<uint8_t> record = {1, 2, 3, 4, 5};
std::vector<uint8_t> prefix(
bssl::SealRecordPrefixLen(client.get(), record.size())),
body(record.size()),
suffix(bssl::SealRecordSuffixLen(client.get(), record.size()));
auto expect_err = []() {
int err = ERR_get_error();
EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL);
EXPECT_EQ(ERR_GET_REASON(err), SSL_R_BUFFER_TOO_SMALL);
ERR_clear_error();
};
EXPECT_FALSE(bssl::SealRecord(
client.get(), bssl::MakeSpan(prefix.data(), prefix.size() - 1),
bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
expect_err();
EXPECT_FALSE(bssl::SealRecord(
client.get(), bssl::MakeSpan(prefix.data(), prefix.size() + 1),
bssl::MakeSpan(record), bssl::MakeSpan(suffix), record));
expect_err();
EXPECT_FALSE(
bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
bssl::MakeSpan(record.data(), record.size() - 1),
bssl::MakeSpan(suffix), record));
expect_err();
EXPECT_FALSE(
bssl::SealRecord(client.get(), bssl::MakeSpan(prefix),
bssl::MakeSpan(record.data(), record.size() + 1),
bssl::MakeSpan(suffix), record));
expect_err();
EXPECT_FALSE(bssl::SealRecord(
client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
bssl::MakeSpan(suffix.data(), suffix.size() - 1), record));
expect_err();
EXPECT_FALSE(bssl::SealRecord(
client.get(), bssl::MakeSpan(prefix), bssl::MakeSpan(record),
bssl::MakeSpan(suffix.data(), suffix.size() + 1), record));
expect_err();
}
// The client should gracefully handle no suitable ciphers being enabled.
TEST(SSLTest, NoCiphersAvailable) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
// Configure |client_ctx| with a cipher list that does not intersect with its
// version configuration.
ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(
ctx.get(), "TLS_ECDHE_RSA_WITH_AES_128_GCM_SHA256"));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_1_VERSION));
bssl::UniquePtr<SSL> ssl(SSL_new(ctx.get()));
ASSERT_TRUE(ssl);
SSL_set_connect_state(ssl.get());
UniquePtr<BIO> rbio(BIO_new(BIO_s_mem())), wbio(BIO_new(BIO_s_mem()));
ASSERT_TRUE(rbio);
ASSERT_TRUE(wbio);
SSL_set0_rbio(ssl.get(), rbio.release());
SSL_set0_wbio(ssl.get(), wbio.release());
int ret = SSL_do_handshake(ssl.get());
EXPECT_EQ(-1, ret);
EXPECT_EQ(SSL_ERROR_SSL, SSL_get_error(ssl.get(), ret));
uint32_t err = ERR_get_error();
EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
EXPECT_EQ(SSL_R_NO_CIPHERS_AVAILABLE, ERR_GET_REASON(err));
}
TEST_P(SSLVersionTest, SessionVersion) {
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
// Sessions in TLS 1.3 and later should be single-use.
EXPECT_EQ(version() == TLS1_3_VERSION,
!!SSL_SESSION_should_be_single_use(session.get()));
// Making fake sessions for testing works.
session.reset(SSL_SESSION_new(client_ctx_.get()));
ASSERT_TRUE(session);
ASSERT_TRUE(SSL_SESSION_set_protocol_version(session.get(), version()));
EXPECT_EQ(version(), SSL_SESSION_get_protocol_version(session.get()));
}
TEST_P(SSLVersionTest, SSLPending) {
UniquePtr<SSL> ssl(SSL_new(client_ctx_.get()));
ASSERT_TRUE(ssl);
EXPECT_EQ(0, SSL_pending(ssl.get()));
ASSERT_TRUE(Connect());
EXPECT_EQ(0, SSL_pending(client_.get()));
ASSERT_EQ(5, SSL_write(server_.get(), "hello", 5));
ASSERT_EQ(5, SSL_write(server_.get(), "world", 5));
EXPECT_EQ(0, SSL_pending(client_.get()));
char buf[10];
ASSERT_EQ(1, SSL_peek(client_.get(), buf, 1));
EXPECT_EQ(5, SSL_pending(client_.get()));
ASSERT_EQ(1, SSL_read(client_.get(), buf, 1));
EXPECT_EQ(4, SSL_pending(client_.get()));
ASSERT_EQ(4, SSL_read(client_.get(), buf, 10));
EXPECT_EQ(0, SSL_pending(client_.get()));
ASSERT_EQ(2, SSL_read(client_.get(), buf, 2));
EXPECT_EQ(3, SSL_pending(client_.get()));
}
// Test that post-handshake tickets consumed by |SSL_shutdown| are ignored.
TEST(SSLTest, ShutdownIgnoresTickets) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_3_VERSION));
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), key.get()));
SSL_CTX_set_session_cache_mode(ctx.get(), SSL_SESS_CACHE_BOTH);
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get()));
SSL_CTX_sess_set_new_cb(ctx.get(), [](SSL *ssl, SSL_SESSION *session) -> int {
ADD_FAILURE() << "New session callback called during SSL_shutdown";
return 0;
});
// Send close_notify.
EXPECT_EQ(0, SSL_shutdown(server.get()));
EXPECT_EQ(0, SSL_shutdown(client.get()));
// Receive close_notify.
EXPECT_EQ(1, SSL_shutdown(server.get()));
EXPECT_EQ(1, SSL_shutdown(client.get()));
}
TEST(SSLTest, SignatureAlgorithmProperties) {
EXPECT_EQ(EVP_PKEY_NONE, SSL_get_signature_algorithm_key_type(0x1234));
EXPECT_EQ(nullptr, SSL_get_signature_algorithm_digest(0x1234));
EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(0x1234));
EXPECT_EQ(EVP_PKEY_RSA,
SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
EXPECT_EQ(EVP_md5_sha1(),
SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
EXPECT_FALSE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PKCS1_MD5_SHA1));
EXPECT_EQ(EVP_PKEY_EC, SSL_get_signature_algorithm_key_type(
SSL_SIGN_ECDSA_SECP256R1_SHA256));
EXPECT_EQ(EVP_sha256(), SSL_get_signature_algorithm_digest(
SSL_SIGN_ECDSA_SECP256R1_SHA256));
EXPECT_FALSE(
SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_ECDSA_SECP256R1_SHA256));
EXPECT_EQ(EVP_PKEY_RSA,
SSL_get_signature_algorithm_key_type(SSL_SIGN_RSA_PSS_RSAE_SHA384));
EXPECT_EQ(EVP_sha384(),
SSL_get_signature_algorithm_digest(SSL_SIGN_RSA_PSS_RSAE_SHA384));
EXPECT_TRUE(SSL_is_signature_algorithm_rsa_pss(SSL_SIGN_RSA_PSS_RSAE_SHA384));
}
static int XORCompressFunc(SSL *ssl, CBB *out, const uint8_t *in,
size_t in_len) {
for (size_t i = 0; i < in_len; i++) {
if (!CBB_add_u8(out, in[i] ^ 0x55)) {
return 0;
}
}
SSL_set_app_data(ssl, XORCompressFunc);
return 1;
}
static int XORDecompressFunc(SSL *ssl, CRYPTO_BUFFER **out,
size_t uncompressed_len, const uint8_t *in,
size_t in_len) {
if (in_len != uncompressed_len) {
return 0;
}
uint8_t *data;
*out = CRYPTO_BUFFER_alloc(&data, uncompressed_len);
if (*out == nullptr) {
return 0;
}
for (size_t i = 0; i < in_len; i++) {
data[i] = in[i] ^ 0x55;
}
SSL_set_app_data(ssl, XORDecompressFunc);
return 1;
}
TEST(SSLTest, CertCompression) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_add_cert_compression_alg(
client_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc));
ASSERT_TRUE(SSL_CTX_add_cert_compression_alg(
server_ctx.get(), 0x1234, XORCompressFunc, XORDecompressFunc));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
EXPECT_TRUE(SSL_get_app_data(client.get()) == XORDecompressFunc);
EXPECT_TRUE(SSL_get_app_data(server.get()) == XORCompressFunc);
}
void MoveBIOs(SSL *dest, SSL *src) {
BIO *rbio = SSL_get_rbio(src);
BIO_up_ref(rbio);
SSL_set0_rbio(dest, rbio);
BIO *wbio = SSL_get_wbio(src);
BIO_up_ref(wbio);
SSL_set0_wbio(dest, wbio);
SSL_set0_rbio(src, nullptr);
SSL_set0_wbio(src, nullptr);
}
TEST(SSLTest, Handoff) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> handshaker_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
ASSERT_TRUE(handshaker_ctx);
SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_CLIENT);
SSL_CTX_sess_set_new_cb(client_ctx.get(), SaveLastSession);
SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
uint8_t keys[48];
SSL_CTX_get_tlsext_ticket_keys(server_ctx.get(), &keys, sizeof(keys));
SSL_CTX_set_tlsext_ticket_keys(handshaker_ctx.get(), &keys, sizeof(keys));
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(handshaker_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(handshaker_ctx.get(), key.get()));
for (bool early_data : {false, true}) {
SCOPED_TRACE(early_data);
for (bool is_resume : {false, true}) {
SCOPED_TRACE(is_resume);
bssl::UniquePtr<SSL> client, server;
auto config = ClientConfig();
config.early_data = early_data;
if (is_resume) {
ASSERT_TRUE(g_last_session);
config.session = g_last_session.get();
}
if (is_resume && config.early_data) {
EXPECT_GT(g_last_session->ticket_max_early_data, 0u);
}
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), config,
false /* don't handshake */));
int client_ret = SSL_do_handshake(client.get());
int client_err = SSL_get_error(client.get(), client_ret);
uint8_t byte_written;
if (config.early_data && is_resume) {
ASSERT_EQ(client_err, 0);
EXPECT_TRUE(SSL_in_early_data(client.get()));
// Attempt to write early data.
byte_written = 43;
EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1);
} else {
ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
}
int server_ret = SSL_do_handshake(server.get());
int server_err = SSL_get_error(server.get(), server_ret);
ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
ScopedCBB cbb;
Array<uint8_t> handoff;
SSL_CLIENT_HELLO hello;
ASSERT_TRUE(CBB_init(cbb.get(), 256));
ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello));
ASSERT_TRUE(CBBFinishArray(cbb.get(), &handoff));
bssl::UniquePtr<SSL> handshaker(SSL_new(handshaker_ctx.get()));
// Note split handshakes determines 0-RTT support, for both the current
// handshake and newly-issued tickets, entirely by |handshaker|. There is
// no need to call |SSL_set_early_data_enabled| on |server|.
SSL_set_early_data_enabled(handshaker.get(), 1);
ASSERT_TRUE(SSL_apply_handoff(handshaker.get(), handoff));
MoveBIOs(handshaker.get(), server.get());
int handshake_ret = SSL_do_handshake(handshaker.get());
int handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
// Double-check that additional calls to |SSL_do_handshake| continue
// to get |SSL_ERROR_HANDBACK|.
handshake_ret = SSL_do_handshake(handshaker.get());
handshake_err = SSL_get_error(handshaker.get(), handshake_ret);
ASSERT_EQ(handshake_err, SSL_ERROR_HANDBACK);
ScopedCBB cbb_handback;
Array<uint8_t> handback;
ASSERT_TRUE(CBB_init(cbb_handback.get(), 1024));
ASSERT_TRUE(SSL_serialize_handback(handshaker.get(), cbb_handback.get()));
ASSERT_TRUE(CBBFinishArray(cbb_handback.get(), &handback));
bssl::UniquePtr<SSL> server2(SSL_new(server_ctx.get()));
ASSERT_TRUE(SSL_apply_handback(server2.get(), handback));
MoveBIOs(server2.get(), handshaker.get());
ASSERT_TRUE(CompleteHandshakes(client.get(), server2.get()));
EXPECT_EQ(is_resume, SSL_session_reused(client.get()));
if (config.early_data && is_resume) {
// In this case, one byte of early data has already been written above.
