|
|
|
/* Copyright (c) 2014, Google Inc.
|
|
|
|
*
|
|
|
|
* Permission to use, copy, modify, and/or distribute this software for any
|
|
|
|
* purpose with or without fee is hereby granted, provided that the above
|
|
|
|
* copyright notice and this permission notice appear in all copies.
|
|
|
|
*
|
|
|
|
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
|
|
|
|
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
|
|
|
|
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
|
|
|
|
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
|
|
|
|
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
|
|
|
|
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
|
|
|
|
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
|
|
|
|
|
|
|
|
#include <openssl/rand.h>
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <limits.h>
|
|
|
|
#include <string.h>
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
#include <unistd.h>
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include <openssl/chacha.h>
|
|
|
|
#include <openssl/cpu.h>
|
|
|
|
#include <openssl/mem.h>
|
|
|
|
#include <openssl/type_check.h>
|
|
|
|
|
|
|
|
#include "internal.h"
|
|
|
|
#include "fork_detect.h"
|
|
|
|
#include "../../internal.h"
|
|
|
|
#include "../delocate.h"
|
|
|
|
|
|
|
|
|
|
|
|
// It's assumed that the operating system always has an unfailing source of
|
|
|
|
// entropy which is accessed via |CRYPTO_sysrand[_for_seed]|. (If the operating
|
|
|
|
// system entropy source fails, it's up to |CRYPTO_sysrand| to abort the
|
|
|
|
// process—we don't try to handle it.)
|
|
|
|
//
|
|
|
|
// In addition, the hardware may provide a low-latency RNG. Intel's rdrand
|
|
|
|
// instruction is the canonical example of this. When a hardware RNG is
|
|
|
|
// available we don't need to worry about an RNG failure arising from fork()ing
|
|
|
|
// the process or moving a VM, so we can keep thread-local RNG state and use it
|
|
|
|
// as an additional-data input to CTR-DRBG.
|
|
|
|
//
|
|
|
|
// (We assume that the OS entropy is safe from fork()ing and VM duplication.
|
|
|
|
// This might be a bit of a leap of faith, esp on Windows, but there's nothing
|
|
|
|
// that we can do about it.)
|
|
|
|
|
|
|
|
// kReseedInterval is the number of generate calls made to CTR-DRBG before
|
|
|
|
// reseeding.
|
|
|
|
static const unsigned kReseedInterval = 4096;
|
|
|
|
|
|
|
|
// CRNGT_BLOCK_SIZE is the number of bytes in a “block” for the purposes of the
|
|
|
|
// continuous random number generator test in FIPS 140-2, section 4.9.2.
|
|
|
|
#define CRNGT_BLOCK_SIZE 16
|
|
|
|
|
|
|
|
// rand_thread_state contains the per-thread state for the RNG.
|
|
|
|
struct rand_thread_state {
|
|
|
|
CTR_DRBG_STATE drbg;
|
|
|
|
uint64_t fork_generation;
|
|
|
|
// calls is the number of generate calls made on |drbg| since it was last
|
|
|
|
// (re)seeded. This is bound by |kReseedInterval|.
|
|
|
|
unsigned calls;
|
|
|
|
// last_block_valid is non-zero iff |last_block| contains data from
|
|
|
|
// |get_seed_entropy|.
|
|
|
|
int last_block_valid;
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
// last_block contains the previous block from |get_seed_entropy|.
|
|
|
|
uint8_t last_block[CRNGT_BLOCK_SIZE];
|
|
|
|
// next and prev form a NULL-terminated, double-linked list of all states in
|
|
|
|
// a process.
|
|
|
|
struct rand_thread_state *next, *prev;
|
|
|
|
#endif
|
|
|
|
};
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
// thread_states_list is the head of a linked-list of all |rand_thread_state|
|
|
|
|
// objects in the process, one per thread. This is needed because FIPS requires
|
|
|
|
// that they be zeroed on process exit, but thread-local destructors aren't
|
|
|
|
// called when the whole process is exiting.
|
|
|
|
DEFINE_BSS_GET(struct rand_thread_state *, thread_states_list);
|
|
|
|
DEFINE_STATIC_MUTEX(thread_states_list_lock);
|
|
|
|
DEFINE_STATIC_MUTEX(state_clear_all_lock);
|
|
|
|
|
|
|
|
static void rand_thread_state_clear_all(void) __attribute__((destructor));
|
|
|
|
static void rand_thread_state_clear_all(void) {
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(state_clear_all_lock_bss_get());
|
|
|
|
for (struct rand_thread_state *cur = *thread_states_list_bss_get();
|
|
|
|
cur != NULL; cur = cur->next) {
|
|
|
|
CTR_DRBG_clear(&cur->drbg);
|
|
|
|
}
|
|
|
|
// The locks are deliberately left locked so that any threads that are still
|
|
|
|
// running will hang if they try to call |RAND_bytes|.
