Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1127 lines
39 KiB

/* Copyright (c) 2016, Google Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY
* SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
* OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
* CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. */
#include <openssl/ssl.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include <utility>
#include <openssl/bytestring.h>
#include <openssl/digest.h>
#include <openssl/err.h>
#include <openssl/mem.h>
#include <openssl/sha.h>
#include <openssl/stack.h>
#include "../crypto/internal.h"
#include "internal.h"
BSSL_NAMESPACE_BEGIN
enum client_hs_state_t {
state_read_hello_retry_request = 0,
state_send_second_client_hello,
state_read_server_hello,
state_read_encrypted_extensions,
state_read_certificate_request,
state_read_server_certificate,
state_read_server_certificate_verify,
state_server_certificate_reverify,
state_read_server_finished,
state_send_end_of_early_data,
state_send_client_encrypted_extensions,
state_send_client_certificate,
state_send_client_certificate_verify,
state_complete_second_flight,
state_done,
};
static const uint8_t kZeroes[EVP_MAX_MD_SIZE] = {0};
// end_of_early_data closes the early data stream for |hs| and switches the
// encryption level to |level|. It returns true on success and false on error.
static bool close_early_data(SSL_HANDSHAKE *hs, ssl_encryption_level_t level) {
SSL *const ssl = hs->ssl;
assert(hs->in_early_data);
// Note |can_early_write| may already be false if |SSL_write| exceeded the
// early data write limit.
hs->can_early_write = false;
// 0-RTT write states on the client differ between TLS 1.3, DTLS 1.3, and
// QUIC. TLS 1.3 has one write encryption level at a time. 0-RTT write keys
// overwrite the null cipher and defer handshake write keys. While a
// HelloRetryRequest can cause us to rewind back to the null cipher, sequence
// numbers have no effect, so we can install a "new" null cipher.
//
// In QUIC and DTLS 1.3, 0-RTT write state cannot override or defer the normal
// write state. The two ClientHello sequence numbers must align, and handshake
// write keys must be installed early to ACK the EncryptedExtensions.
//
// We do not currently implement DTLS 1.3 and, in QUIC, the caller handles
// 0-RTT data, so we can skip installing 0-RTT keys and act as if there is one
// write level. If we implement DTLS 1.3, we'll need to model this better.
if (ssl->quic_method == nullptr) {
if (level == ssl_encryption_initial) {
bssl::UniquePtr<SSLAEADContext> null_ctx =
SSLAEADContext::CreateNullCipher(SSL_is_dtls(ssl));
if (!null_ctx ||
!ssl->method->set_write_state(ssl, ssl_encryption_initial,
std::move(null_ctx),
/*secret_for_quic=*/{})) {
return false;
}
ssl->s3->aead_write_ctx->SetVersionIfNullCipher(ssl->version);
} else {
assert(level == ssl_encryption_handshake);
if (!tls13_set_traffic_key(ssl, ssl_encryption_handshake, evp_aead_seal,
hs->new_session.get(),
hs->client_handshake_secret())) {
return false;
}
}
}
assert(ssl->s3->write_level == level);
return true;
}
static bool parse_server_hello_tls13(const SSL_HANDSHAKE *hs,
ParsedServerHello *out, uint8_t *out_alert,
const SSLMessage &msg) {
if (!ssl_parse_server_hello(out, out_alert, msg)) {
return false;
}
// The RFC8446 version of the structure fixes some legacy values.
// Additionally, the session ID must echo the original one.
if (out->legacy_version != TLS1_2_VERSION ||
out->compression_method != 0 ||
!CBS_mem_equal(&out->session_id, hs->session_id, hs->session_id_len) ||
CBS_len(&out->extensions) == 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return false;
}
return true;
}
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
static bool is_hello_retry_request(const ParsedServerHello &server_hello) {
return Span<const uint8_t>(server_hello.random) == kHelloRetryRequest;
}
static bool check_ech_confirmation(const SSL_HANDSHAKE *hs, bool *out_accepted,
uint8_t *out_alert,
const ParsedServerHello &server_hello) {
const bool is_hrr = is_hello_retry_request(server_hello);
size_t offset;
if (is_hrr) {
// We check for an unsolicited extension when parsing all of them.