EXPECT_TRUE(SSL_early_data_accepted(client.get()));
} else {
byte_written = 42;
EXPECT_EQ(SSL_write(client.get(), &byte_written, 1), 1);
}
uint8_t byte;
EXPECT_EQ(SSL_read(server2.get(), &byte, 1), 1);
EXPECT_EQ(byte_written, byte);
byte = 44;
EXPECT_EQ(SSL_write(server2.get(), &byte, 1), 1);
EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
EXPECT_EQ(44, byte);
}
}
}
TEST(SSLTest, HandoffDeclined) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
SSL_CTX_set_handoff_mode(server_ctx.get(), 1);
ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_2_VERSION));
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), ClientConfig(),
false /* don't handshake */));
int client_ret = SSL_do_handshake(client.get());
int client_err = SSL_get_error(client.get(), client_ret);
ASSERT_EQ(client_err, SSL_ERROR_WANT_READ);
int server_ret = SSL_do_handshake(server.get());
int server_err = SSL_get_error(server.get(), server_ret);
ASSERT_EQ(server_err, SSL_ERROR_HANDOFF);
ScopedCBB cbb;
SSL_CLIENT_HELLO hello;
ASSERT_TRUE(CBB_init(cbb.get(), 256));
ASSERT_TRUE(SSL_serialize_handoff(server.get(), cbb.get(), &hello));
ASSERT_TRUE(SSL_decline_handoff(server.get()));
ASSERT_TRUE(CompleteHandshakes(client.get(), server.get()));
uint8_t byte = 42;
EXPECT_EQ(SSL_write(client.get(), &byte, 1), 1);
EXPECT_EQ(SSL_read(server.get(), &byte, 1), 1);
EXPECT_EQ(42, byte);
byte = 43;
EXPECT_EQ(SSL_write(server.get(), &byte, 1), 1);
EXPECT_EQ(SSL_read(client.get(), &byte, 1), 1);
EXPECT_EQ(43, byte);
}
static std::string SigAlgsToString(Span<const uint16_t> sigalgs) {
std::string ret = "{";
for (uint16_t v : sigalgs) {
if (ret.size() > 1) {
ret += ", ";
}
char buf[8];
snprintf(buf, sizeof(buf) - 1, "0x%02x", v);
buf[sizeof(buf)-1] = 0;
ret += std::string(buf);
}
ret += "}";
return ret;
}
void ExpectSigAlgsEqual(Span<const uint16_t> expected,
Span<const uint16_t> actual) {
bool matches = false;
if (expected.size() == actual.size()) {
matches = true;
for (size_t i = 0; i < expected.size(); i++) {
if (expected[i] != actual[i]) {
matches = false;
break;
}
}
}
if (!matches) {
ADD_FAILURE() << "expected: " << SigAlgsToString(expected)
<< " got: " << SigAlgsToString(actual);
}
}
TEST(SSLTest, SigAlgs) {
static const struct {
std::vector<int> input;
bool ok;
std::vector<uint16_t> expected;
} kTests[] = {
{{}, true, {}},
{{1}, false, {}},
{{1, 2, 3}, false, {}},
{{NID_sha256, EVP_PKEY_ED25519}, false, {}},
{{NID_sha256, EVP_PKEY_RSA, NID_sha256, EVP_PKEY_RSA}, false, {}},
{{NID_sha256, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA256}},
{{NID_sha512, EVP_PKEY_RSA}, true, {SSL_SIGN_RSA_PKCS1_SHA512}},
{{NID_sha256, EVP_PKEY_RSA_PSS}, true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}},
{{NID_undef, EVP_PKEY_ED25519}, true, {SSL_SIGN_ED25519}},
{{NID_undef, EVP_PKEY_ED25519, NID_sha384, EVP_PKEY_EC},
true,
{SSL_SIGN_ED25519, SSL_SIGN_ECDSA_SECP384R1_SHA384}},
};
UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
unsigned n = 1;
for (const auto &test : kTests) {
SCOPED_TRACE(n++);
const bool ok =
SSL_CTX_set1_sigalgs(ctx.get(), test.input.data(), test.input.size());
EXPECT_EQ(ok, test.ok);
if (!ok) {
ERR_clear_error();
}
if (!test.ok) {
continue;
}
ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs);
}
}
TEST(SSLTest, SigAlgsList) {
static const struct {
const char *input;
bool ok;
std::vector<uint16_t> expected;
} kTests[] = {
{"", false, {}},
{":", false, {}},
{"+", false, {}},
{"RSA", false, {}},
{"RSA+", false, {}},
{"RSA+SHA256:", false, {}},
{":RSA+SHA256:", false, {}},
{":RSA+SHA256+:", false, {}},
{"!", false, {}},
{"\x01", false, {}},
{"RSA+SHA256:RSA+SHA384:RSA+SHA256", false, {}},
{"RSA-PSS+SHA256:rsa_pss_rsae_sha256", false, {}},
{"RSA+SHA256", true, {SSL_SIGN_RSA_PKCS1_SHA256}},
{"RSA+SHA256:ed25519",
true,
{SSL_SIGN_RSA_PKCS1_SHA256, SSL_SIGN_ED25519}},
{"ECDSA+SHA256:RSA+SHA512",
true,
{SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PKCS1_SHA512}},
{"ecdsa_secp256r1_sha256:rsa_pss_rsae_sha256",
true,
{SSL_SIGN_ECDSA_SECP256R1_SHA256, SSL_SIGN_RSA_PSS_RSAE_SHA256}},
{"RSA-PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}},
{"PSS+SHA256", true, {SSL_SIGN_RSA_PSS_RSAE_SHA256}},
};
UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
unsigned n = 1;
for (const auto &test : kTests) {
SCOPED_TRACE(n++);
const bool ok = SSL_CTX_set1_sigalgs_list(ctx.get(), test.input);
EXPECT_EQ(ok, test.ok);
if (!ok) {
if (test.ok) {
ERR_print_errors_fp(stderr);
}
ERR_clear_error();
}
if (!test.ok) {
continue;
}
ExpectSigAlgsEqual(test.expected, ctx->cert->sigalgs);
}
}
TEST(SSLTest, ApplyHandoffRemovesUnsupportedCiphers) {
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get()));
// handoff is a handoff message that has been artificially modified to pretend
// that only cipher 0x0A is supported. When it is applied to |server|, all
// ciphers but that one should be removed.
//
// To make a new one of these, try sticking this in the |Handoff| test above:
//
// hexdump(stderr, "", handoff.data(), handoff.size());
// sed -e 's/\(..\)/0x\1, /g'
//
// and modify serialize_features() to emit only cipher 0x0A.
uint8_t handoff[] = {
0x30, 0x81, 0x9a, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01,
0x00, 0x00, 0x7e, 0x03, 0x03, 0x30, 0x8e, 0x8f, 0x79, 0xd2, 0x87, 0x39,
0xc2, 0x23, 0x23, 0x13, 0xca, 0x3c, 0x80, 0x44, 0xfd, 0x80, 0x83, 0x62,
0x3c, 0xcc, 0xf8, 0x76, 0xd3, 0x62, 0xbb, 0x54, 0xe3, 0xc4, 0x39, 0x24,
0xa5, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30,
0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14,
0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00,
0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00,
0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00,
0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x02, 0x00,
0x0a, 0x04, 0x0a, 0x00, 0x15, 0x00, 0x17, 0x00, 0x18, 0x00, 0x19, 0x00,
0x1d,
};
EXPECT_EQ(20u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get())));
ASSERT_TRUE(
SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)}));
EXPECT_EQ(1u, sk_SSL_CIPHER_num(SSL_get_ciphers(server.get())));
}
TEST(SSLTest, ApplyHandoffRemovesUnsupportedCurves) {
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL> server(SSL_new(server_ctx.get()));
// handoff is a handoff message that has been artificially modified to pretend
// that only one curve is supported. When it is applied to |server|, all
// curves but that one should be removed.
//
// See |ApplyHandoffRemovesUnsupportedCiphers| for how to make a new one of
// these.
uint8_t handoff[] = {
0x30, 0x81, 0xc0, 0x02, 0x01, 0x00, 0x04, 0x00, 0x04, 0x81, 0x82, 0x01,
0x00, 0x00, 0x7e, 0x03, 0x03, 0x98, 0x30, 0xce, 0xd9, 0xb0, 0xdf, 0x5f,
0x82, 0x05, 0x4a, 0x43, 0x67, 0x7e, 0xdb, 0x6a, 0x4f, 0x21, 0x18, 0x4e,
0x0d, 0x94, 0x63, 0x18, 0x8b, 0x54, 0x89, 0xdb, 0x8b, 0x1d, 0x84, 0xbc,
0x09, 0x00, 0x00, 0x1e, 0xc0, 0x2b, 0xc0, 0x2f, 0xc0, 0x2c, 0xc0, 0x30,
0xcc, 0xa9, 0xcc, 0xa8, 0xc0, 0x09, 0xc0, 0x13, 0xc0, 0x0a, 0xc0, 0x14,
0x00, 0x9c, 0x00, 0x9d, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x0a, 0x01, 0x00,
0x00, 0x37, 0x00, 0x17, 0x00, 0x00, 0xff, 0x01, 0x00, 0x01, 0x00, 0x00,
0x0a, 0x00, 0x08, 0x00, 0x06, 0x00, 0x1d, 0x00, 0x17, 0x00, 0x18, 0x00,
0x0b, 0x00, 0x02, 0x01, 0x00, 0x00, 0x23, 0x00, 0x00, 0x00, 0x0d, 0x00,
0x14, 0x00, 0x12, 0x04, 0x03, 0x08, 0x04, 0x04, 0x01, 0x05, 0x03, 0x08,
0x05, 0x05, 0x01, 0x08, 0x06, 0x06, 0x01, 0x02, 0x01, 0x04, 0x30, 0x00,
0x02, 0x00, 0x0a, 0x00, 0x2f, 0x00, 0x35, 0x00, 0x8c, 0x00, 0x8d, 0x00,
0x9c, 0x00, 0x9d, 0x13, 0x01, 0x13, 0x02, 0x13, 0x03, 0xc0, 0x09, 0xc0,
0x0a, 0xc0, 0x13, 0xc0, 0x14, 0xc0, 0x2b, 0xc0, 0x2c, 0xc0, 0x2f, 0xc0,
0x30, 0xc0, 0x35, 0xc0, 0x36, 0xcc, 0xa8, 0xcc, 0xa9, 0xcc, 0xac, 0x04,
0x02, 0x00, 0x17,
};
// The zero length means that the default list of groups is used.
EXPECT_EQ(0u, server->config->supported_group_list.size());
ASSERT_TRUE(
SSL_apply_handoff(server.get(), {handoff, OPENSSL_ARRAY_SIZE(handoff)}));
EXPECT_EQ(1u, server->config->supported_group_list.size());
}
TEST(SSLTest, ZeroSizedWiteFlushesHandshakeMessages) {
// If there are pending handshake mesages, an |SSL_write| of zero bytes should
// flush them.
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION));
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
EXPECT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
EXPECT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
BIO *client_wbio = SSL_get_wbio(client.get());
EXPECT_EQ(0u, BIO_wpending(client_wbio));
EXPECT_TRUE(SSL_key_update(client.get(), SSL_KEY_UPDATE_NOT_REQUESTED));
EXPECT_EQ(0u, BIO_wpending(client_wbio));
EXPECT_EQ(0, SSL_write(client.get(), nullptr, 0));
EXPECT_NE(0u, BIO_wpending(client_wbio));
}
TEST_P(SSLVersionTest, VerifyBeforeCertRequest) {
// Configure the server to request client certificates.
