|
|
|
/* Copyright (c) 2020, Google Inc.
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
|
|
|
|
#include <openssl/hpke.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#include <openssl/aead.h>
|
|
|
|
#include <openssl/bytestring.h>
|
|
|
|
#include <openssl/curve25519.h>
|
|
|
|
#include <openssl/digest.h>
|
|
|
|
#include <openssl/err.h>
|
|
|
|
#include <openssl/evp_errors.h>
|
|
|
|
#include <openssl/hkdf.h>
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
#include <openssl/sha.h>
|
|
|
|
|
|
|
|
#include "../internal.h"
|
|
|
|
|
|
|
|
|
|
|
|
// This file implements draft-irtf-cfrg-hpke-08.
|
|
|
|
|
|
|
|
#define MAX_SEED_LEN X25519_PRIVATE_KEY_LEN
|
|
|
|
#define MAX_SHARED_SECRET_LEN SHA256_DIGEST_LENGTH
|
|
|
|
|
|
|
|
struct evp_hpke_kem_st {
|
|
|
|
uint16_t id;
|
|
|
|
size_t public_key_len;
|
|
|
|
size_t private_key_len;
|
|
|
|
size_t seed_len;
|
|
|
|
int (*init_key)(EVP_HPKE_KEY *key, const uint8_t *priv_key,
|
|
|
|
size_t priv_key_len);
|
|
|
|
int (*generate_key)(EVP_HPKE_KEY *key);
|
|
|
|
int (*encap_with_seed)(const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret,
|
|
|
|
size_t *out_shared_secret_len, uint8_t *out_enc,
|
|
|
|
size_t *out_enc_len, size_t max_enc,
|
|
|
|
const uint8_t *peer_public_key,
|
|
|
|
size_t peer_public_key_len, const uint8_t *seed,
|
|
|
|
size_t seed_len);
|
|
|
|
int (*decap)(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret,
|
|
|
|
size_t *out_shared_secret_len, const uint8_t *enc,
|
|
|
|
size_t enc_len);
|
|
|
|
};
|
|
|
|
|
|
|
|
struct evp_hpke_kdf_st {
|
|
|
|
uint16_t id;
|
|
|
|
// We only support HKDF-based KDFs.
|
|
|
|
const EVP_MD *(*hkdf_md_func)(void);
|
|
|
|
};
|
|
|
|
|
|
|
|
struct evp_hpke_aead_st {
|
|
|
|
uint16_t id;
|
|
|
|
const EVP_AEAD *(*aead_func)(void);
|
|
|
|
};
|
|
|
|
|
|
|
|
|
|
|
|
// Low-level labeled KDF functions.
|
|
|
|
|
|
|
|
static const char kHpkeVersionId[] = "HPKE-v1";
|
|
|
|
|
|
|
|
static int add_label_string(CBB *cbb, const char *label) {
|
|
|
|
return CBB_add_bytes(cbb, (const uint8_t *)label, strlen(label));
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hpke_labeled_extract(const EVP_MD *hkdf_md, uint8_t *out_key,
|
|
|
|
size_t *out_len, const uint8_t *salt,
|
|
|
|
size_t salt_len, const uint8_t *suite_id,
|
|
|
|
size_t suite_id_len, const char *label,
|
|
|
|
const uint8_t *ikm, size_t ikm_len) {
|
|
|
|
// labeledIKM = concat("HPKE-v1", suite_id, label, IKM)
|
|
|
|
CBB labeled_ikm;
|
|
|
|
int ok = CBB_init(&labeled_ikm, 0) &&
|
|
|
|
add_label_string(&labeled_ikm, kHpkeVersionId) &&
|
|
|
|
CBB_add_bytes(&labeled_ikm, suite_id, suite_id_len) &&
|
|
|
|
add_label_string(&labeled_ikm, label) &&
|
|
|
|
CBB_add_bytes(&labeled_ikm, ikm, ikm_len) &&
|
|
|
|
HKDF_extract(out_key, out_len, hkdf_md, CBB_data(&labeled_ikm),
|
|
|
|
