|
|
|
/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
|
|
|
|
* All rights reserved.
|
|
|
|
*
|
|
|
|
* This package is an SSL implementation written
|
|
|
|
* by Eric Young (eay@cryptsoft.com).
|
|
|
|
* The implementation was written so as to conform with Netscapes SSL.
|
|
|
|
*
|
|
|
|
* This library is free for commercial and non-commercial use as long as
|
|
|
|
* the following conditions are aheared to. The following conditions
|
|
|
|
* apply to all code found in this distribution, be it the RC4, RSA,
|
|
|
|
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
|
|
|
|
* included with this distribution is covered by the same copyright terms
|
|
|
|
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
|
|
|
|
*
|
|
|
|
* Copyright remains Eric Young's, and as such any Copyright notices in
|
|
|
|
* the code are not to be removed.
|
|
|
|
* If this package is used in a product, Eric Young should be given attribution
|
|
|
|
* as the author of the parts of the library used.
|
|
|
|
* This can be in the form of a textual message at program startup or
|
|
|
|
* in documentation (online or textual) provided with the package.
|
|
|
|
*
|
|
|
|
* Redistribution and use in source and binary forms, with or without
|
|
|
|
* modification, are permitted provided that the following conditions
|
|
|
|
* are met:
|
|
|
|
* 1. Redistributions of source code must retain the copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer.
|
|
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
|
|
* documentation and/or other materials provided with the distribution.
|
|
|
|
* 3. All advertising materials mentioning features or use of this software
|
|
|
|
* must display the following acknowledgement:
|
|
|
|
* "This product includes cryptographic software written by
|
|
|
|
* Eric Young (eay@cryptsoft.com)"
|
|
|
|
* The word 'cryptographic' can be left out if the rouines from the library
|
|
|
|
* being used are not cryptographic related :-).
|
|
|
|
* 4. If you include any Windows specific code (or a derivative thereof) from
|
|
|
|
* the apps directory (application code) you must include an acknowledgement:
|
|
|
|
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
|
|
|
|
*
|
|
|
|
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
|
|
|
|
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
|
|
|
|
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
|
|
|
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
|
|
|
|
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
|
|
|
|
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
|
|
|
|
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
|
|
|
|
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
|
|
|
|
* SUCH DAMAGE.
|
|
|
|
*
|
|
|
|
* The licence and distribution terms for any publically available version or
|
|
|
|
* derivative of this code cannot be changed. i.e. this code cannot simply be
|
|
|
|
* copied and put under another distribution licence
|
|
|
|
* [including the GNU Public Licence.] */
|
|
|
|
|
|
|
|
#ifndef OPENSSL_HEADER_CIPHER_EXTRA_INTERNAL_H
|
|
|
|
#define OPENSSL_HEADER_CIPHER_EXTRA_INTERNAL_H
|
|
|
|
|
|
|
|
#include <stdlib.h>
|
|
|
|
|
|
|
|
#include <openssl/base.h>
|
|
|
|
#include <openssl/type_check.h>
|
|
|
|
|
|
|
|
#include "../internal.h"
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
extern "C" {
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// EVP_tls_cbc_get_padding determines the padding from the decrypted, TLS, CBC
|
|
|
|
// record in |in|. This decrypted record should not include any "decrypted"
|
|
|
|
// explicit IV. If the record is publicly invalid, it returns zero. Otherwise,
|
|
|
|
// it returns one and sets |*out_padding_ok| to all ones (0xfff..f) if the
|
|
|
|
// padding is valid and zero otherwise. It then sets |*out_len| to the length
|
|
|
|
// with the padding removed or |in_len| if invalid.
|
|
|
|
//
|
|
|
|
// If the function returns one, it runs in time independent of the contents of
|
|
|
|
// |in|. It is also guaranteed that |*out_len| >= |mac_size|, satisfying
|
|
|
|
// |EVP_tls_cbc_copy_mac|'s precondition.