SSL_CTX_set_custom_verify(
server_ctx_.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
// Configure the client to reject the server certificate.
SSL_CTX_set_custom_verify(
client_ctx_.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) { return ssl_verify_invalid; });
// cert_cb should not be called. Verification should fail first.
SSL_CTX_set_cert_cb(client_ctx_.get(),
[](SSL *ssl, void *arg) {
ADD_FAILURE() << "cert_cb unexpectedly called";
return 0;
},
nullptr);
bssl::UniquePtr<SSL> client, server;
EXPECT_FALSE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx_.get()));
}
// Test that ticket-based sessions on the client get fake session IDs.
TEST_P(SSLVersionTest, FakeIDsForTickets) {
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
EXPECT_TRUE(SSL_SESSION_has_ticket(session.get()));
unsigned session_id_length;
SSL_SESSION_get_id(session.get(), &session_id_length);
EXPECT_NE(session_id_length, 0u);
}
// These tests test multi-threaded behavior. They are intended to run with
// ThreadSanitizer.
#if defined(OPENSSL_THREADS)
TEST_P(SSLVersionTest, SessionCacheThreads) {
SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET);
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
if (version() == TLS1_3_VERSION) {
// Our TLS 1.3 implementation does not support stateful resumption.
ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
return;
}
// Establish two client sessions to test with.
bssl::UniquePtr<SSL_SESSION> session1 =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session1);
bssl::UniquePtr<SSL_SESSION> session2 =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session2);
auto connect_with_session = [&](SSL_SESSION *session) {
ClientConfig config;
config.session = session;
UniquePtr<SSL> client, server;
EXPECT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx_.get(), config));
};
// Resume sessions in parallel with establishing new ones.
{
std::vector<std::thread> threads;
threads.emplace_back([&] { connect_with_session(nullptr); });
threads.emplace_back([&] { connect_with_session(nullptr); });
threads.emplace_back([&] { connect_with_session(session1.get()); });
threads.emplace_back([&] { connect_with_session(session1.get()); });
threads.emplace_back([&] { connect_with_session(session2.get()); });
threads.emplace_back([&] { connect_with_session(session2.get()); });
for (auto &thread : threads) {
thread.join();
}
}
// Hit the maximum session cache size across multiple threads
size_t limit = SSL_CTX_sess_number(server_ctx_.get()) + 2;
SSL_CTX_sess_set_cache_size(server_ctx_.get(), limit);
{
std::vector<std::thread> threads;
for (int i = 0; i < 4; i++) {
threads.emplace_back([&]() {
connect_with_session(nullptr);
EXPECT_LE(SSL_CTX_sess_number(server_ctx_.get()), limit);
});
}
for (auto &thread : threads) {
thread.join();
}
EXPECT_EQ(SSL_CTX_sess_number(server_ctx_.get()), limit);
}
}
TEST_P(SSLVersionTest, SessionTicketThreads) {
for (bool renew_ticket : {false, true}) {
SCOPED_TRACE(renew_ticket);
ResetContexts();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
if (renew_ticket) {
SSL_CTX_set_tlsext_ticket_key_cb(server_ctx_.get(), RenewTicketCallback);
}
// Establish two client sessions to test with.
bssl::UniquePtr<SSL_SESSION> session1 =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session1);
bssl::UniquePtr<SSL_SESSION> session2 =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session2);
auto connect_with_session = [&](SSL_SESSION *session) {
ClientConfig config;
config.session = session;
UniquePtr<SSL> client, server;
EXPECT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx_.get(), config));
};
// Resume sessions in parallel with establishing new ones.
{
std::vector<std::thread> threads;
threads.emplace_back([&] { connect_with_session(nullptr); });
threads.emplace_back([&] { connect_with_session(nullptr); });
threads.emplace_back([&] { connect_with_session(session1.get()); });
threads.emplace_back([&] { connect_with_session(session1.get()); });
threads.emplace_back([&] { connect_with_session(session2.get()); });
threads.emplace_back([&] { connect_with_session(session2.get()); });
for (auto &thread : threads) {
thread.join();
}
}
}
}
// SSL_CTX_get0_certificate needs to lock internally. Test this works.
TEST(SSLTest, GetCertificateThreads) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
ASSERT_TRUE(cert);
ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
// Existing code expects |SSL_CTX_get0_certificate| to be callable from two
// threads concurrently. It originally was an immutable operation. Now we
// implement it with a thread-safe cache, so it is worth testing.
X509 *cert2_thread;
std::thread thread(
[&] { cert2_thread = SSL_CTX_get0_certificate(ctx.get()); });
X509 *cert2 = SSL_CTX_get0_certificate(ctx.get());
thread.join();
EXPECT_EQ(cert2, cert2_thread);
EXPECT_EQ(0, X509_cmp(cert.get(), cert2));
}
// Functions which access properties on the negotiated session are thread-safe
// where needed. Prior to TLS 1.3, clients resuming sessions and servers
// performing stateful resumption will share an underlying SSL_SESSION object,
// potentially across threads.
TEST_P(SSLVersionTest, SessionPropertiesThreads) {
if (version() == TLS1_3_VERSION) {
// Our TLS 1.3 implementation does not support stateful resumption.
ASSERT_FALSE(CreateClientSession(client_ctx_.get(), server_ctx_.get()));
return;
}
SSL_CTX_set_options(server_ctx_.get(), SSL_OP_NO_TICKET);
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
ASSERT_TRUE(UseCertAndKey(client_ctx_.get()));
ASSERT_TRUE(UseCertAndKey(server_ctx_.get()));
// Configure mutual authentication, so we have more session state.
SSL_CTX_set_custom_verify(
client_ctx_.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
SSL_CTX_set_custom_verify(
server_ctx_.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) { return ssl_verify_ok; });
// Establish a client session to test with.
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
// Resume with it twice.
UniquePtr<SSL> ssls[4];
ClientConfig config;
config.session = session.get();
ASSERT_TRUE(ConnectClientAndServer(&ssls[0], &ssls[1], client_ctx_.get(),
server_ctx_.get(), config));
ASSERT_TRUE(ConnectClientAndServer(&ssls[2], &ssls[3], client_ctx_.get(),
server_ctx_.get(), config));
// Read properties in parallel.
auto read_properties = [](const SSL *ssl) {
EXPECT_TRUE(SSL_get_peer_cert_chain(ssl));
bssl::UniquePtr<X509> peer(SSL_get_peer_certificate(ssl));
EXPECT_TRUE(peer);
EXPECT_TRUE(SSL_get_current_cipher(ssl));
EXPECT_TRUE(SSL_get_curve_id(ssl));
};
std::vector<std::thread> threads;
for (const auto &ssl_ptr : ssls) {
const SSL *ssl = ssl_ptr.get();
threads.emplace_back([=] { read_properties(ssl); });
}
for (auto &thread : threads) {
thread.join();
}
}
#endif // OPENSSL_THREADS
constexpr size_t kNumQUICLevels = 4;
static_assert(ssl_encryption_initial < kNumQUICLevels,
"kNumQUICLevels is wrong");
static_assert(ssl_encryption_early_data < kNumQUICLevels,
"kNumQUICLevels is wrong");
static_assert(ssl_encryption_handshake < kNumQUICLevels,
"kNumQUICLevels is wrong");
static_assert(ssl_encryption_application < kNumQUICLevels,
"kNumQUICLevels is wrong");
const char *LevelToString(ssl_encryption_level_t level) {
switch (level) {
case ssl_encryption_initial:
return "initial";
case ssl_encryption_early_data:
return "early data";
case ssl_encryption_handshake:
return "handshake";
case ssl_encryption_application:
return "application";
}
return "<unknown>";
}
class MockQUICTransport {
public:
enum class Role { kClient, kServer };
explicit MockQUICTransport(Role role) : role_(role) {
// The caller is expected to configure initial secrets.
levels_[ssl_encryption_initial].write_secret = {1};
levels_[ssl_encryption_initial].read_secret = {1};
}
void set_peer(MockQUICTransport *peer) { peer_ = peer; }
bool has_alert() const { return has_alert_; }
ssl_encryption_level_t alert_level() const { return alert_level_; }
uint8_t alert() const { return alert_; }
bool PeerSecretsMatch(ssl_encryption_level_t level) const {
return levels_[level].write_secret == peer_->levels_[level].read_secret &&
levels_[level].read_secret == peer_->levels_[level].write_secret &&
levels_[level].cipher == peer_->levels_[level].cipher;
}
bool HasReadSecret(ssl_encryption_level_t level) const {
return !levels_[level].read_secret.empty();
}
bool HasWriteSecret(ssl_encryption_level_t level) const {
return !levels_[level].write_secret.empty();
}
void AllowOutOfOrderWrites() { allow_out_of_order_writes_ = true; }
bool SetReadSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher,
Span<const uint8_t> secret) {
if (HasReadSecret(level)) {
ADD_FAILURE() << LevelToString(level) << " read secret configured twice";
return false;
}
if (role_ == Role::kClient && level == ssl_encryption_early_data) {
ADD_FAILURE() << "Unexpected early data read secret";
return false;
}
ssl_encryption_level_t ack_level =
level == ssl_encryption_early_data ? ssl_encryption_application : level;
if (!HasWriteSecret(ack_level)) {
ADD_FAILURE() << LevelToString(level)
<< " read secret configured before ACK write secret";
return false;
}
if (cipher == nullptr) {
ADD_FAILURE() << "Unexpected null cipher";
return false;
}
if (level != ssl_encryption_early_data &&
SSL_CIPHER_get_id(cipher) != levels_[level].cipher) {
ADD_FAILURE() << "Cipher suite inconsistent";
return false;
}
levels_[level].read_secret.assign(secret.begin(), secret.end());
levels_[level].cipher = SSL_CIPHER_get_id(cipher);
return true;
}
bool SetWriteSecret(ssl_encryption_level_t level, const SSL_CIPHER *cipher,
Span<const uint8_t> secret) {
if (HasWriteSecret(level)) {
ADD_FAILURE() << LevelToString(level) << " write secret configured twice";
return false;
}
if (role_ == Role::kServer && level == ssl_encryption_early_data) {
ADD_FAILURE() << "Unexpected early data write secret";
return false;
}
if (cipher == nullptr) {
ADD_FAILURE() << "Unexpected null cipher";
return false;
}
levels_[level].write_secret.assign(secret.begin(), secret.end());
levels_[level].cipher = SSL_CIPHER_get_id(cipher);
return true;
}
bool WriteHandshakeData(ssl_encryption_level_t level,
Span<const uint8_t> data) {
if (levels_[level].write_secret.empty()) {
ADD_FAILURE() << LevelToString(level)
<< " write secret not yet configured";
return false;
}
// Although the levels are conceptually separate, BoringSSL finishes writing
// data from a previous level before installing keys for the next level.
if (!allow_out_of_order_writes_) {
switch (level) {
case ssl_encryption_early_data:
ADD_FAILURE() << "unexpected handshake data at early data level";
return false;
case ssl_encryption_initial:
if (!levels_[ssl_encryption_handshake].write_secret.empty()) {
ADD_FAILURE()
<< LevelToString(level)
<< " handshake data written after handshake keys installed";
return false;
}
OPENSSL_FALLTHROUGH;
case ssl_encryption_handshake:
if (!levels_[ssl_encryption_application].write_secret.empty()) {
ADD_FAILURE()
<< LevelToString(level)
<< " handshake data written after application keys installed";
return false;
}
OPENSSL_FALLTHROUGH;
case ssl_encryption_application:
break;
}
}
levels_[level].write_data.insert(levels_[level].write_data.end(),
data.begin(), data.end());
return true;
}
bool SendAlert(ssl_encryption_level_t level, uint8_t alert_value) {
if (has_alert_) {
ADD_FAILURE() << "duplicate alert sent";
return false;
}
if (levels_[level].write_secret.empty()) {
ADD_FAILURE() << LevelToString(level)
<< " write secret not yet configured";
return false;
}
has_alert_ = true;
alert_level_ = level;
alert_ = alert_value;
return true;
}
bool ReadHandshakeData(std::vector<uint8_t> *out,
ssl_encryption_level_t level,
size_t num = std::numeric_limits<size_t>::max()) {
if (levels_[level].read_secret.empty()) {
ADD_FAILURE() << "data read before keys configured in level " << level;
return false;
}
// The peer may not have configured any keys yet.