SSLExtension ech(TLSEXT_TYPE_encrypted_client_hello);
if (!ssl_parse_extensions(&server_hello.extensions, out_alert, {&ech},
/*ignore_unknown=*/true)) {
return false;
}
if (!ech.present) {
*out_accepted = false;
return true;
}
if (CBS_len(&ech.data) != ECH_CONFIRMATION_SIGNAL_LEN) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
*out_alert = SSL_AD_DECODE_ERROR;
return false;
}
offset = CBS_data(&ech.data) - CBS_data(&server_hello.raw);
} else {
offset = ssl_ech_confirmation_signal_hello_offset(hs->ssl);
}
if (!hs->selected_ech_config) {
*out_accepted = false;
return true;
}
uint8_t expected[ECH_CONFIRMATION_SIGNAL_LEN];
if (!ssl_ech_accept_confirmation(hs, expected, hs->inner_client_random,
hs->inner_transcript, is_hrr,
server_hello.raw, offset)) {
*out_alert = SSL_AD_INTERNAL_ERROR;
return false;
}
*out_accepted = CRYPTO_memcmp(CBS_data(&server_hello.raw) + offset, expected,
sizeof(expected)) == 0;
return true;
}
static enum ssl_hs_wait_t do_read_hello_retry_request(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
assert(ssl->s3->have_version);
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
// Queue up a ChangeCipherSpec for whenever we next send something. This
// will be before the second ClientHello. If we offered early data, this was
// already done.
if (!hs->early_data_offered &&
!ssl->method->add_change_cipher_spec(ssl)) {
return ssl_hs_error;
}
ParsedServerHello server_hello;
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!parse_server_hello_tls13(hs, &server_hello, &alert, msg)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
// The cipher suite must be one we offered. We currently offer all supported
// TLS 1.3 ciphers unless policy controls limited it. So we check the version
// and that it's ok per policy.
const SSL_CIPHER *cipher = SSL_get_cipher_by_value(server_hello.cipher_suite);
if (cipher == nullptr ||
SSL_CIPHER_get_min_version(cipher) > ssl_protocol_version(ssl) ||
SSL_CIPHER_get_max_version(cipher) < ssl_protocol_version(ssl) ||
!ssl_tls13_cipher_meets_policy(
SSL_CIPHER_get_value(cipher),
ssl->config->only_fips_cipher_suites_in_tls13)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
hs->new_cipher = cipher;
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
const bool is_hrr = is_hello_retry_request(server_hello);
if (!hs->transcript.InitHash(ssl_protocol_version(ssl), hs->new_cipher) ||
(is_hrr && !hs->transcript.UpdateForHelloRetryRequest())) {
return ssl_hs_error;
}
if (hs->selected_ech_config) {
if (!hs->inner_transcript.InitHash(ssl_protocol_version(ssl),
hs->new_cipher) ||
(is_hrr && !hs->inner_transcript.UpdateForHelloRetryRequest())) {
return ssl_hs_error;
}
}
// Determine which ClientHello the server is responding to. Run
// |check_ech_confirmation| unconditionally, so we validate the extension
// contents.
bool ech_accepted;
if (!check_ech_confirmation(hs, &ech_accepted, &alert, server_hello)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
if (hs->selected_ech_config) {
ssl->s3->ech_status = ech_accepted ? ssl_ech_accepted : ssl_ech_rejected;
}
if (!is_hrr) {
hs->tls13_state = state_read_server_hello;
return ssl_hs_ok;
}
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
// The ECH extension, if present, was already parsed by
// |check_ech_confirmation|.
SSLExtension cookie(TLSEXT_TYPE_cookie), key_share(TLSEXT_TYPE_key_share),
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
supported_versions(TLSEXT_TYPE_supported_versions),
ech_unused(TLSEXT_TYPE_encrypted_client_hello,
hs->selected_ech_config || hs->config->ech_grease_enabled);
if (!ssl_parse_extensions(
&server_hello.extensions, &alert,
{&cookie, &key_share, &supported_versions, &ech_unused},
/*ignore_unknown=*/false)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
if (!cookie.present && !key_share.present) {
OPENSSL_PUT_ERROR(SSL, SSL_R_EMPTY_HELLO_RETRY_REQUEST);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
if (cookie.present) {
CBS cookie_value;
if (!CBS_get_u16_length_prefixed(&cookie.data, &cookie_value) ||
CBS_len(&cookie_value) == 0 ||
CBS_len(&cookie.data) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return ssl_hs_error;
}
if (!hs->cookie.CopyFrom(cookie_value)) {
return ssl_hs_error;
}
}
if (key_share.present) {
uint16_t group_id;
if (!CBS_get_u16(&key_share.data, &group_id) ||
CBS_len(&key_share.data) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return ssl_hs_error;
}
// The group must be supported.