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// rand_thread_state_free frees a |rand_thread_state|. This is called when a
|
|
|
|
// thread exits.
|
|
|
|
static void rand_thread_state_free(void *state_in) {
|
|
|
|
struct rand_thread_state *state = state_in;
|
|
|
|
|
|
|
|
if (state_in == NULL) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
|
|
|
|
|
|
|
|
if (state->prev != NULL) {
|
|
|
|
state->prev->next = state->next;
|
|
|
|
} else {
|
|
|
|
*thread_states_list_bss_get() = state->next;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (state->next != NULL) {
|
|
|
|
state->next->prev = state->prev;
|
|
|
|
}
|
|
|
|
|
|
|
|
CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get());
|
|
|
|
|
|
|
|
CTR_DRBG_clear(&state->drbg);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
OPENSSL_free(state);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(OPENSSL_X86_64) && !defined(OPENSSL_NO_ASM) && \
|
|
|
|
!defined(BORINGSSL_UNSAFE_DETERMINISTIC_MODE)
|
|
|
|
// rdrand should only be called if either |have_rdrand| or |have_fast_rdrand|
|
|
|
|
// returned true.
|
|
|
|
static int rdrand(uint8_t *buf, const size_t len) {
|
|
|
|
const size_t len_multiple8 = len & ~7;
|
|
|
|
if (!CRYPTO_rdrand_multiple8_buf(buf, len_multiple8)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
const size_t remainder = len - len_multiple8;
|
|
|
|
|
|
|
|
if (remainder != 0) {
|
|
|
|
assert(remainder < 8);
|
|
|
|
|
|
|
|
uint8_t rand_buf[8];
|
|
|
|
if (!CRYPTO_rdrand(rand_buf)) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
OPENSSL_memcpy(buf + len_multiple8, rand_buf, remainder);
|
|
|
|
}
|
|
|
|
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
static int rdrand(uint8_t *buf, size_t len) {
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
|
|
|
|
void CRYPTO_get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
|
|
|
|
int *out_used_cpu) {
|
|
|
|
*out_used_cpu = 0;
|
|
|
|
if (have_rdrand() && rdrand(out_entropy, out_entropy_len)) {
|
|
|
|
*out_used_cpu = 1;
|
|
|
|
} else {
|
|
|
|
CRYPTO_sysrand_for_seed(out_entropy, out_entropy_len);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS_BREAK_CRNG)
|
|
|
|
// This breaks the "continuous random number generator test" defined in FIPS
|
|
|
|
// 140-2, section 4.9.2, and implemented in |rand_get_seed|.
|
|
|
|
OPENSSL_memset(out_entropy, 0, out_entropy_len);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// In passive entropy mode, entropy is supplied from outside of the module via
|
|
|
|
// |RAND_load_entropy| and is stored in global instance of the following
|
|
|
|
// structure.
|
|
|
|
|
|
|
|
struct entropy_buffer {
|
|
|
|
// bytes contains entropy suitable for seeding a DRBG.
|
|
|
|
uint8_t bytes[CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
|
|
|
|
// bytes_valid indicates the number of bytes of |bytes| that contain valid
|
|
|
|
// data.
|
|
|
|
size_t bytes_valid;
|
|
|
|
// from_cpu is true if any of the contents of |bytes| were obtained directly
|
|
|
|
// from the CPU.