if (peer_->levels_[level].write_secret.empty()) {
out->clear();
return true;
}
// Check the peer computed the same key.
if (peer_->levels_[level].write_secret != levels_[level].read_secret) {
ADD_FAILURE() << "peer write key does not match read key in level "
<< level;
return false;
}
if (peer_->levels_[level].cipher != levels_[level].cipher) {
ADD_FAILURE() << "peer cipher does not match in level " << level;
return false;
}
std::vector<uint8_t> *peer_data = &peer_->levels_[level].write_data;
num = std::min(num, peer_data->size());
out->assign(peer_data->begin(), peer_data->begin() + num);
peer_data->erase(peer_data->begin(), peer_data->begin() + num);
return true;
}
private:
Role role_;
MockQUICTransport *peer_ = nullptr;
bool allow_out_of_order_writes_ = false;
bool has_alert_ = false;
ssl_encryption_level_t alert_level_ = ssl_encryption_initial;
uint8_t alert_ = 0;
struct Level {
std::vector<uint8_t> write_data;
std::vector<uint8_t> write_secret;
std::vector<uint8_t> read_secret;
uint32_t cipher = 0;
};
Level levels_[kNumQUICLevels];
};
class MockQUICTransportPair {
public:
MockQUICTransportPair()
: client_(MockQUICTransport::Role::kClient),
server_(MockQUICTransport::Role::kServer) {
client_.set_peer(&server_);
server_.set_peer(&client_);
}
~MockQUICTransportPair() {
client_.set_peer(nullptr);
server_.set_peer(nullptr);
}
MockQUICTransport *client() { return &client_; }
MockQUICTransport *server() { return &server_; }
bool SecretsMatch(ssl_encryption_level_t level) const {
// We only need to check |HasReadSecret| and |HasWriteSecret| on |client_|.
// |PeerSecretsMatch| checks that |server_| is analogously configured.
return client_.PeerSecretsMatch(level) &&
client_.HasWriteSecret(level) &&
(level == ssl_encryption_early_data || client_.HasReadSecret(level));
}
private:
MockQUICTransport client_;
MockQUICTransport server_;
};
class QUICMethodTest : public testing::Test {
protected:
void SetUp() override {
client_ctx_.reset(SSL_CTX_new(TLS_method()));
server_ctx_.reset(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx_);
ASSERT_TRUE(server_ctx_);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx_.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx_.get(), key.get()));
SSL_CTX_set_min_proto_version(server_ctx_.get(), TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(server_ctx_.get(), TLS1_3_VERSION);
SSL_CTX_set_min_proto_version(client_ctx_.get(), TLS1_3_VERSION);
SSL_CTX_set_max_proto_version(client_ctx_.get(), TLS1_3_VERSION);
static const uint8_t kALPNProtos[] = {0x03, 'f', 'o', 'o'};
ASSERT_EQ(SSL_CTX_set_alpn_protos(client_ctx_.get(), kALPNProtos,
sizeof(kALPNProtos)),
0);
SSL_CTX_set_alpn_select_cb(
server_ctx_.get(),
[](SSL *ssl, const uint8_t **out, uint8_t *out_len, const uint8_t *in,
unsigned in_len, void *arg) -> int {
return SSL_select_next_proto(
const_cast<uint8_t **>(out), out_len, in, in_len,
kALPNProtos, sizeof(kALPNProtos)) == OPENSSL_NPN_NEGOTIATED
? SSL_TLSEXT_ERR_OK
: SSL_TLSEXT_ERR_NOACK;
},
nullptr);
}
static MockQUICTransport *TransportFromSSL(const SSL *ssl) {
return ex_data_.Get(ssl);
}
static bool ProvideHandshakeData(
SSL *ssl, size_t num = std::numeric_limits<size_t>::max()) {
MockQUICTransport *transport = TransportFromSSL(ssl);
ssl_encryption_level_t level = SSL_quic_read_level(ssl);
std::vector<uint8_t> data;
return transport->ReadHandshakeData(&data, level, num) &&
SSL_provide_quic_data(ssl, level, data.data(), data.size());
}
void AllowOutOfOrderWrites() {
allow_out_of_order_writes_ = true;
}
bool CreateClientAndServer() {
client_.reset(SSL_new(client_ctx_.get()));
server_.reset(SSL_new(server_ctx_.get()));
if (!client_ || !server_) {
return false;
}
SSL_set_connect_state(client_.get());
SSL_set_accept_state(server_.get());
transport_.reset(new MockQUICTransportPair);
ex_data_.Set(client_.get(), transport_->client());
ex_data_.Set(server_.get(), transport_->server());
if (allow_out_of_order_writes_) {
transport_->client()->AllowOutOfOrderWrites();
transport_->server()->AllowOutOfOrderWrites();
}
static const uint8_t client_transport_params[] = {0};
if (!SSL_set_quic_transport_params(client_.get(), client_transport_params,
sizeof(client_transport_params)) ||
!SSL_set_quic_transport_params(server_.get(),
server_transport_params_.data(),
server_transport_params_.size()) ||
!SSL_set_quic_early_data_context(
server_.get(), server_quic_early_data_context_.data(),
server_quic_early_data_context_.size())) {
return false;
}
return true;
}
enum class ExpectedError {
kNoError,
kClientError,
kServerError,
};
// CompleteHandshakesForQUIC runs |SSL_do_handshake| on |client_| and
// |server_| until each completes once. It returns true on success and false
// on failure.
bool CompleteHandshakesForQUIC() {
return RunQUICHandshakesAndExpectError(ExpectedError::kNoError);
}
// Runs |SSL_do_handshake| on |client_| and |server_| until each completes
// once. If |expect_client_error| is true, it will return true only if the
// client handshake failed. Otherwise, it returns true if both handshakes
// succeed and false otherwise.
bool RunQUICHandshakesAndExpectError(ExpectedError expected_error) {
bool client_done = false, server_done = false;
while (!client_done || !server_done) {
if (!client_done) {
if (!ProvideHandshakeData(client_.get())) {
ADD_FAILURE() << "ProvideHandshakeData(client_) failed";
return false;
}
int client_ret = SSL_do_handshake(client_.get());
int client_err = SSL_get_error(client_.get(), client_ret);
if (client_ret == 1) {
client_done = true;
} else if (client_ret != -1 || client_err != SSL_ERROR_WANT_READ) {
if (expected_error == ExpectedError::kClientError) {
return true;
}
ADD_FAILURE() << "Unexpected client output: " << client_ret << " "
<< client_err;
return false;
}
}
if (!server_done) {
if (!ProvideHandshakeData(server_.get())) {
ADD_FAILURE() << "ProvideHandshakeData(server_) failed";
return false;
}
int server_ret = SSL_do_handshake(server_.get());
int server_err = SSL_get_error(server_.get(), server_ret);
if (server_ret == 1) {
server_done = true;
} else if (server_ret != -1 || server_err != SSL_ERROR_WANT_READ) {
if (expected_error == ExpectedError::kServerError) {
return true;
}
ADD_FAILURE() << "Unexpected server output: " << server_ret << " "
<< server_err;
return false;
}
}
}
return expected_error == ExpectedError::kNoError;
}
bssl::UniquePtr<SSL_SESSION> CreateClientSessionForQUIC() {
g_last_session = nullptr;
SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
if (!CreateClientAndServer() ||
!CompleteHandshakesForQUIC()) {
return nullptr;
}
// The server sent NewSessionTicket messages in the handshake.
if (!ProvideHandshakeData(client_.get()) ||
!SSL_process_quic_post_handshake(client_.get())) {
return nullptr;
}
return std::move(g_last_session);
}
void ExpectHandshakeSuccess() {
EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application));
EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(client_.get()));
EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(client_.get()));
EXPECT_EQ(ssl_encryption_application, SSL_quic_read_level(server_.get()));
EXPECT_EQ(ssl_encryption_application, SSL_quic_write_level(server_.get()));
EXPECT_FALSE(transport_->client()->has_alert());
EXPECT_FALSE(transport_->server()->has_alert());
// SSL_do_handshake is now idempotent.
EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
}
// Returns a default SSL_QUIC_METHOD. Individual methods may be overwritten by
// the test.
SSL_QUIC_METHOD DefaultQUICMethod() {
return SSL_QUIC_METHOD{
SetReadSecretCallback, SetWriteSecretCallback, AddHandshakeDataCallback,
FlushFlightCallback, SendAlertCallback,
};
}
static int SetReadSecretCallback(SSL *ssl, ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret, size_t secret_len) {
return TransportFromSSL(ssl)->SetReadSecret(
level, cipher, MakeConstSpan(secret, secret_len));
}
static int SetWriteSecretCallback(SSL *ssl, ssl_encryption_level_t level,
const SSL_CIPHER *cipher,
const uint8_t *secret, size_t secret_len) {
return TransportFromSSL(ssl)->SetWriteSecret(
level, cipher, MakeConstSpan(secret, secret_len));
}
static int AddHandshakeDataCallback(SSL *ssl,
enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) {
EXPECT_EQ(level, SSL_quic_write_level(ssl));
return TransportFromSSL(ssl)->WriteHandshakeData(level,
MakeConstSpan(data, len));
}
static int FlushFlightCallback(SSL *ssl) { return 1; }
static int SendAlertCallback(SSL *ssl, ssl_encryption_level_t level,
uint8_t alert) {
EXPECT_EQ(level, SSL_quic_write_level(ssl));
return TransportFromSSL(ssl)->SendAlert(level, alert);
}
bssl::UniquePtr<SSL_CTX> client_ctx_;
bssl::UniquePtr<SSL_CTX> server_ctx_;
static UnownedSSLExData<MockQUICTransport> ex_data_;
std::unique_ptr<MockQUICTransportPair> transport_;
bssl::UniquePtr<SSL> client_;
bssl::UniquePtr<SSL> server_;
std::vector<uint8_t> server_transport_params_ = {1};
std::vector<uint8_t> server_quic_early_data_context_ = {2};
bool allow_out_of_order_writes_ = false;
};
UnownedSSLExData<MockQUICTransport> QUICMethodTest::ex_data_;
// Test a full handshake and resumption work.
TEST_F(QUICMethodTest, Basic) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
g_last_session = nullptr;
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
EXPECT_FALSE(SSL_session_reused(client_.get()));
EXPECT_FALSE(SSL_session_reused(server_.get()));
// The server sent NewSessionTicket messages in the handshake.
EXPECT_FALSE(g_last_session);
ASSERT_TRUE(ProvideHandshakeData(client_.get()));
EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1);
EXPECT_TRUE(g_last_session);
// Create a second connection to verify resumption works.
ASSERT_TRUE(CreateClientAndServer());
bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
SSL_set_session(client_.get(), session.get());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
EXPECT_TRUE(SSL_session_reused(client_.get()));
EXPECT_TRUE(SSL_session_reused(server_.get()));
}
// Test that HelloRetryRequest in QUIC works.