|
|
|
|
int EVP_tls_cbc_remove_padding(crypto_word_t *out_padding_ok, size_t *out_len,
|
|
|
|
const uint8_t *in, size_t in_len,
|
|
|
|
size_t block_size, size_t mac_size);
|
|
|
|
|
|
|
|
// EVP_tls_cbc_copy_mac copies |md_size| bytes from the end of the first
|
|
|
|
// |in_len| bytes of |in| to |out| in constant time (independent of the concrete
|
|
|
|
// value of |in_len|, which may vary within a 256-byte window). |in| must point
|
|
|
|
// to a buffer of |orig_len| bytes.
|
|
|
|
//
|
|
|
|
// On entry:
|
|
|
|
// orig_len >= in_len >= md_size
|
|
|
|
// md_size <= EVP_MAX_MD_SIZE
|
|
|
|
void EVP_tls_cbc_copy_mac(uint8_t *out, size_t md_size, const uint8_t *in,
|
|
|
|
size_t in_len, size_t orig_len);
|
|
|
|
|
|
|
|
// EVP_tls_cbc_record_digest_supported returns 1 iff |md| is a hash function
|
|
|
|
// which EVP_tls_cbc_digest_record supports.
|
|
|
|
int EVP_tls_cbc_record_digest_supported(const EVP_MD *md);
|
|
|
|
|
|
|
|
// EVP_sha1_final_with_secret_suffix computes the result of hashing |len| bytes
|
|
|
|
// from |in| to |ctx| and writes the resulting hash to |out|. |len| is treated
|
|
|
|
// as secret and must be at most |max_len|, which is treated as public. |in|
|
|
|
|
// must point to a buffer of at least |max_len| bytes. It returns one on success
|
|
|
|
// and zero if inputs are too long.
|
|
|
|
//
|
|
|
|
// This function is exported for unit tests.
|
|
|
|
OPENSSL_EXPORT int EVP_sha1_final_with_secret_suffix(
|
|
|
|
SHA_CTX *ctx, uint8_t out[SHA_DIGEST_LENGTH], const uint8_t *in, size_t len,
|
|
|
|
size_t max_len);
|
|
|
|
|
|
|
|
// EVP_tls_cbc_digest_record computes the MAC of a decrypted, padded TLS
|
|
|
|
// record.
|
|
|
|
//
|
|
|
|
// md: the hash function used in the HMAC.
|
|
|
|
// EVP_tls_cbc_record_digest_supported must return true for this hash.
|
|
|
|
// md_out: the digest output. At most EVP_MAX_MD_SIZE bytes will be written.
|
|
|
|
// md_out_size: the number of output bytes is written here.
|
|
|
|
// header: the 13-byte, TLS record header.
|
|
|
|
// data: the record data itself
|
|
|
|
// data_size: the secret, reported length of the data once the padding and MAC
|
|
|
|
// have been removed.
|
|
|
|
// data_plus_mac_plus_padding_size: the public length of the whole
|
|
|
|
// record, including padding.
|
|
|
|
//
|
|
|
|
// On entry: by virtue of having been through one of the remove_padding
|
|
|
|
// functions, above, we know that data_plus_mac_size is large enough to contain
|
|
|
|
// a padding byte and MAC. (If the padding was invalid, it might contain the
|
|
|
|
// padding too. )
|
|
|
|
int EVP_tls_cbc_digest_record(const EVP_MD *md, uint8_t *md_out,
|
|
|
|
size_t *md_out_size, const uint8_t header[13],
|
|
|
|
const uint8_t *data, size_t data_size,
|
|
|
|
size_t data_plus_mac_plus_padding_size,
|
|
|
|
const uint8_t *mac_secret,
|
|
|
|
unsigned mac_secret_length);
|
|
|
|
|
|
|
|
#define POLY1305_TAG_LEN 16
|
|
|
|
|
|
|
|
// For convenience (the x86_64 calling convention allows only six parameters in
|
|
|
|
// registers), the final parameter for the assembly functions is both an input
|
|
|
|
// and output parameter.
