Mirror of BoringSSL (grpc依赖)
https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
767 lines
23 KiB
767 lines
23 KiB
5 years ago
|
/* Copyright (c) 2020, Google Inc.
|
||
|
*
|
||
|
* Permission to use, copy, modify, and/or distribute this software for any
|
||
|
* purpose with or without fee is hereby granted, provided that the above
|
||
|
* copyright notice and this permission notice appear in all copies.
|
||
|
*
|
||
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
||
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
||
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
||
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
||
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
||
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
||
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
||
|
|
||
|
#include <openssl/trust_token.h>
|
||
|
|
||
|
#include <openssl/bn.h>
|
||
|
#include <openssl/bytestring.h>
|
||
|
#include <openssl/ec.h>
|
||
|
#include <openssl/err.h>
|
||
|
#include <openssl/mem.h>
|
||
|
#include <openssl/nid.h>
|
||
|
#include <openssl/rand.h>
|
||
|
|
||
|
#include "../ec_extra/internal.h"
|
||
|
#include "../fipsmodule/ec/internal.h"
|
||
|
|
||
|
#include "internal.h"
|
||
|
|
||
|
|
||
|
typedef int (*hash_to_group_func_t)(const EC_GROUP *group, EC_RAW_POINT *out,
|
||
|
const uint8_t t[TRUST_TOKEN_NONCE_SIZE]);
|
||
|
typedef int (*hash_to_scalar_func_t)(const EC_GROUP *group, EC_SCALAR *out,
|
||
|
uint8_t *buf, size_t len);
|
||
|
|
||
|
typedef struct {
|
||
|
const EC_GROUP *group;
|
||
|
|
||
|
// hash_to_group implements the HashToGroup operation for VOPRFs. It returns
|
||
|
// one on success and zero on error.
|
||
|
hash_to_group_func_t hash_to_group;
|
||
|
// hash_to_scalar implements the HashToScalar operation for VOPRFs. It returns
|
||
|
// one on success and zero on error.
|
||
|
hash_to_scalar_func_t hash_to_scalar;
|
||
|
} VOPRF_METHOD;
|
||
|
|
||
|
static const uint8_t kDefaultAdditionalData[32] = {0};
|
||
|
|
||
|
static int voprf_init_method(VOPRF_METHOD *method, int curve_nid,
|
||
|
hash_to_group_func_t hash_to_group,
|
||
|
hash_to_scalar_func_t hash_to_scalar) {
|
||
|
method->group = EC_GROUP_new_by_curve_name(curve_nid);
|
||
|
if (method->group == NULL) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
method->hash_to_group = hash_to_group;
|
||
|
method->hash_to_scalar = hash_to_scalar;
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int cbb_add_point(CBB *out, const EC_GROUP *group,
|
||
|
const EC_AFFINE *point) {
|
||
|
size_t len =
|
||
|
ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, NULL, 0);
|
||
|
if (len == 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
uint8_t *p;
|
||
|
return CBB_add_space(out, &p, len) &&
|
||
|
ec_point_to_bytes(group, point, POINT_CONVERSION_UNCOMPRESSED, p,
|
||
|
len) == len &&
|
||
|
CBB_flush(out);
|
||
|
}
|
||
|
|
||
|
static int cbs_get_point(CBS *cbs, const EC_GROUP *group, EC_AFFINE *out) {
|
||
|
CBS child;
|
||
|
size_t plen = 1 + 2 * BN_num_bytes(&group->field);
|
||
|
if (!CBS_get_bytes(cbs, &child, plen) ||
|
||
|
!ec_point_from_uncompressed(group, out, CBS_data(&child),
|
||
|
CBS_len(&child))) {
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int scalar_to_cbb(CBB *out, const EC_GROUP *group,
|
||
|
const EC_SCALAR *scalar) {
|
||
|
uint8_t *buf;
|
||
|
size_t scalar_len = BN_num_bytes(&group->order);