CBB_len(&labeled_ikm), salt, salt_len);
|
|
|
|
CBB_cleanup(&labeled_ikm);
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hpke_labeled_expand(const EVP_MD *hkdf_md, uint8_t *out_key,
|
|
|
|
size_t out_len, const uint8_t *prk,
|
|
|
|
size_t prk_len, const uint8_t *suite_id,
|
|
|
|
size_t suite_id_len, const char *label,
|
|
|
|
const uint8_t *info, size_t info_len) {
|
|
|
|
// labeledInfo = concat(I2OSP(L, 2), "HPKE-v1", suite_id, label, info)
|
|
|
|
CBB labeled_info;
|
|
|
|
int ok = CBB_init(&labeled_info, 0) &&
|
|
|
|
CBB_add_u16(&labeled_info, out_len) &&
|
|
|
|
add_label_string(&labeled_info, kHpkeVersionId) &&
|
|
|
|
CBB_add_bytes(&labeled_info, suite_id, suite_id_len) &&
|
|
|
|
add_label_string(&labeled_info, label) &&
|
|
|
|
CBB_add_bytes(&labeled_info, info, info_len) &&
|
|
|
|
HKDF_expand(out_key, out_len, hkdf_md, prk, prk_len,
|
|
|
|
CBB_data(&labeled_info), CBB_len(&labeled_info));
|
|
|
|
CBB_cleanup(&labeled_info);
|
|
|
|
return ok;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// KEM implementations.
|
|
|
|
|
|
|
|
// dhkem_extract_and_expand implements the ExtractAndExpand operation in the
|
|
|
|
// DHKEM construction. See section 4.1 of draft-irtf-cfrg-hpke-08.
|
|
|
|
static int dhkem_extract_and_expand(uint16_t kem_id, const EVP_MD *hkdf_md,
|
|
|
|
uint8_t *out_key, size_t out_len,
|
|
|
|
const uint8_t *dh, size_t dh_len,
|
|
|
|
const uint8_t *kem_context,
|
|
|
|
size_t kem_context_len) {
|
|
|
|
// concat("KEM", I2OSP(kem_id, 2))
|
|
|
|
uint8_t suite_id[5] = {'K', 'E', 'M', kem_id >> 8, kem_id & 0xff};
|
|
|
|
uint8_t prk[EVP_MAX_MD_SIZE];
|
|
|
|
size_t prk_len;
|
|
|
|
return hpke_labeled_extract(hkdf_md, prk, &prk_len, NULL, 0, suite_id,
|
|
|
|
sizeof(suite_id), "eae_prk", dh, dh_len) &&
|
|
|
|
hpke_labeled_expand(hkdf_md, out_key, out_len, prk, prk_len, suite_id,
|
|
|
|
sizeof(suite_id), "shared_secret", kem_context,
|
|
|
|
kem_context_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x25519_init_key(EVP_HPKE_KEY *key, const uint8_t *priv_key,
|
|
|
|
size_t priv_key_len) {
|
|
|
|
if (priv_key_len != X25519_PRIVATE_KEY_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_memcpy(key->private_key, priv_key, priv_key_len);
|
|
|
|
X25519_public_from_private(key->public_key, priv_key);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x25519_generate_key(EVP_HPKE_KEY *key) {
|
|
|
|
X25519_keypair(key->public_key, key->private_key);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x25519_encap_with_seed(
|
|
|
|
const EVP_HPKE_KEM *kem, uint8_t *out_shared_secret,
|
|
|
|
size_t *out_shared_secret_len, uint8_t *out_enc, size_t *out_enc_len,
|
|
|
|
size_t max_enc, const uint8_t *peer_public_key, size_t peer_public_key_len,
|
|
|
|
const uint8_t *seed, size_t seed_len) {
|
|
|
|