|
|
|
|
int from_cpu;
|
|
|
|
};
|
|
|
|
|
|
|
|
DEFINE_BSS_GET(struct entropy_buffer, entropy_buffer);
|
|
|
|
DEFINE_STATIC_MUTEX(entropy_buffer_lock);
|
|
|
|
|
|
|
|
void RAND_load_entropy(const uint8_t *entropy, size_t entropy_len,
|
|
|
|
int from_cpu) {
|
|
|
|
struct entropy_buffer *const buffer = entropy_buffer_bss_get();
|
|
|
|
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
|
|
|
|
const size_t space = sizeof(buffer->bytes) - buffer->bytes_valid;
|
|
|
|
if (entropy_len > space) {
|
|
|
|
entropy_len = space;
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_memcpy(&buffer->bytes[buffer->bytes_valid], entropy, entropy_len);
|
|
|
|
buffer->bytes_valid += entropy_len;
|
|
|
|
buffer->from_cpu |= from_cpu && (entropy_len != 0);
|
|
|
|
CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
|
|
|
|
}
|
|
|
|
|
|
|
|
// get_seed_entropy fills |out_entropy_len| bytes of |out_entropy| from the
|
|
|
|
// global |entropy_buffer|.
|
|
|
|
static void get_seed_entropy(uint8_t *out_entropy, size_t out_entropy_len,
|
|
|
|
int *out_used_cpu) {
|
|
|
|
struct entropy_buffer *const buffer = entropy_buffer_bss_get();
|
|
|
|
if (out_entropy_len > sizeof(buffer->bytes)) {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
|
|
|
|
while (buffer->bytes_valid < out_entropy_len) {
|
|
|
|
CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
|
|
|
|
RAND_need_entropy(out_entropy_len - buffer->bytes_valid);
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(entropy_buffer_lock_bss_get());
|
|
|
|
}
|
|
|
|
|
|
|
|
*out_used_cpu = buffer->from_cpu;
|
|
|
|
OPENSSL_memcpy(out_entropy, buffer->bytes, out_entropy_len);
|
|
|
|
OPENSSL_memmove(buffer->bytes, &buffer->bytes[out_entropy_len],
|
|
|
|
buffer->bytes_valid - out_entropy_len);
|
|
|
|
buffer->bytes_valid -= out_entropy_len;
|
|
|
|
if (buffer->bytes_valid == 0) {
|
|
|
|
buffer->from_cpu = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
CRYPTO_STATIC_MUTEX_unlock_write(entropy_buffer_lock_bss_get());
|
|
|
|
}
|
|
|
|
|
|
|
|
// rand_get_seed fills |seed| with entropy and sets |*out_used_cpu| to one if
|
|
|
|
// that entropy came directly from the CPU and zero otherwise.
|
|
|
|
static void rand_get_seed(struct rand_thread_state *state,
|
|
|
|
uint8_t seed[CTR_DRBG_ENTROPY_LEN],
|
|
|
|
int *out_used_cpu) {
|
|
|
|
if (!state->last_block_valid) {
|
|
|
|
int unused;
|
|
|
|
get_seed_entropy(state->last_block, sizeof(state->last_block), &unused);
|
|
|
|
state->last_block_valid = 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint8_t entropy[CTR_DRBG_ENTROPY_LEN * BORINGSSL_FIPS_OVERREAD];
|
|
|
|
get_seed_entropy(entropy, sizeof(entropy), out_used_cpu);
|
|
|
|
|
|
|
|
// See FIPS 140-2, section 4.9.2. This is the “continuous random number
|
|
|
|
// generator test” which causes the program to randomly abort. Hopefully the
|
|
|
|
// rate of failure is small enough not to be a problem in practice.
|
|
|
|
if (CRYPTO_memcmp(state->last_block, entropy, CRNGT_BLOCK_SIZE) == 0) {
|
|
|
|
fprintf(stderr, "CRNGT failed.\n");
|
|
|
|
BORINGSSL_FIPS_abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
OPENSSL_STATIC_ASSERT(sizeof(entropy) % CRNGT_BLOCK_SIZE == 0, "");
|
|
|
|
for (size_t i = CRNGT_BLOCK_SIZE; i < sizeof(entropy);
|
|
|
|
i += CRNGT_BLOCK_SIZE) {
|
|
|
|
if (CRYPTO_memcmp(entropy + i - CRNGT_BLOCK_SIZE, entropy + i,
|
|
|
|
CRNGT_BLOCK_SIZE) == 0) {
|
|
|
|
fprintf(stderr, "CRNGT failed.\n");
|
|
|
|
BORINGSSL_FIPS_abort();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
OPENSSL_memcpy(state->last_block,
|
|
|
|
entropy + sizeof(entropy) - CRNGT_BLOCK_SIZE,
|
|
|
|
CRNGT_BLOCK_SIZE);
|
|
|
|
|
|
|
|
OPENSSL_memcpy(seed, entropy, CTR_DRBG_ENTROPY_LEN);
|
|
|
|
|
|
|
|
for (size_t i = 1; i < BORINGSSL_FIPS_OVERREAD; i++) {
|
|
|
|
for (size_t j = 0; j < CTR_DRBG_ENTROPY_LEN; j++) {
|
|
|
|
seed[j] ^= entropy[CTR_DRBG_ENTROPY_LEN * i + j];
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
// rand_get_seed fills |seed| with entropy and sets |*out_used_cpu| to one if
|
|
|
|
// that entropy came directly from the CPU and zero otherwise.