|
|
|
|
union chacha20_poly1305_open_data {
|
|
|
|
struct {
|
|
|
|
alignas(16) uint8_t key[32];
|
|
|
|
uint32_t counter;
|
|
|
|
uint8_t nonce[12];
|
|
|
|
} in;
|
|
|
|
struct {
|
|
|
|
uint8_t tag[POLY1305_TAG_LEN];
|
|
|
|
} out;
|
|
|
|
};
|
|
|
|
|
|
|
|
union chacha20_poly1305_seal_data {
|
|
|
|
struct {
|
|
|
|
alignas(16) uint8_t key[32];
|
|
|
|
uint32_t counter;
|
|
|
|
uint8_t nonce[12];
|
|
|
|
const uint8_t *extra_ciphertext;
|
|
|
|
size_t extra_ciphertext_len;
|
|
|
|
} in;
|
|
|
|
struct {
|
|
|
|
uint8_t tag[POLY1305_TAG_LEN];
|
|
|
|
} out;
|
|
|
|
};
|
|
|
|
|
|
|
|
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM)
|
|
|
|
|
|
|
|
OPENSSL_STATIC_ASSERT(sizeof(union chacha20_poly1305_open_data) == 48,
|
|
|
|
"wrong chacha20_poly1305_open_data size");
|
|
|
|
OPENSSL_STATIC_ASSERT(sizeof(union chacha20_poly1305_seal_data) == 48 + 8 + 8,
|
|
|
|
"wrong chacha20_poly1305_seal_data size");
|
|
|
|
|
|
|
|
OPENSSL_INLINE int chacha20_poly1305_asm_capable(void) {
|
|
|
|
const int sse41_capable = (OPENSSL_ia32cap_P[1] & (1 << 19)) != 0;
|
|
|
|
return sse41_capable;
|
|
|
|
}
|
|
|
|
|
|
|
|
// chacha20_poly1305_open is defined in chacha20_poly1305_x86_64.pl. It decrypts
|
|
|
|
// |plaintext_len| bytes from |ciphertext| and writes them to |out_plaintext|.
|
|
|
|
// Additional input parameters are passed in |aead_data->in|. On exit, it will
|
|
|
|
// write calculated tag value to |aead_data->out.tag|, which the caller must
|
|
|
|
// check.
|
|
|
|
extern void chacha20_poly1305_open(uint8_t *out_plaintext,
|
|
|
|
const uint8_t *ciphertext,
|
|
|
|
size_t plaintext_len, const uint8_t *ad,
|
|
|
|
size_t ad_len,
|
|
|
|
union chacha20_poly1305_open_data *data);
|
|
|
|
|
|
|
|
// chacha20_poly1305_open is defined in chacha20_poly1305_x86_64.pl. It encrypts
|
|
|
|
// |plaintext_len| bytes from |plaintext| and writes them to |out_ciphertext|.
|
|
|
|
// Additional input parameters are passed in |aead_data->in|. The calculated tag
|
|
|
|
// value is over the computed ciphertext concatenated with |extra_ciphertext|
|
|
|
|
// and written to |aead_data->out.tag|.
|
|
|
|
extern void chacha20_poly1305_seal(uint8_t *out_ciphertext,
|
|
|
|
const uint8_t *plaintext,
|
|
|
|
size_t plaintext_len, const uint8_t *ad,
|
|
|
|
size_t ad_len,
|
|
|
|
union chacha20_poly1305_seal_data *data);
|
|
|
|
#else
|
|
|
|
|
|
|
|
OPENSSL_INLINE int chacha20_poly1305_asm_capable(void) { return 0; }
|
|
|
|
|
|
|
|
OPENSSL_INLINE void chacha20_poly1305_open(uint8_t *out_plaintext,
|
|
|
|
const uint8_t *ciphertext,
|
|
|
|
size_t plaintext_len, const uint8_t *ad,
|
|
|
|
size_t ad_len,
|
|
|
|
union chacha20_poly1305_open_data *data) {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_INLINE void chacha20_poly1305_seal(uint8_t *out_ciphertext,
|
|
|
|
const uint8_t *plaintext,
|
|
|
|
size_t plaintext_len, const uint8_t *ad,
|
|
|
|
size_t ad_len,
|
|
|
|
union chacha20_poly1305_seal_data *data) {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#if defined(__cplusplus)
|
|
|
|
} // extern C
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#endif // OPENSSL_HEADER_CIPHER_EXTRA_INTERNAL_H
|