TEST_F(QUICMethodTest, HelloRetryRequest) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
// BoringSSL predicts the most preferred curve, so using different preferences
// will trigger HelloRetryRequest.
static const int kClientPrefs[] = {NID_X25519, NID_X9_62_prime256v1};
ASSERT_TRUE(SSL_CTX_set1_curves(client_ctx_.get(), kClientPrefs,
OPENSSL_ARRAY_SIZE(kClientPrefs)));
static const int kServerPrefs[] = {NID_X9_62_prime256v1, NID_X25519};
ASSERT_TRUE(SSL_CTX_set1_curves(server_ctx_.get(), kServerPrefs,
OPENSSL_ARRAY_SIZE(kServerPrefs)));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
}
// Test that the client does not send a legacy_session_id in the ClientHello.
TEST_F(QUICMethodTest, NoLegacySessionId) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
// Check that the session ID length is 0 in an early callback.
SSL_CTX_set_select_certificate_cb(
server_ctx_.get(),
[](const SSL_CLIENT_HELLO *client_hello) -> ssl_select_cert_result_t {
EXPECT_EQ(client_hello->session_id_len, 0u);
return ssl_select_cert_success;
});
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
}
// Test that, even in a 1-RTT handshake, the server installs keys at the right
// time. Half-RTT keys are available early, but 1-RTT read keys are deferred.
TEST_F(QUICMethodTest, HalfRTTKeys) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
// The client sends ClientHello.
ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client_.get(), -1));
// The server reads ClientHello and sends ServerHello..Finished.
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1));
// At this point, the server has half-RTT write keys, but it cannot access
// 1-RTT read keys until client Finished.
EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application));
EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application));
// Finish up the client and server handshakes.
ASSERT_TRUE(CompleteHandshakesForQUIC());
// Both sides can now exchange 1-RTT data.
ExpectHandshakeSuccess();
}
TEST_F(QUICMethodTest, ZeroRTTAccept) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1);
SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC();
ASSERT_TRUE(session);
ASSERT_TRUE(CreateClientAndServer());
SSL_set_session(client_.get(), session.get());
// The client handshake should return immediately into the early data state.
ASSERT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(client_.get()));
// The transport should have keys for sending 0-RTT data.
EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data));
// The server will consume the ClientHello and also enter the early data
// state.
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(server_.get()));
EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data));
// At this point, the server has half-RTT write keys, but it cannot access
// 1-RTT read keys until client Finished.
EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application));
EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application));
// Finish up the client and server handshakes.
ASSERT_TRUE(CompleteHandshakesForQUIC());
// Both sides can now exchange 1-RTT data.
ExpectHandshakeSuccess();
EXPECT_TRUE(SSL_session_reused(client_.get()));
EXPECT_TRUE(SSL_session_reused(server_.get()));
EXPECT_FALSE(SSL_in_early_data(client_.get()));
EXPECT_FALSE(SSL_in_early_data(server_.get()));
EXPECT_TRUE(SSL_early_data_accepted(client_.get()));
EXPECT_TRUE(SSL_early_data_accepted(server_.get()));
// Finish handling post-handshake messages after the first 0-RTT resumption.
EXPECT_TRUE(ProvideHandshakeData(client_.get()));
EXPECT_TRUE(SSL_process_quic_post_handshake(client_.get()));
// Perform a second 0-RTT resumption attempt, and confirm that 0-RTT is
// accepted again.
ASSERT_TRUE(CreateClientAndServer());
SSL_set_session(client_.get(), g_last_session.get());
// The client handshake should return immediately into the early data state.
ASSERT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(client_.get()));
// The transport should have keys for sending 0-RTT data.
EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data));
// The server will consume the ClientHello and also enter the early data
// state.
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(server_.get()));
EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_early_data));
// At this point, the server has half-RTT write keys, but it cannot access
// 1-RTT read keys until client Finished.
EXPECT_TRUE(transport_->server()->HasWriteSecret(ssl_encryption_application));
EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_application));
// Finish up the client and server handshakes.
ASSERT_TRUE(CompleteHandshakesForQUIC());
// Both sides can now exchange 1-RTT data.
ExpectHandshakeSuccess();
EXPECT_TRUE(SSL_session_reused(client_.get()));
EXPECT_TRUE(SSL_session_reused(server_.get()));
EXPECT_FALSE(SSL_in_early_data(client_.get()));
EXPECT_FALSE(SSL_in_early_data(server_.get()));
EXPECT_TRUE(SSL_early_data_accepted(client_.get()));
EXPECT_TRUE(SSL_early_data_accepted(server_.get()));
EXPECT_EQ(SSL_get_early_data_reason(client_.get()), ssl_early_data_accepted);
EXPECT_EQ(SSL_get_early_data_reason(server_.get()), ssl_early_data_accepted);
}
TEST_F(QUICMethodTest, ZeroRTTRejectMismatchedParameters) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1);
SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC();
ASSERT_TRUE(session);
ASSERT_TRUE(CreateClientAndServer());
static const uint8_t new_context[] = {4};
ASSERT_TRUE(SSL_set_quic_early_data_context(server_.get(), new_context,
sizeof(new_context)));
SSL_set_session(client_.get(), session.get());
// The client handshake should return immediately into the early data
// state.
ASSERT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(client_.get()));
// The transport should have keys for sending 0-RTT data.
EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data));
// The server will consume the ClientHello, but it will not accept 0-RTT.
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1));
EXPECT_FALSE(SSL_in_early_data(server_.get()));
EXPECT_FALSE(transport_->server()->HasReadSecret(ssl_encryption_early_data));
// The client consumes the server response and signals 0-RTT rejection.
for (;;) {
ASSERT_TRUE(ProvideHandshakeData(client_.get()));
ASSERT_EQ(-1, SSL_do_handshake(client_.get()));
int err = SSL_get_error(client_.get(), -1);
if (err == SSL_ERROR_EARLY_DATA_REJECTED) {
break;
}
ASSERT_EQ(SSL_ERROR_WANT_READ, err);
}
// As in TLS over TCP, 0-RTT rejection is sticky.
ASSERT_EQ(-1, SSL_do_handshake(client_.get()));
ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1));
// Finish up the client and server handshakes.
SSL_reset_early_data_reject(client_.get());
ASSERT_TRUE(CompleteHandshakesForQUIC());
// Both sides can now exchange 1-RTT data.
ExpectHandshakeSuccess();
EXPECT_TRUE(SSL_session_reused(client_.get()));
EXPECT_TRUE(SSL_session_reused(server_.get()));
EXPECT_FALSE(SSL_in_early_data(client_.get()));
EXPECT_FALSE(SSL_in_early_data(server_.get()));
EXPECT_FALSE(SSL_early_data_accepted(client_.get()));
EXPECT_FALSE(SSL_early_data_accepted(server_.get()));
}
TEST_F(QUICMethodTest, NoZeroRTTTicketWithoutEarlyDataContext) {
server_quic_early_data_context_ = {};
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1);
SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC();
ASSERT_TRUE(session);
EXPECT_FALSE(SSL_SESSION_early_data_capable(session.get()));
}
TEST_F(QUICMethodTest, ZeroRTTReject) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1);
SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC();
ASSERT_TRUE(session);
for (bool reject_hrr : {false, true}) {
SCOPED_TRACE(reject_hrr);
ASSERT_TRUE(CreateClientAndServer());
if (reject_hrr) {
// Configure the server to prefer P-256, which will reject 0-RTT via
// HelloRetryRequest.
int p256 = NID_X9_62_prime256v1;
ASSERT_TRUE(SSL_set1_curves(server_.get(), &p256, 1));
} else {
// Disable 0-RTT on the server, so it will reject it.
SSL_set_early_data_enabled(server_.get(), 0);
}
SSL_set_session(client_.get(), session.get());
// The client handshake should return immediately into the early data state.
ASSERT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(client_.get()));
// The transport should have keys for sending 0-RTT data.
EXPECT_TRUE(
transport_->client()->HasWriteSecret(ssl_encryption_early_data));
// The server will consume the ClientHello, but it will not accept 0-RTT.
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
EXPECT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(server_.get(), -1));
EXPECT_FALSE(SSL_in_early_data(server_.get()));
EXPECT_FALSE(
transport_->server()->HasReadSecret(ssl_encryption_early_data));
// The client consumes the server response and signals 0-RTT rejection.
for (;;) {
ASSERT_TRUE(ProvideHandshakeData(client_.get()));
ASSERT_EQ(-1, SSL_do_handshake(client_.get()));
int err = SSL_get_error(client_.get(), -1);
if (err == SSL_ERROR_EARLY_DATA_REJECTED) {
break;
}
ASSERT_EQ(SSL_ERROR_WANT_READ, err);
}
// As in TLS over TCP, 0-RTT rejection is sticky.
ASSERT_EQ(-1, SSL_do_handshake(client_.get()));
ASSERT_EQ(SSL_ERROR_EARLY_DATA_REJECTED, SSL_get_error(client_.get(), -1));
// Finish up the client and server handshakes.
SSL_reset_early_data_reject(client_.get());
ASSERT_TRUE(CompleteHandshakesForQUIC());
// Both sides can now exchange 1-RTT data.
ExpectHandshakeSuccess();
EXPECT_TRUE(SSL_session_reused(client_.get()));
EXPECT_TRUE(SSL_session_reused(server_.get()));
EXPECT_FALSE(SSL_in_early_data(client_.get()));
EXPECT_FALSE(SSL_in_early_data(server_.get()));
EXPECT_FALSE(SSL_early_data_accepted(client_.get()));
EXPECT_FALSE(SSL_early_data_accepted(server_.get()));
}
}
TEST_F(QUICMethodTest, NoZeroRTTKeysBeforeReverify) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_early_data_enabled(client_ctx_.get(), 1);
SSL_CTX_set_reverify_on_resume(client_ctx_.get(), 1);
SSL_CTX_set_early_data_enabled(server_ctx_.get(), 1);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
bssl::UniquePtr<SSL_SESSION> session = CreateClientSessionForQUIC();
ASSERT_TRUE(session);
ASSERT_TRUE(CreateClientAndServer());
SSL_set_session(client_.get(), session.get());
// Configure the certificate (re)verification to never complete. The client
// handshake should pause.
SSL_set_custom_verify(
client_.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_retry;
});
ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
ASSERT_EQ(SSL_get_error(client_.get(), -1),
SSL_ERROR_WANT_CERTIFICATE_VERIFY);
// The early data keys have not yet been released.
EXPECT_FALSE(transport_->client()->HasWriteSecret(ssl_encryption_early_data));
// After the verification completes, the handshake progresses to the 0-RTT
// point and releases keys.
SSL_set_custom_verify(
client_.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_ok;
});
ASSERT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_TRUE(SSL_in_early_data(client_.get()));
EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_early_data));
}
// Test only releasing data to QUIC one byte at a time on request, to maximize
// state machine pauses. Additionally, test that existing asynchronous callbacks
// still work.
TEST_F(QUICMethodTest, Async) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
// Install an asynchronous certificate callback.
bool cert_cb_ok = false;
SSL_set_cert_cb(server_.get(),
[](SSL *, void *arg) -> int {
return *static_cast<bool *>(arg) ? 1 : -1;
},
&cert_cb_ok);
for (;;) {
int client_ret = SSL_do_handshake(client_.get());
if (client_ret != 1) {
ASSERT_EQ(client_ret, -1);
ASSERT_EQ(SSL_get_error(client_.get(), client_ret), SSL_ERROR_WANT_READ);
ASSERT_TRUE(ProvideHandshakeData(client_.get(), 1));
}
int server_ret = SSL_do_handshake(server_.get());
if (server_ret != 1) {
ASSERT_EQ(server_ret, -1);
int ssl_err = SSL_get_error(server_.get(), server_ret);
switch (ssl_err) {
case SSL_ERROR_WANT_READ:
ASSERT_TRUE(ProvideHandshakeData(server_.get(), 1));
break;
case SSL_ERROR_WANT_X509_LOOKUP:
ASSERT_FALSE(cert_cb_ok);
cert_cb_ok = true;
break;
default:
FAIL() << "Unexpected SSL_get_error result: " << ssl_err;
}
}
if (client_ret == 1 && server_ret == 1) {
break;
}
}
ExpectHandshakeSuccess();
}
// Test buffering write data until explicit flushes.