|
||
|
if (!CBB_add_space(out, &buf, scalar_len)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
ec_scalar_to_bytes(group, buf, &scalar_len, scalar);
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int scalar_from_cbs(CBS *cbs, const EC_GROUP *group, EC_SCALAR *out) {
|
||
|
size_t scalar_len = BN_num_bytes(&group->order);
|
||
|
CBS tmp;
|
||
|
if (!CBS_get_bytes(cbs, &tmp, scalar_len)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
ec_scalar_from_bytes(group, out, CBS_data(&tmp), CBS_len(&tmp));
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int voprf_generate_key(const VOPRF_METHOD *method, CBB *out_private,
|
||
|
CBB *out_public) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
EC_RAW_POINT pub;
|
||
|
EC_SCALAR priv;
|
||
|
EC_AFFINE pub_affine;
|
||
|
if (!ec_random_nonzero_scalar(group, &priv, kDefaultAdditionalData) ||
|
||
|
!ec_point_mul_scalar_base(group, &pub, &priv) ||
|
||
|
!ec_jacobian_to_affine(group, &pub_affine, &pub)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_KEYGEN_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (!scalar_to_cbb(out_private, group, &priv) ||
|
||
|
!cbb_add_point(out_public, group, &pub_affine)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BUFFER_TOO_SMALL);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int voprf_client_key_from_bytes(const VOPRF_METHOD *method,
|
||
|
TRUST_TOKEN_CLIENT_KEY *key,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
if (!ec_point_from_uncompressed(group, &key->pubs, in, len)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int voprf_issuer_key_from_bytes(const VOPRF_METHOD *method,
|
||
|
TRUST_TOKEN_ISSUER_KEY *key,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
if (!ec_scalar_from_bytes(group, &key->xs, in, len)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Recompute the public key.
|
||
|
EC_RAW_POINT pub;
|
||
|
if (!ec_point_mul_scalar_base(group, &pub, &key->xs) ||
|
||
|
!ec_jacobian_to_affine(group, &key->pubs, &pub)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static STACK_OF(TRUST_TOKEN_PRETOKEN) *
|
||
|
voprf_blind(const VOPRF_METHOD *method, CBB *cbb, size_t count) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
STACK_OF(TRUST_TOKEN_PRETOKEN) *pretokens =
|
||
|
sk_TRUST_TOKEN_PRETOKEN_new_null();
|
||
|
if (pretokens == NULL) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < count; i++) {
|
||
|
// Insert |pretoken| into |pretokens| early to simplify error-handling.
|
||
|
TRUST_TOKEN_PRETOKEN *pretoken =
|
||
|
OPENSSL_malloc(sizeof(TRUST_TOKEN_PRETOKEN));
|
||
|
if (pretoken == NULL ||
|
||
|
!sk_TRUST_TOKEN_PRETOKEN_push(pretokens, pretoken)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
TRUST_TOKEN_PRETOKEN_free(pretoken);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
RAND_bytes(pretoken->t, sizeof(pretoken->t));
|
||
|
|
||
|
// We sample r in Montgomery form to simplify inverting.
|
||
|
EC_SCALAR r;
|
||
|
if (!ec_random_nonzero_scalar(group, &r,
|
||
|
kDefaultAdditionalData)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
// pretoken->r is rinv.
|
||
|
ec_scalar_inv0_montgomery(group, &pretoken->r, &r);
|
||
|
// Convert both out of Montgomery form.
|
||
|
ec_scalar_from_montgomery(group, &r, &r);
|
||
|
ec_scalar_from_montgomery(group, &pretoken->r, &pretoken->r);
|
||
|
|
||
|
// Tp is the blinded token in the VOPRF protocol.