if (!tls1_check_group_id(hs, group_id)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
return ssl_hs_error;
}
// Check that the HelloRetryRequest does not request a key share that was
// provided in the initial ClientHello.
if (hs->key_shares[0]->GroupID() == group_id ||
(hs->key_shares[1] && hs->key_shares[1]->GroupID() == group_id)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CURVE);
return ssl_hs_error;
}
if (!ssl_setup_key_shares(hs, group_id)) {
return ssl_hs_error;
}
}
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
// Although we now know whether ClientHelloInner was used, we currently
// maintain both transcripts up to ServerHello. We could swap transcripts
// early, but then ClientHello construction and |check_ech_confirmation|
// become more complex.
if (!ssl_hash_message(hs, msg)) {
return ssl_hs_error;
}
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (ssl->s3->ech_status == ssl_ech_accepted &&
!hs->inner_transcript.Update(msg.raw)) {
return ssl_hs_error;
Add most of an ECH client implementation. Based on an initial implementation by Dan McArdle at https://boringssl-review.googlesource.com/c/boringssl/+/46784 This CL contains most of a client implementation for draft-ietf-tls-esni-10. The pieces missing so far, which will be done in follow-up CLs are: 1. While the ClientHelloInner is padded, the server Certificate message is not. I'll add that once we resolve the spec discussions on how to do that. (We were originally going to use TLS record-level padding, but that doesn't work well with QUIC.) 2. The client should check the public name is a valid DNS name before copying it into ClientHelloOuter.server_name. 3. The ClientHelloOuter handshake flow is not yet implemented. This CL can detect when the server selects ClientHelloOuter, but for now the handshake immediately fails. A follow-up CL will remove that logic and instead add the APIs and extra checks needed. Otherwise, this should be complete, including padding and compression. The main interesting point design-wise is that we run through ClientHello construction multiple times. We need to construct ClientHelloInner and ClientHelloOuter. Then each of those has slight variants: EncodedClientHelloInner is the compressed form, and ClientHelloOuterAAD just has the ECH extension erased to avoid a circular dependency. I've computed ClientHelloInner and EncodedClientHelloInner concurrently because the compression scheme requires shifting the extensions around to be contiguous. However, I've computed ClientHelloOuterAAD and ClientHelloOuter by running through the logic twice. This probably can be done better, but the next draft revises the construction anyway, so I'm thinking I'll rework it then. (In the next draft, we use a placeholder payload of the same length, so we can construct the ClientHello once and fill in the payload.) Additionally, now that we have a client available in ssl_test, this adds a threading test to confirm that SSL_CTX_set1_ech_keys is properly synchronized. (Confirmed that, if I drop the lock in SSL_CTX_set1_ech_keys, TSan notices.) Change-Id: Icaff68b595035bdcc73c468ff638e67c84239ef4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48004 Reviewed-by: Adam Langley <agl@google.com>
4 years ago
}
// HelloRetryRequest should be the end of the flight.
if (ssl->method->has_unprocessed_handshake_data(ssl)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
return ssl_hs_error;
}
ssl->method->next_message(ssl);
ssl->s3->used_hello_retry_request = true;
hs->tls13_state = state_send_second_client_hello;
// 0-RTT is rejected if we receive a HelloRetryRequest.
if (hs->in_early_data) {
ssl->s3->early_data_reason = ssl_early_data_hello_retry_request;
if (!close_early_data(hs, ssl_encryption_initial)) {
return ssl_hs_error;
}
return ssl_hs_early_data_rejected;
}
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_send_second_client_hello(SSL_HANDSHAKE *hs) {
// Any 0-RTT keys must have been discarded.