TEST_F(QUICMethodTest, Buffered) {
AllowOutOfOrderWrites();
struct BufferedFlight {
std::vector<uint8_t> data[kNumQUICLevels];
};
static UnownedSSLExData<BufferedFlight> buffered_flights;
auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) -> int {
BufferedFlight *flight = buffered_flights.Get(ssl);
flight->data[level].insert(flight->data[level].end(), data, data + len);
return 1;
};
auto flush_flight = [](SSL *ssl) -> int {
BufferedFlight *flight = buffered_flights.Get(ssl);
for (size_t level = 0; level < kNumQUICLevels; level++) {
if (!flight->data[level].empty()) {
if (!TransportFromSSL(ssl)->WriteHandshakeData(
static_cast<ssl_encryption_level_t>(level),
flight->data[level])) {
return 0;
}
flight->data[level].clear();
}
}
return 1;
};
SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
quic_method.add_handshake_data = add_handshake_data;
quic_method.flush_flight = flush_flight;
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
BufferedFlight client_flight, server_flight;
buffered_flights.Set(client_.get(), &client_flight);
buffered_flights.Set(server_.get(), &server_flight);
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
}
// Test that excess data at one level is rejected. That is, if a single
// |SSL_provide_quic_data| call included both ServerHello and
// EncryptedExtensions in a single chunk, BoringSSL notices and rejects this on
// key change.
TEST_F(QUICMethodTest, ExcessProvidedData) {
AllowOutOfOrderWrites();
auto add_handshake_data = [](SSL *ssl, enum ssl_encryption_level_t level,
const uint8_t *data, size_t len) -> int {
// Switch everything to the initial level.
return TransportFromSSL(ssl)->WriteHandshakeData(ssl_encryption_initial,
MakeConstSpan(data, len));
};
SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
quic_method.add_handshake_data = add_handshake_data;
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
// Send the ClientHello and ServerHello through Finished.
ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ);
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ);
// The client is still waiting for the ServerHello at initial
// encryption.
ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get()));
// |add_handshake_data| incorrectly wrote everything at the initial level, so
// this queues up ServerHello through Finished in one chunk.
ASSERT_TRUE(ProvideHandshakeData(client_.get()));
// The client reads ServerHello successfully, but then rejects the buffered
// EncryptedExtensions on key change.
ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_SSL);
uint32_t err = ERR_get_error();
EXPECT_EQ(ERR_GET_LIB(err), ERR_LIB_SSL);
EXPECT_EQ(ERR_GET_REASON(err), SSL_R_EXCESS_HANDSHAKE_DATA);
// The client sends an alert in response to this. The alert is sent at
// handshake level because we install write secrets before read secrets and
// the error is discovered when installing the read secret. (How to send
// alerts on protocol syntax errors near key changes is ambiguous in general.)
ASSERT_TRUE(transport_->client()->has_alert());
EXPECT_EQ(transport_->client()->alert_level(), ssl_encryption_handshake);
EXPECT_EQ(transport_->client()->alert(), SSL_AD_UNEXPECTED_MESSAGE);
// Sanity-check handshake secrets. The error is discovered while setting the
// read secret, so only the write secret has been installed.
EXPECT_TRUE(transport_->client()->HasWriteSecret(ssl_encryption_handshake));
EXPECT_FALSE(transport_->client()->HasReadSecret(ssl_encryption_handshake));
}
// Test that |SSL_provide_quic_data| will reject data at the wrong level.
TEST_F(QUICMethodTest, ProvideWrongLevel) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
// Send the ClientHello and ServerHello through Finished.
ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ);
ASSERT_TRUE(ProvideHandshakeData(server_.get()));
ASSERT_EQ(SSL_do_handshake(server_.get()), -1);
ASSERT_EQ(SSL_get_error(server_.get(), -1), SSL_ERROR_WANT_READ);
// The client is still waiting for the ServerHello at initial
// encryption.
ASSERT_EQ(ssl_encryption_initial, SSL_quic_read_level(client_.get()));
// Data cannot be provided at the next level.
std::vector<uint8_t> data;
ASSERT_TRUE(
transport_->client()->ReadHandshakeData(&data, ssl_encryption_initial));
ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_handshake,
data.data(), data.size()));
ERR_clear_error();
// Progress to EncryptedExtensions.
ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial,
data.data(), data.size()));
ASSERT_EQ(SSL_do_handshake(client_.get()), -1);
ASSERT_EQ(SSL_get_error(client_.get(), -1), SSL_ERROR_WANT_READ);
ASSERT_EQ(ssl_encryption_handshake, SSL_quic_read_level(client_.get()));
// Data cannot be provided at the previous level.
ASSERT_TRUE(
transport_->client()->ReadHandshakeData(&data, ssl_encryption_handshake));
ASSERT_FALSE(SSL_provide_quic_data(client_.get(), ssl_encryption_initial,
data.data(), data.size()));
}
TEST_F(QUICMethodTest, TooMuchData) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
size_t limit =
SSL_quic_max_handshake_flight_len(client_.get(), ssl_encryption_initial);
uint8_t b = 0;
for (size_t i = 0; i < limit; i++) {
ASSERT_TRUE(
SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1));
}
EXPECT_FALSE(
SSL_provide_quic_data(client_.get(), ssl_encryption_initial, &b, 1));
}
// Provide invalid post-handshake data.
TEST_F(QUICMethodTest, BadPostHandshake) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
g_last_session = nullptr;
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(CompleteHandshakesForQUIC());
EXPECT_EQ(SSL_do_handshake(client_.get()), 1);
EXPECT_EQ(SSL_do_handshake(server_.get()), 1);
EXPECT_TRUE(transport_->SecretsMatch(ssl_encryption_application));
EXPECT_FALSE(transport_->client()->has_alert());
EXPECT_FALSE(transport_->server()->has_alert());
// Junk sent as part of post-handshake data should cause an error.
uint8_t kJunk[] = {0x17, 0x0, 0x0, 0x4, 0xB, 0xE, 0xE, 0xF};
ASSERT_TRUE(SSL_provide_quic_data(client_.get(), ssl_encryption_application,
kJunk, sizeof(kJunk)));
EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 0);
}
static void ExpectReceivedTransportParamsEqual(const SSL *ssl,
Span<const uint8_t> expected) {
const uint8_t *received;
size_t received_len;
SSL_get_peer_quic_transport_params(ssl, &received, &received_len);
ASSERT_EQ(received_len, expected.size());
EXPECT_EQ(Bytes(received, received_len), Bytes(expected));
}
TEST_F(QUICMethodTest, SetTransportParameters) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
uint8_t kClientParams[] = {1, 2, 3, 4};
uint8_t kServerParams[] = {5, 6, 7};
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams,
sizeof(kClientParams)));
ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams,
sizeof(kServerParams)));
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectReceivedTransportParamsEqual(client_.get(), kServerParams);
ExpectReceivedTransportParamsEqual(server_.get(), kClientParams);
}
TEST_F(QUICMethodTest, SetTransportParamsInCallback) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
uint8_t kClientParams[] = {1, 2, 3, 4};
static uint8_t kServerParams[] = {5, 6, 7};
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams,
sizeof(kClientParams)));
SSL_CTX_set_tlsext_servername_callback(
server_ctx_.get(), [](SSL *ssl, int *out_alert, void *arg) -> int {
EXPECT_TRUE(SSL_set_quic_transport_params(ssl, kServerParams,
sizeof(kServerParams)));
return SSL_TLSEXT_ERR_OK;
});
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectReceivedTransportParamsEqual(client_.get(), kServerParams);
ExpectReceivedTransportParamsEqual(server_.get(), kClientParams);
}
TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionClient) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
g_last_session = nullptr;
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
EXPECT_FALSE(SSL_session_reused(client_.get()));
EXPECT_FALSE(SSL_session_reused(server_.get()));
// The server sent NewSessionTicket messages in the handshake.
EXPECT_FALSE(g_last_session);
ASSERT_TRUE(ProvideHandshakeData(client_.get()));
EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1);
EXPECT_TRUE(g_last_session);
// Pretend that g_last_session came from a TLS-over-TCP connection.
g_last_session.get()->is_quic = false;
// Create a second connection and verify that resumption does not occur with
// a session from a non-QUIC connection. This tests that the client does not
// offer over QUIC a session believed to be received over TCP. The server
// believes this is a QUIC session, so if the client offered the session, the
// server would have resumed it.
ASSERT_TRUE(CreateClientAndServer());
bssl::UniquePtr<SSL_SESSION> session = std::move(g_last_session);
SSL_set_session(client_.get(), session.get());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
EXPECT_FALSE(SSL_session_reused(client_.get()));
EXPECT_FALSE(SSL_session_reused(server_.get()));
}
TEST_F(QUICMethodTest, ForbidCrossProtocolResumptionServer) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
g_last_session = nullptr;
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_sess_set_new_cb(client_ctx_.get(), SaveLastSession);
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectHandshakeSuccess();
EXPECT_FALSE(SSL_session_reused(client_.get()));
EXPECT_FALSE(SSL_session_reused(server_.get()));
// The server sent NewSessionTicket messages in the handshake.
EXPECT_FALSE(g_last_session);
ASSERT_TRUE(ProvideHandshakeData(client_.get()));
EXPECT_EQ(SSL_process_quic_post_handshake(client_.get()), 1);
EXPECT_TRUE(g_last_session);
// Attempt a resumption with g_last_session using TLS_method.
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), nullptr));
bssl::UniquePtr<SSL> client(SSL_new(client_ctx.get())),
server(SSL_new(server_ctx_.get()));
ASSERT_TRUE(client);
ASSERT_TRUE(server);
SSL_set_connect_state(client.get());
SSL_set_accept_state(server.get());
// The TLS-over-TCP client will refuse to resume with a quic session, so
// mark is_quic = false to bypass the client check to test the server check.
g_last_session.get()->is_quic = false;
SSL_set_session(client.get(), g_last_session.get());
BIO *bio1, *bio2;
ASSERT_TRUE(BIO_new_bio_pair(&bio1, 0, &bio2, 0));
// SSL_set_bio takes ownership.