|
|
|
|
static void rand_get_seed(struct rand_thread_state *state,
|
|
|
|
uint8_t seed[CTR_DRBG_ENTROPY_LEN],
|
|
|
|
int *out_used_cpu) {
|
|
|
|
// If not in FIPS mode, we don't overread from the system entropy source and
|
|
|
|
// we don't depend only on the hardware RDRAND.
|
|
|
|
CRYPTO_sysrand_for_seed(seed, CTR_DRBG_ENTROPY_LEN);
|
|
|
|
*out_used_cpu = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
void RAND_bytes_with_additional_data(uint8_t *out, size_t out_len,
|
|
|
|
const uint8_t user_additional_data[32]) {
|
|
|
|
if (out_len == 0) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const uint64_t fork_generation = CRYPTO_get_fork_generation();
|
|
|
|
|
|
|
|
// Additional data is mixed into every CTR-DRBG call to protect, as best we
|
|
|
|
// can, against forks & VM clones. We do not over-read this information and
|
|
|
|
// don't reseed with it so, from the point of view of FIPS, this doesn't
|
|
|
|
// provide “prediction resistance”. But, in practice, it does.
|
|
|
|
uint8_t additional_data[32];
|
|
|
|
// Intel chips have fast RDRAND instructions while, in other cases, RDRAND can
|
|
|
|
// be _slower_ than a system call.
|
|
|
|
if (!have_fast_rdrand() ||
|
|
|
|
!rdrand(additional_data, sizeof(additional_data))) {
|
|
|
|
// Without a hardware RNG to save us from address-space duplication, the OS
|
|
|
|
// entropy is used. This can be expensive (one read per |RAND_bytes| call)
|
|
|
|
// and so is disabled when we have fork detection, or if the application has
|
|
|
|
// promised not to fork.
|
|
|
|
if (fork_generation != 0 || rand_fork_unsafe_buffering_enabled()) {
|
|
|
|
OPENSSL_memset(additional_data, 0, sizeof(additional_data));
|
|
|
|
} else if (!have_rdrand()) {
|
|
|
|
// No alternative so block for OS entropy.
|
|
|
|
CRYPTO_sysrand(additional_data, sizeof(additional_data));
|
|
|
|
} else if (!CRYPTO_sysrand_if_available(additional_data,
|
|
|
|
sizeof(additional_data)) &&
|
|
|
|
!rdrand(additional_data, sizeof(additional_data))) {
|
|
|
|
// RDRAND failed: block for OS entropy.
|
|
|
|
CRYPTO_sysrand(additional_data, sizeof(additional_data));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
for (size_t i = 0; i < sizeof(additional_data); i++) {
|
|
|
|
additional_data[i] ^= user_additional_data[i];
|
|
|
|
}
|
|
|
|
|
|
|
|
struct rand_thread_state stack_state;
|
|
|
|
struct rand_thread_state *state =
|
|
|
|
CRYPTO_get_thread_local(OPENSSL_THREAD_LOCAL_RAND);
|
|
|
|
|
|
|
|
if (state == NULL) {
|
|
|
|
state = OPENSSL_malloc(sizeof(struct rand_thread_state));
|
|
|
|
if (state == NULL ||
|
|
|
|
!CRYPTO_set_thread_local(OPENSSL_THREAD_LOCAL_RAND, state,
|
|
|
|
rand_thread_state_free)) {
|
|
|
|
// If the system is out of memory, use an ephemeral state on the
|
|
|
|
// stack.