if (max_enc < X25519_PUBLIC_VALUE_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (seed_len != X25519_PRIVATE_KEY_LEN) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_DECODE_ERROR);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
X25519_public_from_private(out_enc, seed);
|
|
|
|
|
|
|
|
uint8_t dh[X25519_SHARED_KEY_LEN];
|
|
|
|
if (peer_public_key_len != X25519_PUBLIC_VALUE_LEN ||
|
|
|
|
!X25519(dh, seed, peer_public_key)) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN];
|
|
|
|
OPENSSL_memcpy(kem_context, out_enc, X25519_PUBLIC_VALUE_LEN);
|
|
|
|
OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, peer_public_key,
|
|
|
|
X25519_PUBLIC_VALUE_LEN);
|
|
|
|
if (!dhkem_extract_and_expand(kem->id, EVP_sha256(), out_shared_secret,
|
|
|
|
SHA256_DIGEST_LENGTH, dh, sizeof(dh),
|
|
|
|
kem_context, sizeof(kem_context))) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*out_enc_len = X25519_PUBLIC_VALUE_LEN;
|
|
|
|
*out_shared_secret_len = SHA256_DIGEST_LENGTH;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static int x25519_decap(const EVP_HPKE_KEY *key, uint8_t *out_shared_secret,
|
|
|
|
size_t *out_shared_secret_len, const uint8_t *enc,
|
|
|
|
size_t enc_len) {
|
|
|
|
uint8_t dh[X25519_SHARED_KEY_LEN];
|
|
|
|
if (enc_len != X25519_PUBLIC_VALUE_LEN ||
|
|
|
|
!X25519(dh, key->private_key, enc)) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_PEER_KEY);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t kem_context[2 * X25519_PUBLIC_VALUE_LEN];
|
|
|
|
OPENSSL_memcpy(kem_context, enc, X25519_PUBLIC_VALUE_LEN);
|
|
|
|
OPENSSL_memcpy(kem_context + X25519_PUBLIC_VALUE_LEN, key->public_key,
|
|
|
|
X25519_PUBLIC_VALUE_LEN);
|
|
|
|
if (!dhkem_extract_and_expand(key->kem->id, EVP_sha256(), out_shared_secret,
|
|
|
|
SHA256_DIGEST_LENGTH, dh, sizeof(dh),
|
|
|
|
kem_context, sizeof(kem_context))) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
*out_shared_secret_len = SHA256_DIGEST_LENGTH;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_HPKE_KEM *EVP_hpke_x25519_hkdf_sha256(void) {
|
|
|
|
static const EVP_HPKE_KEM kKEM = {
|
|
|
|
/*id=*/EVP_HPKE_DHKEM_X25519_HKDF_SHA256,
|
|
|
|
/*public_key_len=*/X25519_PUBLIC_VALUE_LEN,
|
|
|
|
/*private_key_len=*/X25519_PRIVATE_KEY_LEN,
|
|
|
|
/*seed_len=*/X25519_PRIVATE_KEY_LEN,
|
|
|
|
x25519_init_key,
|
|
|
|
x25519_generate_key,
|
|
|
|
x25519_encap_with_seed,
|
|
|
|
x25519_decap,
|
|
|
|
};
|
|
|
|
return &kKEM;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t EVP_HPKE_KEM_id(const EVP_HPKE_KEM *kem) { return kem->id; }
|
|
|
|
|
|
|
|
void EVP_HPKE_KEY_zero(EVP_HPKE_KEY *key) {
|
|
|
|
OPENSSL_memset(key, 0, sizeof(EVP_HPKE_KEY));
|
|
|
|
}
|
|
|
|
|
|
|
|
void EVP_HPKE_KEY_cleanup(EVP_HPKE_KEY *key) {
|
|
|
|
// Nothing to clean up for now, but we may introduce a cleanup process in the
|
|
|
|
// future.