SSL_set_bio(client.get(), bio1, bio1);
SSL_set_bio(server.get(), bio2, bio2);
ASSERT_TRUE(CompleteHandshakes(client.get(), server.get()));
EXPECT_FALSE(SSL_session_reused(client.get()));
EXPECT_FALSE(SSL_session_reused(server.get()));
}
TEST_F(QUICMethodTest, ClientRejectsMissingTransportParams) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), nullptr, 0));
ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError));
}
TEST_F(QUICMethodTest, ServerRejectsMissingTransportParams) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), nullptr, 0));
ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kClientError));
}
TEST_F(QUICMethodTest, QuicLegacyCodepointEnabled) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
uint8_t kClientParams[] = {1, 2, 3, 4};
uint8_t kServerParams[] = {5, 6, 7};
SSL_set_quic_use_legacy_codepoint(client_.get(), 1);
SSL_set_quic_use_legacy_codepoint(server_.get(), 1);
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams,
sizeof(kClientParams)));
ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams,
sizeof(kServerParams)));
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectReceivedTransportParamsEqual(client_.get(), kServerParams);
ExpectReceivedTransportParamsEqual(server_.get(), kClientParams);
}
TEST_F(QUICMethodTest, QuicLegacyCodepointDisabled) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
uint8_t kClientParams[] = {1, 2, 3, 4};
uint8_t kServerParams[] = {5, 6, 7};
SSL_set_quic_use_legacy_codepoint(client_.get(), 0);
SSL_set_quic_use_legacy_codepoint(server_.get(), 0);
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams,
sizeof(kClientParams)));
ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams,
sizeof(kServerParams)));
ASSERT_TRUE(CompleteHandshakesForQUIC());
ExpectReceivedTransportParamsEqual(client_.get(), kServerParams);
ExpectReceivedTransportParamsEqual(server_.get(), kClientParams);
}
TEST_F(QUICMethodTest, QuicLegacyCodepointClientOnly) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
uint8_t kClientParams[] = {1, 2, 3, 4};
uint8_t kServerParams[] = {5, 6, 7};
SSL_set_quic_use_legacy_codepoint(client_.get(), 1);
SSL_set_quic_use_legacy_codepoint(server_.get(), 0);
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams,
sizeof(kClientParams)));
ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams,
sizeof(kServerParams)));
ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError));
}
TEST_F(QUICMethodTest, QuicLegacyCodepointServerOnly) {
const SSL_QUIC_METHOD quic_method = DefaultQUICMethod();
ASSERT_TRUE(SSL_CTX_set_quic_method(client_ctx_.get(), &quic_method));
ASSERT_TRUE(SSL_CTX_set_quic_method(server_ctx_.get(), &quic_method));
ASSERT_TRUE(CreateClientAndServer());
uint8_t kClientParams[] = {1, 2, 3, 4};
uint8_t kServerParams[] = {5, 6, 7};
SSL_set_quic_use_legacy_codepoint(client_.get(), 0);
SSL_set_quic_use_legacy_codepoint(server_.get(), 1);
ASSERT_TRUE(SSL_set_quic_transport_params(client_.get(), kClientParams,
sizeof(kClientParams)));
ASSERT_TRUE(SSL_set_quic_transport_params(server_.get(), kServerParams,
sizeof(kServerParams)));
ASSERT_TRUE(RunQUICHandshakesAndExpectError(ExpectedError::kServerError));
}
extern "C" {
int BORINGSSL_enum_c_type_test(void);
}
TEST(SSLTest, EnumTypes) {
EXPECT_EQ(sizeof(int), sizeof(ssl_private_key_result_t));
EXPECT_EQ(1, BORINGSSL_enum_c_type_test());
}
TEST_P(SSLVersionTest, DoubleSSLError) {
// Connect the inner SSL connections.
ASSERT_TRUE(Connect());
// Make a pair of |BIO|s which wrap |client_| and |server_|.
UniquePtr<BIO_METHOD> bio_method(BIO_meth_new(0, nullptr));
ASSERT_TRUE(bio_method);
ASSERT_TRUE(BIO_meth_set_read(
bio_method.get(), [](BIO *bio, char *out, int len) -> int {
SSL *ssl = static_cast<SSL *>(BIO_get_data(bio));
int ret = SSL_read(ssl, out, len);
int ssl_ret = SSL_get_error(ssl, ret);
if (ssl_ret == SSL_ERROR_WANT_READ) {
BIO_set_retry_read(bio);
}
return ret;
}));
ASSERT_TRUE(BIO_meth_set_write(
bio_method.get(), [](BIO *bio, const char *in, int len) -> int {
SSL *ssl = static_cast<SSL *>(BIO_get_data(bio));
int ret = SSL_write(ssl, in, len);
int ssl_ret = SSL_get_error(ssl, ret);
if (ssl_ret == SSL_ERROR_WANT_WRITE) {
BIO_set_retry_write(bio);
}
return ret;
}));
ASSERT_TRUE(BIO_meth_set_ctrl(
bio_method.get(), [](BIO *bio, int cmd, long larg, void *parg) -> long {
// |SSL| objects require |BIO_flush| support.
if (cmd == BIO_CTRL_FLUSH) {
return 1;
}
return 0;
}));
UniquePtr<BIO> client_bio(BIO_new(bio_method.get()));
ASSERT_TRUE(client_bio);
BIO_set_data(client_bio.get(), client_.get());
BIO_set_init(client_bio.get(), 1);
UniquePtr<BIO> server_bio(BIO_new(bio_method.get()));
ASSERT_TRUE(server_bio);
BIO_set_data(server_bio.get(), server_.get());
BIO_set_init(server_bio.get(), 1);
// Wrap the inner connections in another layer of SSL.
UniquePtr<SSL> client_outer(SSL_new(client_ctx_.get()));
ASSERT_TRUE(client_outer);
SSL_set_connect_state(client_outer.get());
SSL_set_bio(client_outer.get(), client_bio.get(), client_bio.get());
client_bio.release(); // |SSL_set_bio| takes ownership.
UniquePtr<SSL> server_outer(SSL_new(server_ctx_.get()));
ASSERT_TRUE(server_outer);
SSL_set_accept_state(server_outer.get());
SSL_set_bio(server_outer.get(), server_bio.get(), server_bio.get());
server_bio.release(); // |SSL_set_bio| takes ownership.
// Configure |client_outer| to reject the server certificate.
SSL_set_custom_verify(
client_outer.get(), SSL_VERIFY_PEER,
[](SSL *ssl, uint8_t *out_alert) -> ssl_verify_result_t {
return ssl_verify_invalid;
});
for (;;) {
int client_ret = SSL_do_handshake(client_outer.get());
int client_err = SSL_get_error(client_outer.get(), client_ret);
if (client_err != SSL_ERROR_WANT_READ &&
client_err != SSL_ERROR_WANT_WRITE) {
// The client handshake should terminate on a certificate verification
// error.
EXPECT_EQ(SSL_ERROR_SSL, client_err);
uint32_t err = ERR_peek_error();
EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
EXPECT_EQ(SSL_R_CERTIFICATE_VERIFY_FAILED, ERR_GET_REASON(err));
break;
}
// Run the server handshake and continue.
int server_ret = SSL_do_handshake(server_outer.get());
int server_err = SSL_get_error(server_outer.get(), server_ret);
ASSERT_TRUE(server_err == SSL_ERROR_NONE ||
server_err == SSL_ERROR_WANT_READ ||
server_err == SSL_ERROR_WANT_WRITE);
}
}
TEST_P(SSLVersionTest, SameKeyResume) {
uint8_t key[48];
RAND_bytes(key, sizeof(key));
bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
ASSERT_TRUE(server_ctx2);
ASSERT_TRUE(UseCertAndKey(server_ctx2.get()));
ASSERT_TRUE(
SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key, sizeof(key)));
ASSERT_TRUE(
SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key, sizeof(key)));
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH);
// Establish a session for |server_ctx_|.
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
ClientConfig config;
config.session = session.get();
// Resuming with |server_ctx_| again works.
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx_.get(), config));
EXPECT_TRUE(SSL_session_reused(client.get()));
EXPECT_TRUE(SSL_session_reused(server.get()));
// Resuming with |server_ctx2| also works.
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx2.get(), config));
EXPECT_TRUE(SSL_session_reused(client.get()));
EXPECT_TRUE(SSL_session_reused(server.get()));
}
TEST_P(SSLVersionTest, DifferentKeyNoResume) {
uint8_t key1[48], key2[48];
RAND_bytes(key1, sizeof(key1));
RAND_bytes(key2, sizeof(key2));
bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
ASSERT_TRUE(server_ctx2);
ASSERT_TRUE(UseCertAndKey(server_ctx2.get()));
ASSERT_TRUE(
SSL_CTX_set_tlsext_ticket_keys(server_ctx_.get(), key1, sizeof(key1)));
ASSERT_TRUE(
SSL_CTX_set_tlsext_ticket_keys(server_ctx2.get(), key2, sizeof(key2)));
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH);
// Establish a session for |server_ctx_|.
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
ClientConfig config;
config.session = session.get();
// Resuming with |server_ctx_| again works.
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx_.get(), config));
EXPECT_TRUE(SSL_session_reused(client.get()));
EXPECT_TRUE(SSL_session_reused(server.get()));
// Resuming with |server_ctx2| does not work.
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx2.get(), config));
EXPECT_FALSE(SSL_session_reused(client.get()));
EXPECT_FALSE(SSL_session_reused(server.get()));
}
TEST_P(SSLVersionTest, UnrelatedServerNoResume) {
bssl::UniquePtr<SSL_CTX> server_ctx2 = CreateContext();
ASSERT_TRUE(server_ctx2);
ASSERT_TRUE(UseCertAndKey(server_ctx2.get()));
SSL_CTX_set_session_cache_mode(client_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx_.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx2.get(), SSL_SESS_CACHE_BOTH);
// Establish a session for |server_ctx_|.
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx_.get(), server_ctx_.get());
ASSERT_TRUE(session);
ClientConfig config;
config.session = session.get();
// Resuming with |server_ctx_| again works.
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx_.get(), config));
EXPECT_TRUE(SSL_session_reused(client.get()));
EXPECT_TRUE(SSL_session_reused(server.get()));
// Resuming with |server_ctx2| does not work.
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx_.get(),
server_ctx2.get(), config));
EXPECT_FALSE(SSL_session_reused(client.get()));
EXPECT_FALSE(SSL_session_reused(server.get()));
}
TEST(SSLTest, WriteWhileExplicitRenegotiate) {
bssl::UniquePtr<SSL_CTX> ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> pkey = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(pkey);
ASSERT_TRUE(SSL_CTX_use_certificate(ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(ctx.get(), pkey.get()));
ASSERT_TRUE(SSL_CTX_set_min_proto_version(ctx.get(), TLS1_2_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(ctx.get(), TLS1_2_VERSION));
ASSERT_TRUE(SSL_CTX_set_strict_cipher_list(
ctx.get(), "TLS_ECDHE_RSA_WITH_CHACHA20_POLY1305_SHA256"));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, ctx.get(), ctx.get(),
ClientConfig(), true /* do_handshake */,
false /* don't shed handshake config */));
SSL_set_renegotiate_mode(client.get(), ssl_renegotiate_explicit);
static const uint8_t kInput[] = {'h', 'e', 'l', 'l', 'o'};
// Write "hello" until the buffer is full, so |client| has a pending write.
size_t num_writes = 0;
for (;;) {
int ret = SSL_write(client.get(), kInput, sizeof(kInput));
if (ret != int(sizeof(kInput))) {
ASSERT_EQ(-1, ret);
ASSERT_EQ(SSL_ERROR_WANT_WRITE, SSL_get_error(client.get(), ret));
break;
}
num_writes++;
}
// Encrypt a HelloRequest.
uint8_t in[] = {SSL3_MT_HELLO_REQUEST, 0, 0, 0};
#if defined(BORINGSSL_UNSAFE_FUZZER_MODE)
// Fuzzer-mode records are unencrypted.
uint8_t record[5 + sizeof(in)];
record[0] = SSL3_RT_HANDSHAKE;
record[1] = 3;
record[2] = 3; // TLS 1.2
record[3] = 0;
record[4] = sizeof(record) - 5;
memcpy(record + 5, in, sizeof(in));
#else
// Extract key material from |server|.
static const size_t kKeyLen = 32;
static const size_t kNonceLen = 12;
ASSERT_EQ(2u * (kKeyLen + kNonceLen), SSL_get_key_block_len(server.get()));
uint8_t key_block[2u * (kKeyLen + kNonceLen)];
ASSERT_TRUE(
SSL_generate_key_block(server.get(), key_block, sizeof(key_block)));
Span<uint8_t> key = MakeSpan(key_block + kKeyLen, kKeyLen);
Span<uint8_t> nonce =
MakeSpan(key_block + kKeyLen + kKeyLen + kNonceLen, kNonceLen);
uint8_t ad[13];
uint64_t seq = SSL_get_write_sequence(server.get());
for (size_t i = 0; i < 8; i++) {
// The nonce is XORed with the sequence number.