|
|
|
|
state = &stack_state;
|
|
|
|
}
|
|
|
|
|
|
|
|
state->last_block_valid = 0;
|
|
|
|
uint8_t seed[CTR_DRBG_ENTROPY_LEN];
|
|
|
|
int used_cpu;
|
|
|
|
rand_get_seed(state, seed, &used_cpu);
|
|
|
|
|
|
|
|
uint8_t personalization[CTR_DRBG_ENTROPY_LEN];
|
|
|
|
size_t personalization_len = 0;
|
|
|
|
#if defined(OPENSSL_URANDOM)
|
|
|
|
// If we used RDRAND, also opportunistically read from the system. This
|
|
|
|
// avoids solely relying on the hardware once the entropy pool has been
|
|
|
|
// initialized.
|
|
|
|
if (used_cpu &&
|
|
|
|
CRYPTO_sysrand_if_available(personalization, sizeof(personalization))) {
|
|
|
|
personalization_len = sizeof(personalization);
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
|
|
if (!CTR_DRBG_init(&state->drbg, seed, personalization,
|
|
|
|
personalization_len)) {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
state->calls = 0;
|
|
|
|
state->fork_generation = fork_generation;
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
if (state != &stack_state) {
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_write(thread_states_list_lock_bss_get());
|
|
|
|
struct rand_thread_state **states_list = thread_states_list_bss_get();
|
|
|
|
state->next = *states_list;
|
|
|
|
if (state->next != NULL) {
|
|
|
|
state->next->prev = state;
|
|
|
|
}
|
|
|
|
state->prev = NULL;
|
|
|
|
*states_list = state;
|
|
|
|
CRYPTO_STATIC_MUTEX_unlock_write(thread_states_list_lock_bss_get());
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (state->calls >= kReseedInterval ||
|
|
|
|
state->fork_generation != fork_generation) {
|
|
|
|
uint8_t seed[CTR_DRBG_ENTROPY_LEN];
|
|
|
|
int used_cpu;
|
|
|
|
rand_get_seed(state, seed, &used_cpu);
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
// Take a read lock around accesses to |state->drbg|. This is needed to
|
|
|
|
// avoid returning bad entropy if we race with
|
|
|
|
// |rand_thread_state_clear_all|.
|
|
|
|
//
|
|
|
|
// This lock must be taken after any calls to |CRYPTO_sysrand| to avoid a
|
|
|
|
// bug on ppc64le. glibc may implement pthread locks by wrapping user code
|
|
|
|
// in a hardware transaction, but, on some older versions of glibc and the
|
|
|
|
// kernel, syscalls made with |syscall| did not abort the transaction.
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(state_clear_all_lock_bss_get());
|
|
|
|
#endif
|
|
|
|
if (!CTR_DRBG_reseed(&state->drbg, seed, NULL, 0)) {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
state->calls = 0;
|
|
|
|
state->fork_generation = fork_generation;
|
|
|
|
} else {
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
CRYPTO_STATIC_MUTEX_lock_read(state_clear_all_lock_bss_get());
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
int first_call = 1;
|
|
|
|
while (out_len > 0) {
|
|
|
|
size_t todo = out_len;
|
|
|
|
if (todo > CTR_DRBG_MAX_GENERATE_LENGTH) {
|
|
|
|
todo = CTR_DRBG_MAX_GENERATE_LENGTH;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (!CTR_DRBG_generate(&state->drbg, out, todo, additional_data,
|
|
|
|
first_call ? sizeof(additional_data) : 0)) {
|
|
|
|
abort();
|
|
|
|
}
|
|
|
|
|
|
|
|
out += todo;
|
|
|
|
out_len -= todo;
|
|
|
|
// Though we only check before entering the loop, this cannot add enough to
|
|
|
|
// overflow a |size_t|.
|
|
|
|
state->calls++;
|
|
|
|
first_call = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (state == &stack_state) {
|
|
|
|
CTR_DRBG_clear(&state->drbg);
|
|
|
|
}
|
|
|
|
|
|
|
|
#if defined(BORINGSSL_FIPS)
|
|
|
|
CRYPTO_STATIC_MUTEX_unlock_read(state_clear_all_lock_bss_get());
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
int RAND_bytes(uint8_t *out, size_t out_len) {
|
|
|
|
static const uint8_t kZeroAdditionalData[32] = {0};
|
|
|
|
RAND_bytes_with_additional_data(out, out_len, kZeroAdditionalData);
|
|
|
|
return 1;
|
|
|
|
}
|
|
|
|
|
|
|
|
int RAND_pseudo_bytes(uint8_t *buf, size_t len) {
|
|
|
|
return RAND_bytes(buf, len);
|
|
|
|
}
|