|
||
|
EC_RAW_POINT P, Tp;
|
||
|
if (!method->hash_to_group(group, &P, pretoken->t) ||
|
||
|
!ec_point_mul_scalar(group, &Tp, &P, &r) ||
|
||
|
!ec_jacobian_to_affine(group, &pretoken->Tp, &Tp)) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (!cbb_add_point(cbb, group, &pretoken->Tp)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
return pretokens;
|
||
|
|
||
|
err:
|
||
|
sk_TRUST_TOKEN_PRETOKEN_pop_free(pretokens, TRUST_TOKEN_PRETOKEN_free);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
static int hash_to_scalar_dleq(const VOPRF_METHOD *method, EC_SCALAR *out,
|
||
|
const EC_AFFINE *X, const EC_AFFINE *T,
|
||
|
const EC_AFFINE *W, const EC_AFFINE *K0,
|
||
|
const EC_AFFINE *K1) {
|
||
|
static const uint8_t kDLEQLabel[] = "DLEQ";
|
||
|
|
||
|
int ok = 0;
|
||
|
CBB cbb;
|
||
|
CBB_zero(&cbb);
|
||
|
uint8_t *buf = NULL;
|
||
|
size_t len;
|
||
|
if (!CBB_init(&cbb, 0) ||
|
||
|
!CBB_add_bytes(&cbb, kDLEQLabel, sizeof(kDLEQLabel)) ||
|
||
|
!cbb_add_point(&cbb, method->group, X) ||
|
||
|
!cbb_add_point(&cbb, method->group, T) ||
|
||
|
!cbb_add_point(&cbb, method->group, W) ||
|
||
|
!cbb_add_point(&cbb, method->group, K0) ||
|
||
|
!cbb_add_point(&cbb, method->group, K1) ||
|
||
|
!CBB_finish(&cbb, &buf, &len) ||
|
||
|
!method->hash_to_scalar(method->group, out, buf, len)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ok = 1;
|
||
|
|
||
|
err:
|
||
|
CBB_cleanup(&cbb);
|
||
|
OPENSSL_free(buf);
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
static int hash_to_scalar_batch(const VOPRF_METHOD *method, EC_SCALAR *out,
|
||
|
const CBB *points, size_t index) {
|
||
|
static const uint8_t kDLEQBatchLabel[] = "DLEQ BATCH";
|
||
|
if (index > 0xffff) {
|
||
|
// The protocol supports only two-byte batches.
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int ok = 0;
|
||
|
CBB cbb;
|
||
|
CBB_zero(&cbb);
|
||
|
uint8_t *buf = NULL;
|
||
|
size_t len;
|
||
|
if (!CBB_init(&cbb, 0) ||
|
||
|
!CBB_add_bytes(&cbb, kDLEQBatchLabel, sizeof(kDLEQBatchLabel)) ||
|
||
|
!CBB_add_bytes(&cbb, CBB_data(points), CBB_len(points)) ||
|
||
|
!CBB_add_u16(&cbb, (uint16_t)index) ||
|
||
|
!CBB_finish(&cbb, &buf, &len) ||
|
||
|
!method->hash_to_scalar(method->group, out, buf, len)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ok = 1;
|
||
|
|
||
|
err:
|
||
|
CBB_cleanup(&cbb);
|
||
|
OPENSSL_free(buf);
|
||
|
return ok;
|
||
|
}
|
||
|
|
||
|
static int dleq_generate(const VOPRF_METHOD *method, CBB *cbb,
|
||
|
const TRUST_TOKEN_ISSUER_KEY *priv,
|
||
|
const EC_RAW_POINT *T, const EC_RAW_POINT *W) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
|
||
|
enum {
|
||
|
idx_T,
|
||
|
idx_W,
|
||
|
idx_k0,
|
||
|
idx_k1,
|
||
|
num_idx,
|
||
|
};
|
||
|
EC_RAW_POINT jacobians[num_idx];
|
||
|
|
||
|
// Setup the DLEQ proof.