nonce[11 - i] ^= uint8_t(seq);
ad[7 - i] = uint8_t(seq);
seq >>= 8;
}
ad[8] = SSL3_RT_HANDSHAKE;
ad[9] = 3;
ad[10] = 3; // TLS 1.2
ad[11] = 0;
ad[12] = sizeof(in);
uint8_t record[5 + sizeof(in) + 16];
record[0] = SSL3_RT_HANDSHAKE;
record[1] = 3;
record[2] = 3; // TLS 1.2
record[3] = 0;
record[4] = sizeof(record) - 5;
ScopedEVP_AEAD_CTX aead;
ASSERT_TRUE(EVP_AEAD_CTX_init(aead.get(), EVP_aead_chacha20_poly1305(),
key.data(), key.size(),
EVP_AEAD_DEFAULT_TAG_LENGTH, nullptr));
size_t len;
ASSERT_TRUE(EVP_AEAD_CTX_seal(aead.get(), record + 5, &len,
sizeof(record) - 5, nonce.data(), nonce.size(),
in, sizeof(in), ad, sizeof(ad)));
ASSERT_EQ(sizeof(record) - 5, len);
#endif // BORINGSSL_UNSAFE_FUZZER_MODE
ASSERT_EQ(int(sizeof(record)),
BIO_write(SSL_get_wbio(server.get()), record, sizeof(record)));
// |SSL_read| should pick up the HelloRequest.
uint8_t byte;
ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1));
ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1));
// Drain the data from the |client|.
uint8_t buf[sizeof(kInput)];
for (size_t i = 0; i < num_writes; i++) {
ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf)));
EXPECT_EQ(Bytes(buf), Bytes(kInput));
}
// |client| should be able to finish the pending write and continue to write,
// despite the paused HelloRequest.
ASSERT_EQ(int(sizeof(kInput)),
SSL_write(client.get(), kInput, sizeof(kInput)));
ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf)));
EXPECT_EQ(Bytes(buf), Bytes(kInput));
ASSERT_EQ(int(sizeof(kInput)),
SSL_write(client.get(), kInput, sizeof(kInput)));
ASSERT_EQ(int(sizeof(buf)), SSL_read(server.get(), buf, sizeof(buf)));
EXPECT_EQ(Bytes(buf), Bytes(kInput));
// |SSL_read| is stuck until we acknowledge the HelloRequest.
ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1));
ASSERT_EQ(SSL_ERROR_WANT_RENEGOTIATE, SSL_get_error(client.get(), -1));
ASSERT_TRUE(SSL_renegotiate(client.get()));
ASSERT_EQ(-1, SSL_read(client.get(), &byte, 1));
ASSERT_EQ(SSL_ERROR_WANT_READ, SSL_get_error(client.get(), -1));
// We never renegotiate as a server.
ASSERT_EQ(-1, SSL_read(server.get(), buf, sizeof(buf)));
ASSERT_EQ(SSL_ERROR_SSL, SSL_get_error(server.get(), -1));
uint32_t err = ERR_get_error();
EXPECT_EQ(ERR_LIB_SSL, ERR_GET_LIB(err));
EXPECT_EQ(SSL_R_NO_RENEGOTIATION, ERR_GET_REASON(err));
}
TEST(SSLTest, CopyWithoutEarlyData) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
SSL_CTX_set_session_cache_mode(client_ctx.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_session_cache_mode(server_ctx.get(), SSL_SESS_CACHE_BOTH);
SSL_CTX_set_early_data_enabled(client_ctx.get(), 1);
SSL_CTX_set_early_data_enabled(server_ctx.get(), 1);
bssl::UniquePtr<SSL_SESSION> session =
CreateClientSession(client_ctx.get(), server_ctx.get());
ASSERT_TRUE(session);
// The client should attempt early data with |session|.
auto config = ClientConfig();
config.early_data = true;
config.session = session.get();
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), config,
/*do_handshake=*/false));
ASSERT_EQ(1, SSL_do_handshake(client.get()));
EXPECT_TRUE(SSL_in_early_data(client.get()));
// |SSL_SESSION_copy_without_early_data| should disable early data but
// still resume the session.
bssl::UniquePtr<SSL_SESSION> session2(
SSL_SESSION_copy_without_early_data(session.get()));
ASSERT_TRUE(session2);
EXPECT_NE(session.get(), session2.get());
config.session = session2.get();
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get(), config));
EXPECT_TRUE(SSL_session_reused(client.get()));
EXPECT_EQ(ssl_early_data_unsupported_for_session,
SSL_get_early_data_reason(client.get()));
// |SSL_SESSION_copy_without_early_data| should be a reference count increase
// when passed an early-data-incapable session.
bssl::UniquePtr<SSL_SESSION> session3(
SSL_SESSION_copy_without_early_data(session2.get()));
EXPECT_EQ(session2.get(), session3.get());
}
TEST(SSLTest, ProcessTLS13NewSessionTicket) {
// Configure client and server to negotiate TLS 1.3 only.
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
ASSERT_TRUE(SSL_CTX_set_min_proto_version(client_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_min_proto_version(server_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(client_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_set_max_proto_version(server_ctx.get(), TLS1_3_VERSION));
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
EXPECT_EQ(TLS1_3_VERSION, SSL_version(client.get()));
// Process a TLS 1.3 NewSessionTicket.
static const uint8_t kTicket[] = {
0x04, 0x00, 0x00, 0xb2, 0x00, 0x02, 0xa3, 0x00, 0x04, 0x03, 0x02, 0x01,
0x01, 0x00, 0x00, 0xa0, 0x01, 0x06, 0x09, 0x11, 0x16, 0x19, 0x21, 0x26,
0x29, 0x31, 0x36, 0x39, 0x41, 0x46, 0x49, 0x51, 0x03, 0x06, 0x09, 0x13,
0x16, 0x19, 0x23, 0x26, 0x29, 0x33, 0x36, 0x39, 0x43, 0x46, 0x49, 0x53,
0xf7, 0x00, 0x29, 0xec, 0xf2, 0xc4, 0xa4, 0x41, 0xfc, 0x30, 0x17, 0x2e,
0x9f, 0x7c, 0xa8, 0xaf, 0x75, 0x70, 0xf0, 0x1f, 0xc7, 0x98, 0xf7, 0xcf,
0x5a, 0x5a, 0x6b, 0x5b, 0xfe, 0xf1, 0xe7, 0x3a, 0xe8, 0xf7, 0x6c, 0xd2,
0xa8, 0xa6, 0x92, 0x5b, 0x96, 0x8d, 0xde, 0xdb, 0xd3, 0x20, 0x6a, 0xcb,
0x69, 0x06, 0xf4, 0x91, 0x85, 0x2e, 0xe6, 0x5e, 0x0c, 0x59, 0xf2, 0x9e,
0x9b, 0x79, 0x91, 0x24, 0x7e, 0x4a, 0x32, 0x3d, 0xbe, 0x4b, 0x80, 0x70,
0xaf, 0xd0, 0x1d, 0xe2, 0xca, 0x05, 0x35, 0x09, 0x09, 0x05, 0x0f, 0xbb,
0xc4, 0xae, 0xd7, 0xc4, 0xed, 0xd7, 0xae, 0x35, 0xc8, 0x73, 0x63, 0x78,
0x64, 0xc9, 0x7a, 0x1f, 0xed, 0x7a, 0x9a, 0x47, 0x44, 0xfd, 0x50, 0xf7,
0xb7, 0xe0, 0x64, 0xa9, 0x02, 0xc1, 0x5c, 0x23, 0x18, 0x3f, 0xc4, 0xcf,
0x72, 0x02, 0x59, 0x2d, 0xe1, 0xaa, 0x61, 0x72, 0x00, 0x04, 0x5a, 0x5a,
0x00, 0x00,
};
bssl::UniquePtr<SSL_SESSION> session(SSL_process_tls13_new_session_ticket(
client.get(), kTicket, sizeof(kTicket)));
ASSERT_TRUE(session);
ASSERT_TRUE(SSL_SESSION_has_ticket(session.get()));
uint8_t *session_buf = nullptr;
size_t session_length = 0;
ASSERT_TRUE(
SSL_SESSION_to_bytes(session.get(), &session_buf, &session_length));
bssl::UniquePtr<uint8_t> session_buf_free(session_buf);
ASSERT_TRUE(session_buf);
ASSERT_GT(session_length, 0u);
// Servers cannot call |SSL_process_tls13_new_session_ticket|.
ASSERT_FALSE(SSL_process_tls13_new_session_ticket(server.get(), kTicket,
sizeof(kTicket)));
// Clients cannot call |SSL_process_tls13_new_session_ticket| before the
// handshake completes.
bssl::UniquePtr<SSL> client2(SSL_new(client_ctx.get()));
ASSERT_TRUE(client2);
SSL_set_connect_state(client2.get());
ASSERT_FALSE(SSL_process_tls13_new_session_ticket(client2.get(), kTicket,
sizeof(kTicket)));
}
TEST(SSLTest, BIO) {
bssl::UniquePtr<SSL_CTX> client_ctx(SSL_CTX_new(TLS_method()));
bssl::UniquePtr<SSL_CTX> server_ctx(SSL_CTX_new(TLS_method()));
ASSERT_TRUE(client_ctx);
ASSERT_TRUE(server_ctx);
bssl::UniquePtr<X509> cert = GetTestCertificate();
bssl::UniquePtr<EVP_PKEY> key = GetTestKey();
ASSERT_TRUE(cert);
ASSERT_TRUE(key);
ASSERT_TRUE(SSL_CTX_use_certificate(server_ctx.get(), cert.get()));
ASSERT_TRUE(SSL_CTX_use_PrivateKey(server_ctx.get(), key.get()));
for (bool take_ownership : {true, false}) {
// For simplicity, get the handshake out of the way first.
bssl::UniquePtr<SSL> client, server;
ASSERT_TRUE(ConnectClientAndServer(&client, &server, client_ctx.get(),
server_ctx.get()));
// Wrap |client| in an SSL BIO.
bssl::UniquePtr<BIO> client_bio(BIO_new(BIO_f_ssl()));
ASSERT_TRUE(client_bio);
ASSERT_EQ(1, BIO_set_ssl(client_bio.get(), client.get(), take_ownership));
if (take_ownership) {
client.release();
}
// Flushing the BIO should not crash.
EXPECT_EQ(1, BIO_flush(client_bio.get()));
// Exchange some data.
EXPECT_EQ(5, BIO_write(client_bio.get(), "hello", 5));
uint8_t buf[5];
ASSERT_EQ(5, SSL_read(server.get(), buf, sizeof(buf)));
EXPECT_EQ(Bytes("hello"), Bytes(buf));
EXPECT_EQ(5, SSL_write(server.get(), "world", 5));
ASSERT_EQ(5, BIO_read(client_bio.get(), buf, sizeof(buf)));
EXPECT_EQ(Bytes("world"), Bytes(buf));
// |BIO_should_read| should work.
EXPECT_EQ(-1, BIO_read(client_bio.get(), buf, sizeof(buf)));
EXPECT_TRUE(BIO_should_read(client_bio.get()));
// Writing data should eventually exceed the buffer size and fail, reporting
// |BIO_should_write|.
int ret;
for (int i = 0; i < 1024; i++) {
std::vector<uint8_t> buffer(1024);
ret = BIO_write(client_bio.get(), buffer.data(), buffer.size());
if (ret <= 0) {
break;
}
}
EXPECT_EQ(-1, ret);
EXPECT_TRUE(BIO_should_write(client_bio.get()));
}
}
} // namespace
BSSL_NAMESPACE_END