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_KEY_copy(EVP_HPKE_KEY *dst, const EVP_HPKE_KEY *src) {
|
|
|
|
// For now, |EVP_HPKE_KEY| is trivially copyable.
|
|
|
|
OPENSSL_memcpy(dst, src, sizeof(EVP_HPKE_KEY));
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_KEY_init(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem,
|
|
|
|
const uint8_t *priv_key, size_t priv_key_len) {
|
|
|
|
EVP_HPKE_KEY_zero(key);
|
|
|
|
key->kem = kem;
|
|
|
|
if (!kem->init_key(key, priv_key, priv_key_len)) {
|
|
|
|
key->kem = NULL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_KEY_generate(EVP_HPKE_KEY *key, const EVP_HPKE_KEM *kem) {
|
|
|
|
EVP_HPKE_KEY_zero(key);
|
|
|
|
key->kem = kem;
|
|
|
|
if (!kem->generate_key(key)) {
|
|
|
|
key->kem = NULL;
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_HPKE_KEM *EVP_HPKE_KEY_kem(const EVP_HPKE_KEY *key) {
|
|
|
|
return key->kem;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_KEY_public_key(const EVP_HPKE_KEY *key, uint8_t *out,
|
|
|
|
size_t *out_len, size_t max_out) {
|
|
|
|
if (max_out < key->kem->public_key_len) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
OPENSSL_memcpy(out, key->public_key, key->kem->public_key_len);
|
|
|
|
*out_len = key->kem->public_key_len;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_KEY_private_key(const EVP_HPKE_KEY *key, uint8_t *out,
|
|
|
|
size_t *out_len, size_t max_out) {
|
|
|
|
if (max_out < key->kem->private_key_len) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, EVP_R_INVALID_BUFFER_SIZE);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
OPENSSL_memcpy(out, key->private_key, key->kem->private_key_len);
|
|
|
|
*out_len = key->kem->private_key_len;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// Supported KDFs and AEADs.
|
|
|
|
|
|
|
|
const EVP_HPKE_KDF *EVP_hpke_hkdf_sha256(void) {
|
|
|
|
static const EVP_HPKE_KDF kKDF = {EVP_HPKE_HKDF_SHA256, &EVP_sha256};
|
|
|
|
return &kKDF;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t EVP_HPKE_KDF_id(const EVP_HPKE_KDF *kdf) { return kdf->id; }
|
|
|
|
|
|
|
|
const EVP_HPKE_AEAD *EVP_hpke_aes_128_gcm(void) {
|
|
|
|
static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_128_GCM,
|
|
|
|
&EVP_aead_aes_128_gcm};
|
|
|
|
return &kAEAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_HPKE_AEAD *EVP_hpke_aes_256_gcm(void) {
|
|
|
|
static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_AES_256_GCM,
|
|
|
|
&EVP_aead_aes_256_gcm};
|
|
|
|
return &kAEAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_HPKE_AEAD *EVP_hpke_chacha20_poly1305(void) {
|
|
|
|
static const EVP_HPKE_AEAD kAEAD = {EVP_HPKE_CHACHA20_POLY1305,
|
|
|
|
&EVP_aead_chacha20_poly1305};
|
|
|
|
return &kAEAD;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint16_t EVP_HPKE_AEAD_id(const EVP_HPKE_AEAD *aead) { return aead->id; }
|
|
|
|
|
|
|
|
|
|
|
|
// HPKE implementation.
|
|
|
|
|
|
|
|
// This is strlen("HPKE") + 3 * sizeof(uint16_t).
|
|
|
|
#define HPKE_SUITE_ID_LEN 10
|
|
|
|
|
|
|
|
// The suite_id for non-KEM pieces of HPKE is defined as concat("HPKE",
|
|
|
|
// I2OSP(kem_id, 2), I2OSP(kdf_id, 2), I2OSP(aead_id, 2)).
|
|
|
|
static int hpke_build_suite_id(const EVP_HPKE_CTX *ctx,
|
|
|
|
uint8_t out[HPKE_SUITE_ID_LEN]) {
|
|
|
|
CBB cbb;
|
|
|
|
int ret = CBB_init_fixed(&cbb, out, HPKE_SUITE_ID_LEN) &&
|
|
|
|
add_label_string(&cbb, "HPKE") &&
|
|
|
|
CBB_add_u16(&cbb, EVP_HPKE_DHKEM_X25519_HKDF_SHA256) &&
|
|
|
|
CBB_add_u16(&cbb, ctx->kdf->id) &&
|
|
|
|
CBB_add_u16(&cbb, ctx->aead->id);
|
|
|
|
CBB_cleanup(&cbb);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
#define HPKE_MODE_BASE 0
|
|
|
|
|
|
|
|
static int hpke_key_schedule(EVP_HPKE_CTX *ctx, const uint8_t *shared_secret,
|
|
|
|
size_t shared_secret_len, const uint8_t *info,
|
|
|
|
size_t info_len) {
|
|
|
|
uint8_t suite_id[HPKE_SUITE_ID_LEN];
|
|
|
|
if (!hpke_build_suite_id(ctx, suite_id)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// psk_id_hash = LabeledExtract("", "psk_id_hash", psk_id)
|
|
|
|
// TODO(davidben): Precompute this value and store it with the EVP_HPKE_KDF.