|
||
|
EC_SCALAR r;
|
||
|
if (// r <- Zp
|
||
|
!ec_random_nonzero_scalar(group, &r, kDefaultAdditionalData) ||
|
||
|
// k0;k1 = r*(G;T)
|
||
|
!ec_point_mul_scalar_base(group, &jacobians[idx_k0], &r) ||
|
||
|
!ec_point_mul_scalar(group, &jacobians[idx_k1], T, &r)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EC_AFFINE affines[num_idx];
|
||
|
jacobians[idx_T] = *T;
|
||
|
jacobians[idx_W] = *W;
|
||
|
if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Compute c = Hc(...).
|
||
|
EC_SCALAR c;
|
||
|
if (!hash_to_scalar_dleq(method, &c, &priv->pubs, &affines[idx_T],
|
||
|
&affines[idx_W], &affines[idx_k0],
|
||
|
&affines[idx_k1])) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
EC_SCALAR c_mont;
|
||
|
ec_scalar_to_montgomery(group, &c_mont, &c);
|
||
|
|
||
|
// u = r + c*xs
|
||
|
EC_SCALAR u;
|
||
|
ec_scalar_mul_montgomery(group, &u, &priv->xs, &c_mont);
|
||
|
ec_scalar_add(group, &u, &r, &u);
|
||
|
|
||
|
// Store DLEQ proof in transcript.
|
||
|
if (!scalar_to_cbb(cbb, group, &c) ||
|
||
|
!scalar_to_cbb(cbb, group, &u)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int mul_public_2(const EC_GROUP *group, EC_RAW_POINT *out,
|
||
|
const EC_RAW_POINT *p0, const EC_SCALAR *scalar0,
|
||
|
const EC_RAW_POINT *p1, const EC_SCALAR *scalar1) {
|
||
|
EC_RAW_POINT points[2] = {*p0, *p1};
|
||
|
EC_SCALAR scalars[2] = {*scalar0, *scalar1};
|
||
|
return ec_point_mul_scalar_public_batch(group, out, /*g_scalar=*/NULL, points,
|
||
|
scalars, 2);
|
||
|
}
|
||
|
|
||
|
static int dleq_verify(const VOPRF_METHOD *method, CBS *cbs,
|
||
|
const TRUST_TOKEN_CLIENT_KEY *pub, const EC_RAW_POINT *T,
|
||
|
const EC_RAW_POINT *W) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
|
||
|
|
||
|
enum {
|
||
|
idx_T,
|
||
|
idx_W,
|
||
|
idx_k0,
|
||
|
idx_k1,
|
||
|
num_idx,
|
||
|
};
|
||
|
EC_RAW_POINT jacobians[num_idx];
|
||
|
|
||
|
// Decode the DLEQ proof.
|
||
|
EC_SCALAR c, u;
|
||
|
if (!scalar_from_cbs(cbs, group, &c) ||
|
||
|
!scalar_from_cbs(cbs, group, &u)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// k0;k1 = u*(G;T) - c*(pub;W)
|
||
|
EC_RAW_POINT pubs;
|
||
|
ec_affine_to_jacobian(group, &pubs, &pub->pubs);
|
||
|
EC_SCALAR minus_c;
|
||
|
ec_scalar_neg(group, &minus_c, &c);
|
||
|
if (!ec_point_mul_scalar_public(group, &jacobians[idx_k0], &u, &pubs,
|
||
|
&minus_c) ||
|
||
|
!mul_public_2(group, &jacobians[idx_k1], T, &u, W, &minus_c)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Check the DLEQ proof.
|
||
|
EC_AFFINE affines[num_idx];
|
||
|
jacobians[idx_T] = *T;
|
||
|
jacobians[idx_W] = *W;
|
||
|
if (!ec_jacobian_to_affine_batch(group, affines, jacobians, num_idx)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// Compute c = Hc(...).