assert(hs->ssl->s3->write_level == ssl_encryption_initial);
Add most of an ECH client implementation. Based on an initial implementation by Dan McArdle at https://boringssl-review.googlesource.com/c/boringssl/+/46784 This CL contains most of a client implementation for draft-ietf-tls-esni-10. The pieces missing so far, which will be done in follow-up CLs are: 1. While the ClientHelloInner is padded, the server Certificate message is not. I'll add that once we resolve the spec discussions on how to do that. (We were originally going to use TLS record-level padding, but that doesn't work well with QUIC.) 2. The client should check the public name is a valid DNS name before copying it into ClientHelloOuter.server_name. 3. The ClientHelloOuter handshake flow is not yet implemented. This CL can detect when the server selects ClientHelloOuter, but for now the handshake immediately fails. A follow-up CL will remove that logic and instead add the APIs and extra checks needed. Otherwise, this should be complete, including padding and compression. The main interesting point design-wise is that we run through ClientHello construction multiple times. We need to construct ClientHelloInner and ClientHelloOuter. Then each of those has slight variants: EncodedClientHelloInner is the compressed form, and ClientHelloOuterAAD just has the ECH extension erased to avoid a circular dependency. I've computed ClientHelloInner and EncodedClientHelloInner concurrently because the compression scheme requires shifting the extensions around to be contiguous. However, I've computed ClientHelloOuterAAD and ClientHelloOuter by running through the logic twice. This probably can be done better, but the next draft revises the construction anyway, so I'm thinking I'll rework it then. (In the next draft, we use a placeholder payload of the same length, so we can construct the ClientHello once and fill in the payload.) Additionally, now that we have a client available in ssl_test, this adds a threading test to confirm that SSL_CTX_set1_ech_keys is properly synchronized. (Confirmed that, if I drop the lock in SSL_CTX_set1_ech_keys, TSan notices.) Change-Id: Icaff68b595035bdcc73c468ff638e67c84239ef4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48004 Reviewed-by: Adam Langley <agl@google.com>
4 years ago
// Build the second ClientHelloInner, if applicable. The second ClientHello
// uses an empty string for |enc|.
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (hs->ssl->s3->ech_status == ssl_ech_accepted &&
!ssl_encrypt_client_hello(hs, {})) {
Add most of an ECH client implementation. Based on an initial implementation by Dan McArdle at https://boringssl-review.googlesource.com/c/boringssl/+/46784 This CL contains most of a client implementation for draft-ietf-tls-esni-10. The pieces missing so far, which will be done in follow-up CLs are: 1. While the ClientHelloInner is padded, the server Certificate message is not. I'll add that once we resolve the spec discussions on how to do that. (We were originally going to use TLS record-level padding, but that doesn't work well with QUIC.) 2. The client should check the public name is a valid DNS name before copying it into ClientHelloOuter.server_name. 3. The ClientHelloOuter handshake flow is not yet implemented. This CL can detect when the server selects ClientHelloOuter, but for now the handshake immediately fails. A follow-up CL will remove that logic and instead add the APIs and extra checks needed. Otherwise, this should be complete, including padding and compression. The main interesting point design-wise is that we run through ClientHello construction multiple times. We need to construct ClientHelloInner and ClientHelloOuter. Then each of those has slight variants: EncodedClientHelloInner is the compressed form, and ClientHelloOuterAAD just has the ECH extension erased to avoid a circular dependency. I've computed ClientHelloInner and EncodedClientHelloInner concurrently because the compression scheme requires shifting the extensions around to be contiguous. However, I've computed ClientHelloOuterAAD and ClientHelloOuter by running through the logic twice. This probably can be done better, but the next draft revises the construction anyway, so I'm thinking I'll rework it then. (In the next draft, we use a placeholder payload of the same length, so we can construct the ClientHello once and fill in the payload.) Additionally, now that we have a client available in ssl_test, this adds a threading test to confirm that SSL_CTX_set1_ech_keys is properly synchronized. (Confirmed that, if I drop the lock in SSL_CTX_set1_ech_keys, TSan notices.) Change-Id: Icaff68b595035bdcc73c468ff638e67c84239ef4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48004 Reviewed-by: Adam Langley <agl@google.com>
4 years ago
return ssl_hs_error;
}
if (!ssl_add_client_hello(hs)) {
return ssl_hs_error;
}
ssl_done_writing_client_hello(hs);
hs->tls13_state = state_read_server_hello;
return ssl_hs_flush;
}
static enum ssl_hs_wait_t do_read_server_hello(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
ParsedServerHello server_hello;
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!parse_server_hello_tls13(hs, &server_hello, &alert, msg)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
// Forbid a second HelloRetryRequest.