|
|
|
|
const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func();
|
|
|
|
uint8_t psk_id_hash[EVP_MAX_MD_SIZE];
|
|
|
|
size_t psk_id_hash_len;
|
|
|
|
if (!hpke_labeled_extract(hkdf_md, psk_id_hash, &psk_id_hash_len, NULL, 0,
|
|
|
|
suite_id, sizeof(suite_id), "psk_id_hash", NULL,
|
|
|
|
0)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// info_hash = LabeledExtract("", "info_hash", info)
|
|
|
|
uint8_t info_hash[EVP_MAX_MD_SIZE];
|
|
|
|
size_t info_hash_len;
|
|
|
|
if (!hpke_labeled_extract(hkdf_md, info_hash, &info_hash_len, NULL, 0,
|
|
|
|
suite_id, sizeof(suite_id), "info_hash", info,
|
|
|
|
info_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// key_schedule_context = concat(mode, psk_id_hash, info_hash)
|
|
|
|
uint8_t context[sizeof(uint8_t) + 2 * EVP_MAX_MD_SIZE];
|
|
|
|
size_t context_len;
|
|
|
|
CBB context_cbb;
|
|
|
|
if (!CBB_init_fixed(&context_cbb, context, sizeof(context)) ||
|
|
|
|
!CBB_add_u8(&context_cbb, HPKE_MODE_BASE) ||
|
|
|
|
!CBB_add_bytes(&context_cbb, psk_id_hash, psk_id_hash_len) ||
|
|
|
|
!CBB_add_bytes(&context_cbb, info_hash, info_hash_len) ||
|
|
|
|
!CBB_finish(&context_cbb, NULL, &context_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// secret = LabeledExtract(shared_secret, "secret", psk)
|
|
|
|
uint8_t secret[EVP_MAX_MD_SIZE];
|
|
|
|
size_t secret_len;
|
|
|
|
if (!hpke_labeled_extract(hkdf_md, secret, &secret_len, shared_secret,
|
|
|
|
shared_secret_len, suite_id, sizeof(suite_id),
|
|
|
|
"secret", NULL, 0)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// key = LabeledExpand(secret, "key", key_schedule_context, Nk)
|
|
|
|
const EVP_AEAD *aead = ctx->aead->aead_func();
|
|
|
|
uint8_t key[EVP_AEAD_MAX_KEY_LENGTH];
|
|
|
|
const size_t kKeyLen = EVP_AEAD_key_length(aead);
|
|
|
|
if (!hpke_labeled_expand(hkdf_md, key, kKeyLen, secret, secret_len, suite_id,
|
|
|
|
sizeof(suite_id), "key", context, context_len) ||
|
|
|
|
!EVP_AEAD_CTX_init(&ctx->aead_ctx, aead, key, kKeyLen,
|
|
|
|
EVP_AEAD_DEFAULT_TAG_LENGTH, NULL)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// base_nonce = LabeledExpand(secret, "base_nonce", key_schedule_context, Nn)
|
|
|
|
if (!hpke_labeled_expand(hkdf_md, ctx->base_nonce,
|
|
|
|
EVP_AEAD_nonce_length(aead), secret, secret_len,
|
|
|
|
suite_id, sizeof(suite_id), "base_nonce", context,
|
|
|
|
context_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
// exporter_secret = LabeledExpand(secret, "exp", key_schedule_context, Nh)
|
|
|
|
if (!hpke_labeled_expand(hkdf_md, ctx->exporter_secret, EVP_MD_size(hkdf_md),
|
|
|
|
secret, secret_len, suite_id, sizeof(suite_id),
|
|
|
|
"exp", context, context_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
void EVP_HPKE_CTX_zero(EVP_HPKE_CTX *ctx) {
|
|