|
||
|
EC_SCALAR calculated;
|
||
|
if (!hash_to_scalar_dleq(method, &calculated, &pub->pubs, &affines[idx_T],
|
||
|
&affines[idx_W], &affines[idx_k0],
|
||
|
&affines[idx_k1])) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
// c == calculated
|
||
|
if (!ec_scalar_equal_vartime(group, &c, &calculated)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_PROOF);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
static int voprf_sign(const VOPRF_METHOD *method,
|
||
|
const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs,
|
||
|
size_t num_requested, size_t num_to_issue) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
if (num_requested < num_to_issue) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
if (num_to_issue > ((size_t)-1) / sizeof(EC_RAW_POINT) ||
|
||
|
num_to_issue > ((size_t)-1) / sizeof(EC_SCALAR)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
int ret = 0;
|
||
|
EC_RAW_POINT *BTs = OPENSSL_malloc(num_to_issue * sizeof(EC_RAW_POINT));
|
||
|
EC_RAW_POINT *Zs = OPENSSL_malloc(num_to_issue * sizeof(EC_RAW_POINT));
|
||
|
EC_SCALAR *es = OPENSSL_malloc(num_to_issue * sizeof(EC_SCALAR));
|
||
|
CBB batch_cbb;
|
||
|
CBB_zero(&batch_cbb);
|
||
|
if (!BTs ||
|
||
|
!Zs ||
|
||
|
!es ||
|
||
|
!CBB_init(&batch_cbb, 0) ||
|
||
|
!cbb_add_point(&batch_cbb, method->group, &key->pubs)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < num_to_issue; i++) {
|
||
|
EC_AFFINE BT_affine, Z_affine;
|
||
|
EC_RAW_POINT BT, Z;
|
||
|
if (!cbs_get_point(cbs, group, &BT_affine)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
ec_affine_to_jacobian(group, &BT, &BT_affine);
|
||
|
if (!ec_point_mul_scalar(group, &Z, &BT, &key->xs) ||
|
||
|
!ec_jacobian_to_affine(group, &Z_affine, &Z) ||
|
||
|
!cbb_add_point(cbb, group, &Z_affine)) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
if (!cbb_add_point(&batch_cbb, group, &BT_affine) ||
|
||
|
!cbb_add_point(&batch_cbb, group, &Z_affine)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
BTs[i] = BT;
|
||
|
Zs[i] = Z;
|
||
|
|
||
|
if (!CBB_flush(cbb)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The DLEQ batching construction is described in appendix B of
|
||
|
// https://eprint.iacr.org/2020/072/20200324:214215. Note the additional
|
||
|
// computations all act on public inputs.
|
||
|
for (size_t i = 0; i < num_to_issue; i++) {
|
||
|
if (!hash_to_scalar_batch(method, &es[i], &batch_cbb, i)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EC_RAW_POINT BT_batch, Z_batch;
|
||
|
if (!ec_point_mul_scalar_public_batch(group, &BT_batch,
|
||
|
/*g_scalar=*/NULL, BTs, es,
|
||
|
num_to_issue) ||
|
||
|
!ec_point_mul_scalar_public_batch(group, &Z_batch,
|
||
|
/*g_scalar=*/NULL, Zs, es,
|
||
|
num_to_issue)) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
CBB proof;
|
||
|
if (!CBB_add_u16_length_prefixed(cbb, &proof) ||
|
||
|
!dleq_generate(method, &proof, key, &BT_batch, &Z_batch) ||
|
||
|
!CBB_flush(cbb)) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
// Skip over any unused requests.
|
||
|
size_t point_len = 1 + 2 * BN_num_bytes(&group->field);
|
||
|
if (!CBS_skip(cbs, point_len * (num_requested - num_to_issue))) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ret = 1;
|
||
|
|
||
|
err:
|
||
|
OPENSSL_free(BTs);
|
||
|
OPENSSL_free(Zs);
|
||
|
OPENSSL_free(es);
|
||
|
CBB_cleanup(&batch_cbb);
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static STACK_OF(TRUST_TOKEN) *
|
||
|
voprf_unblind(const VOPRF_METHOD *method, const TRUST_TOKEN_CLIENT_KEY *key,
|
||
|
const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens, CBS *cbs,
|
||
|
size_t count, uint32_t key_id) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
if (count > sk_TRUST_TOKEN_PRETOKEN_num(pretokens)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
int ok = 0;
|
||
|
STACK_OF(TRUST_TOKEN) *ret = sk_TRUST_TOKEN_new_null();
|
||
|
if (ret == NULL) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
return NULL;
|
||
|
}
|
||
|
|
||
|
if (count > ((size_t)-1) / sizeof(EC_RAW_POINT) ||
|
||
|
count > ((size_t)-1) / sizeof(EC_SCALAR)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_OVERFLOW);
|
||
|
return 0;
|
||
|
}
|
||
|
EC_RAW_POINT *BTs = OPENSSL_malloc(count * sizeof(EC_RAW_POINT));
|
||
|
EC_RAW_POINT *Zs = OPENSSL_malloc(count * sizeof(EC_RAW_POINT));
|
||
|
EC_SCALAR *es = OPENSSL_malloc(count * sizeof(EC_SCALAR));
|
||
|
CBB batch_cbb;
|
||
|
CBB_zero(&batch_cbb);
|
||
|
if (!BTs ||
|
||
|
!Zs ||
|
||
|
!es ||
|
||
|
!CBB_init(&batch_cbb, 0) ||
|
||
|
!cbb_add_point(&batch_cbb, method->group, &key->pubs)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
for (size_t i = 0; i < count; i++) {
|
||
|
const TRUST_TOKEN_PRETOKEN *pretoken =
|
||
|
sk_TRUST_TOKEN_PRETOKEN_value(pretokens, i);
|
||
|
|
||
|
EC_AFFINE Z_affine;
|
||
|
if (!cbs_get_point(cbs, group, &Z_affine)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_DECODE_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ec_affine_to_jacobian(group, &BTs[i], &pretoken->Tp);
|
||
|
ec_affine_to_jacobian(group, &Zs[i], &Z_affine);
|
||
|
|
||
|
if (!cbb_add_point(&batch_cbb, group, &pretoken->Tp) ||
|
||
|
!cbb_add_point(&batch_cbb, group, &Z_affine)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
// Unblind the token.
|
||
|
// pretoken->r is rinv.
|
||
|
EC_RAW_POINT N;
|
||
|
EC_AFFINE N_affine;
|
||
|
if (!ec_point_mul_scalar(group, &N, &Zs[i], &pretoken->r) ||
|
||
|
!ec_jacobian_to_affine(group, &N_affine, &N)) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
// Serialize the token. Include |key_id| to avoid an extra copy in the layer
|
||
|
// above.
|
||
|
CBB token_cbb;
|
||
|
size_t point_len = 1 + 2 * BN_num_bytes(&group->field);
|
||
|
if (!CBB_init(&token_cbb, 4 + TRUST_TOKEN_NONCE_SIZE + (2 + point_len)) ||
|
||
|
!CBB_add_u32(&token_cbb, key_id) ||
|
||
|
!CBB_add_bytes(&token_cbb, pretoken->t, TRUST_TOKEN_NONCE_SIZE) ||
|
||
|
!cbb_add_point(&token_cbb, group, &N_affine) ||
|
||
|
!CBB_flush(&token_cbb)) {
|
||
|
CBB_cleanup(&token_cbb);
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
TRUST_TOKEN *token =
|
||
|
TRUST_TOKEN_new(CBB_data(&token_cbb), CBB_len(&token_cbb));
|
||
|
CBB_cleanup(&token_cbb);
|
||
|
if (token == NULL ||
|
||
|
!sk_TRUST_TOKEN_push(ret, token)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_MALLOC_FAILURE);
|
||
|
TRUST_TOKEN_free(token);
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// The DLEQ batching construction is described in appendix B of
|
||
|
// https://eprint.iacr.org/2020/072/20200324:214215. Note the additional
|
||
|
// computations all act on public inputs.