|
|
OPENSSL_memset(ctx, 0, sizeof(EVP_HPKE_CTX));
|
|
|
|
EVP_AEAD_CTX_zero(&ctx->aead_ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
void EVP_HPKE_CTX_cleanup(EVP_HPKE_CTX *ctx) {
|
|
|
|
EVP_AEAD_CTX_cleanup(&ctx->aead_ctx);
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_CTX_setup_sender(EVP_HPKE_CTX *ctx, uint8_t *out_enc,
|
|
|
|
size_t *out_enc_len, size_t max_enc,
|
|
|
|
const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf,
|
|
|
|
const EVP_HPKE_AEAD *aead,
|
|
|
|
const uint8_t *peer_public_key,
|
|
|
|
size_t peer_public_key_len, const uint8_t *info,
|
|
|
|
size_t info_len) {
|
|
|
|
uint8_t seed[MAX_SEED_LEN];
|
|
|
|
RAND_bytes(seed, kem->seed_len);
|
|
|
|
return EVP_HPKE_CTX_setup_sender_with_seed_for_testing(
|
|
|
|
ctx, out_enc, out_enc_len, max_enc, kem, kdf, aead, peer_public_key,
|
|
|
|
peer_public_key_len, info, info_len, seed, kem->seed_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_CTX_setup_sender_with_seed_for_testing(
|
|
|
|
EVP_HPKE_CTX *ctx, uint8_t *out_enc, size_t *out_enc_len, size_t max_enc,
|
|
|
|
const EVP_HPKE_KEM *kem, const EVP_HPKE_KDF *kdf, const EVP_HPKE_AEAD *aead,
|
|
|
|
const uint8_t *peer_public_key, size_t peer_public_key_len,
|
|
|
|
const uint8_t *info, size_t info_len, const uint8_t *seed,
|
|
|
|
size_t seed_len) {
|
|
|
|
EVP_HPKE_CTX_zero(ctx);
|
|
|
|
ctx->is_sender = 1;
|
|
|
|
ctx->kdf = kdf;
|
|
|
|
ctx->aead = aead;
|
|
|
|
uint8_t shared_secret[MAX_SHARED_SECRET_LEN];
|
|
|
|
size_t shared_secret_len;
|
|
|
|
if (!kem->encap_with_seed(kem, shared_secret, &shared_secret_len, out_enc,
|
|
|
|
out_enc_len, max_enc, peer_public_key,
|
|
|
|
peer_public_key_len, seed, seed_len) ||
|
|
|
|
!hpke_key_schedule(ctx, shared_secret, shared_secret_len, info,
|
|
|
|
info_len)) {
|
|
|
|
EVP_HPKE_CTX_cleanup(ctx);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_CTX_setup_recipient(EVP_HPKE_CTX *ctx, const EVP_HPKE_KEY *key,
|
|
|
|
const EVP_HPKE_KDF *kdf,
|
|
|
|
const EVP_HPKE_AEAD *aead, const uint8_t *enc,
|
|
|
|
size_t enc_len, const uint8_t *info,
|
|
|
|
size_t info_len) {
|
|
|
|
EVP_HPKE_CTX_zero(ctx);
|
|
|
|
ctx->is_sender = 0;
|
|
|
|
ctx->kdf = kdf;
|
|
|
|
ctx->aead = aead;
|
|
|
|
uint8_t shared_secret[MAX_SHARED_SECRET_LEN];
|
|
|
|
size_t shared_secret_len;
|
|
|
|
if (!key->kem->decap(key, shared_secret, &shared_secret_len, enc, enc_len) ||
|
|
|
|
!hpke_key_schedule(ctx, shared_secret, sizeof(shared_secret), info,
|
|
|
|
info_len)) {
|
|
|
|
EVP_HPKE_CTX_cleanup(ctx);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hpke_nonce(const EVP_HPKE_CTX *ctx, uint8_t *out_nonce,
|
|
|
|
size_t nonce_len) {
|
|
|
|
assert(nonce_len >= 8);
|
|
|
|
|
|
|
|
// Write padded big-endian bytes of |ctx->seq| to |out_nonce|.