|
||
|
for (size_t i = 0; i < count; i++) {
|
||
|
if (!hash_to_scalar_batch(method, &es[i], &batch_cbb, i)) {
|
||
|
goto err;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
EC_RAW_POINT BT_batch, Z_batch;
|
||
|
if (!ec_point_mul_scalar_public_batch(group, &BT_batch,
|
||
|
/*g_scalar=*/NULL, BTs, es, count) ||
|
||
|
!ec_point_mul_scalar_public_batch(group, &Z_batch,
|
||
|
/*g_scalar=*/NULL, Zs, es, count)) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
CBS proof;
|
||
|
if (!CBS_get_u16_length_prefixed(cbs, &proof) ||
|
||
|
!dleq_verify(method, &proof, key, &BT_batch, &Z_batch) ||
|
||
|
CBS_len(&proof) != 0) {
|
||
|
goto err;
|
||
|
}
|
||
|
|
||
|
ok = 1;
|
||
|
|
||
|
err:
|
||
|
OPENSSL_free(BTs);
|
||
|
OPENSSL_free(Zs);
|
||
|
OPENSSL_free(es);
|
||
|
CBB_cleanup(&batch_cbb);
|
||
|
if (!ok) {
|
||
|
sk_TRUST_TOKEN_pop_free(ret, TRUST_TOKEN_free);
|
||
|
ret = NULL;
|
||
|
}
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int voprf_read(const VOPRF_METHOD *method,
|
||
|
const TRUST_TOKEN_ISSUER_KEY *key,
|
||
|
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE],
|
||
|
const uint8_t *token, size_t token_len) {
|
||
|
const EC_GROUP *group = method->group;
|
||
|
CBS cbs;
|
||
|
CBS_init(&cbs, token, token_len);
|
||
|
EC_AFFINE Ws;
|
||
|
if (!CBS_copy_bytes(&cbs, out_nonce, TRUST_TOKEN_NONCE_SIZE) ||
|
||
|
!cbs_get_point(&cbs, group, &Ws) ||
|
||
|
CBS_len(&cbs) != 0) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_INVALID_TOKEN);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
|
||
|
EC_RAW_POINT T;
|
||
|
if (!method->hash_to_group(group, &T, out_nonce)) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
EC_RAW_POINT Ws_calculated;
|
||
|
if (!ec_point_mul_scalar(group, &Ws_calculated, &T, &key->xs) ||
|
||
|
!ec_affine_jacobian_equal(group, &Ws, &Ws_calculated)) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, TRUST_TOKEN_R_BAD_VALIDITY_CHECK);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
|
||
|
// VOPRF experiment v2.
|
||
|
|
||
|
static int voprf_exp2_hash_to_group(const EC_GROUP *group, EC_RAW_POINT *out,
|
||
|
const uint8_t t[TRUST_TOKEN_NONCE_SIZE]) {
|
||
|
const uint8_t kHashTLabel[] = "TrustToken VOPRF Experiment V2 HashToGroup";
|
||
|
return ec_hash_to_curve_p384_xmd_sha512_sswu_draft07(
|
||
|
group, out, kHashTLabel, sizeof(kHashTLabel), t, TRUST_TOKEN_NONCE_SIZE);
|
||
|
}
|
||
|
|
||
|
static int voprf_exp2_hash_to_scalar(const EC_GROUP *group, EC_SCALAR *out,
|
||
|
uint8_t *buf, size_t len) {
|
||
|
const uint8_t kHashCLabel[] = "TrustToken VOPRF Experiment V2 HashToScalar";
|
||
|
return ec_hash_to_scalar_p384_xmd_sha512_draft07(
|
||
|
group, out, kHashCLabel, sizeof(kHashCLabel), buf, len);
|
||
|
}
|
||
|
|
||
|