|
|
|
|
OPENSSL_memset(out_nonce, 0, nonce_len);
|
|
|
|
uint64_t seq_copy = ctx->seq;
|
|
|
|
for (size_t i = 0; i < 8; i++) {
|
|
|
|
out_nonce[nonce_len - i - 1] = seq_copy & 0xff;
|
|
|
|
seq_copy >>= 8;
|
|
|
|
}
|
|
|
|
|
|
|
|
// XOR the encoded sequence with the |ctx->base_nonce|.
|
|
|
|
for (size_t i = 0; i < nonce_len; i++) {
|
|
|
|
out_nonce[i] ^= ctx->base_nonce[i];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_CTX_open(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len,
|
|
|
|
size_t max_out_len, const uint8_t *in, size_t in_len,
|
|
|
|
const uint8_t *ad, size_t ad_len) {
|
|
|
|
if (ctx->is_sender) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (ctx->seq == UINT64_MAX) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
|
|
|
|
const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead);
|
|
|
|
hpke_nonce(ctx, nonce, nonce_len);
|
|
|
|
|
|
|
|
if (!EVP_AEAD_CTX_open(&ctx->aead_ctx, out, out_len, max_out_len, nonce,
|
|
|
|
nonce_len, in, in_len, ad, ad_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
ctx->seq++;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_CTX_seal(EVP_HPKE_CTX *ctx, uint8_t *out, size_t *out_len,
|
|
|
|
size_t max_out_len, const uint8_t *in, size_t in_len,
|
|
|
|
const uint8_t *ad, size_t ad_len) {
|
|
|
|
if (!ctx->is_sender) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_SHOULD_NOT_HAVE_BEEN_CALLED);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
if (ctx->seq == UINT64_MAX) {
|
|
|
|
OPENSSL_PUT_ERROR(EVP, ERR_R_OVERFLOW);
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t nonce[EVP_AEAD_MAX_NONCE_LENGTH];
|
|
|
|
const size_t nonce_len = EVP_AEAD_nonce_length(ctx->aead_ctx.aead);
|
|
|
|
hpke_nonce(ctx, nonce, nonce_len);
|
|
|
|
|
|
|
|
if (!EVP_AEAD_CTX_seal(&ctx->aead_ctx, out, out_len, max_out_len, nonce,
|
|
|
|
nonce_len, in, in_len, ad, ad_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
ctx->seq++;
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int EVP_HPKE_CTX_export(const EVP_HPKE_CTX *ctx, uint8_t *out,
|
|
|
|
size_t secret_len, const uint8_t *context,
|
|
|
|
size_t context_len) {
|
|
|
|
uint8_t suite_id[HPKE_SUITE_ID_LEN];
|
|
|
|
if (!hpke_build_suite_id(ctx, suite_id)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
const EVP_MD *hkdf_md = ctx->kdf->hkdf_md_func();
|
|
|
|
if (!hpke_labeled_expand(hkdf_md, out, secret_len, ctx->exporter_secret,
|
|
|
|
EVP_MD_size(hkdf_md), suite_id, sizeof(suite_id),
|
|
|
|
"sec", context, context_len)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t EVP_HPKE_CTX_max_overhead(const EVP_HPKE_CTX *ctx) {
|
|
|
|
assert(ctx->is_sender);
|
|
|
|
return EVP_AEAD_max_overhead(EVP_AEAD_CTX_aead(&ctx->aead_ctx));
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_HPKE_AEAD *EVP_HPKE_CTX_aead(const EVP_HPKE_CTX *ctx) {
|
|
|
|
return ctx->aead;
|
|
|
|
}
|
|
|
|
|
|
|
|
const EVP_HPKE_KDF *EVP_HPKE_CTX_kdf(const EVP_HPKE_CTX *ctx) {
|
|
|
|
return ctx->kdf;
|
|
|
|
}
|