static int voprf_exp2_ok = 0;
|
||
|
static VOPRF_METHOD voprf_exp2_method;
|
||
|
static CRYPTO_once_t voprf_exp2_method_once = CRYPTO_ONCE_INIT;
|
||
|
|
||
|
static void voprf_exp2_init_method_impl(void) {
|
||
|
voprf_exp2_ok =
|
||
|
voprf_init_method(&voprf_exp2_method, NID_secp384r1,
|
||
|
voprf_exp2_hash_to_group, voprf_exp2_hash_to_scalar);
|
||
|
}
|
||
|
|
||
|
static int voprf_exp2_init_method(void) {
|
||
|
CRYPTO_once(&voprf_exp2_method_once, voprf_exp2_init_method_impl);
|
||
|
if (!voprf_exp2_ok) {
|
||
|
OPENSSL_PUT_ERROR(TRUST_TOKEN, ERR_R_INTERNAL_ERROR);
|
||
|
return 0;
|
||
|
}
|
||
|
return 1;
|
||
|
}
|
||
|
|
||
|
int voprf_exp2_generate_key(CBB *out_private, CBB *out_public) {
|
||
|
if (!voprf_exp2_init_method()) {
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
return voprf_generate_key(&voprf_exp2_method, out_private, out_public);
|
||
|
}
|
||
|
|
||
|
int voprf_exp2_client_key_from_bytes(TRUST_TOKEN_CLIENT_KEY *key,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
if (!voprf_exp2_init_method()) {
|
||
|
return 0;
|
||
|
}
|
||
|
return voprf_client_key_from_bytes(&voprf_exp2_method, key, in, len);
|
||
|
}
|
||
|
|
||
|
int voprf_exp2_issuer_key_from_bytes(TRUST_TOKEN_ISSUER_KEY *key,
|
||
|
const uint8_t *in, size_t len) {
|
||
|
if (!voprf_exp2_init_method()) {
|
||
|
return 0;
|
||
|
}
|
||
|
return voprf_issuer_key_from_bytes(&voprf_exp2_method, key, in, len);
|
||
|
}
|
||
|
|
||
|
STACK_OF(TRUST_TOKEN_PRETOKEN) * voprf_exp2_blind(CBB *cbb, size_t count) {
|
||
|
if (!voprf_exp2_init_method()) {
|
||
|
return NULL;
|
||
|
}
|
||
|
return voprf_blind(&voprf_exp2_method, cbb, count);
|
||
|
}
|
||
|
|
||
|
int voprf_exp2_sign(const TRUST_TOKEN_ISSUER_KEY *key, CBB *cbb, CBS *cbs,
|
||
|
size_t num_requested, size_t num_to_issue,
|
||
|
uint8_t private_metadata) {
|
||
|
if (!voprf_exp2_init_method() || private_metadata != 0) {
|
||
|
return 0;
|
||
|
}
|
||
|
return voprf_sign(&voprf_exp2_method, key, cbb, cbs, num_requested,
|
||
|
num_to_issue);
|
||
|
}
|
||
|
|
||
|
STACK_OF(TRUST_TOKEN) *
|
||
|
voprf_exp2_unblind(const TRUST_TOKEN_CLIENT_KEY *key,
|
||
|
const STACK_OF(TRUST_TOKEN_PRETOKEN) * pretokens,
|
||
|
CBS *cbs, size_t count, uint32_t key_id) {
|
||
|
if (!voprf_exp2_init_method()) {
|
||
|
return NULL;
|
||
|
}
|
||
|
return voprf_unblind(&voprf_exp2_method, key, pretokens, cbs, count,
|
||
|
key_id);
|
||
|
}
|
||
|
|
||
|
int voprf_exp2_read(const TRUST_TOKEN_ISSUER_KEY *key,
|
||
|
uint8_t out_nonce[TRUST_TOKEN_NONCE_SIZE],
|
||
|
uint8_t *out_private_metadata, const uint8_t *token,
|
||
|
size_t token_len) {
|
||
|
if (!voprf_exp2_init_method()) {
|
||
|
return 0;
|
||
|
}
|
||
|
return voprf_read(&voprf_exp2_method, key, out_nonce, token, token_len);
|
||
|
}
|