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (is_hello_retry_request(server_hello)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_MESSAGE);
return ssl_hs_error;
}
// Check the cipher suite, in case this is after HelloRetryRequest.
if (SSL_CIPHER_get_protocol_id(hs->new_cipher) != server_hello.cipher_suite) {
OPENSSL_PUT_ERROR(SSL, SSL_R_WRONG_CIPHER_RETURNED);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (ssl->s3->ech_status == ssl_ech_accepted) {
if (ssl->s3->used_hello_retry_request) {
// HelloRetryRequest and ServerHello must accept ECH consistently.
bool ech_accepted;
if (!check_ech_confirmation(hs, &ech_accepted, &alert, server_hello)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
if (!ech_accepted) {
OPENSSL_PUT_ERROR(SSL, SSL_R_INCONSISTENT_ECH_NEGOTIATION);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
}
hs->transcript = std::move(hs->inner_transcript);
hs->extensions.sent = hs->inner_extensions_sent;
// Report the inner random value through |SSL_get_client_random|.
OPENSSL_memcpy(ssl->s3->client_random, hs->inner_client_random,
SSL3_RANDOM_SIZE);
}
OPENSSL_memcpy(ssl->s3->server_random, CBS_data(&server_hello.random),
SSL3_RANDOM_SIZE);
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
// When offering ECH, |ssl->session| is only offered in ClientHelloInner.
const bool pre_shared_key_allowed =
ssl->session != nullptr && ssl->s3->ech_status != ssl_ech_rejected;
SSLExtension key_share(TLSEXT_TYPE_key_share),
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
pre_shared_key(TLSEXT_TYPE_pre_shared_key, pre_shared_key_allowed),
supported_versions(TLSEXT_TYPE_supported_versions);
if (!ssl_parse_extensions(&server_hello.extensions, &alert,
{&key_share, &pre_shared_key, &supported_versions},
/*ignore_unknown=*/false)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
// Recheck supported_versions, in case this is after HelloRetryRequest.
uint16_t version;
if (!supported_versions.present ||
!CBS_get_u16(&supported_versions.data, &version) ||
CBS_len(&supported_versions.data) != 0 ||
version != ssl->version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_SECOND_SERVERHELLO_VERSION_MISMATCH);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
alert = SSL_AD_DECODE_ERROR;
if (pre_shared_key.present) {
if (!ssl_ext_pre_shared_key_parse_serverhello(hs, &alert,
&pre_shared_key.data)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
if (ssl->session->ssl_version != ssl->version) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_VERSION_NOT_RETURNED);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
if (ssl->session->cipher->algorithm_prf != hs->new_cipher->algorithm_prf) {
OPENSSL_PUT_ERROR(SSL, SSL_R_OLD_SESSION_PRF_HASH_MISMATCH);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
if (!ssl_session_is_context_valid(hs, ssl->session.get())) {
// This is actually a client application bug.
OPENSSL_PUT_ERROR(SSL,
SSL_R_ATTEMPT_TO_REUSE_SESSION_IN_DIFFERENT_CONTEXT);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
ssl->s3->session_reused = true;
hs->can_release_private_key = true;
// Only authentication information carries over in TLS 1.3.
hs->new_session =
SSL_SESSION_dup(ssl->session.get(), SSL_SESSION_DUP_AUTH_ONLY);
if (!hs->new_session) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_hs_error;
}
ssl_set_session(ssl, NULL);
// Resumption incorporates fresh key material, so refresh the timeout.
ssl_session_renew_timeout(ssl, hs->new_session.get(),
ssl->session_ctx->session_psk_dhe_timeout);
} else if (!ssl_get_new_session(hs)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_hs_error;
}
hs->new_session->cipher = hs->new_cipher;
// Set up the key schedule and incorporate the PSK into the running secret.
size_t hash_len = EVP_MD_size(
ssl_get_handshake_digest(ssl_protocol_version(ssl), hs->new_cipher));
Add most of an ECH client implementation. Based on an initial implementation by Dan McArdle at https://boringssl-review.googlesource.com/c/boringssl/+/46784 This CL contains most of a client implementation for draft-ietf-tls-esni-10. The pieces missing so far, which will be done in follow-up CLs are: 1. While the ClientHelloInner is padded, the server Certificate message is not. I'll add that once we resolve the spec discussions on how to do that. (We were originally going to use TLS record-level padding, but that doesn't work well with QUIC.) 2. The client should check the public name is a valid DNS name before copying it into ClientHelloOuter.server_name. 3. The ClientHelloOuter handshake flow is not yet implemented. This CL can detect when the server selects ClientHelloOuter, but for now the handshake immediately fails. A follow-up CL will remove that logic and instead add the APIs and extra checks needed. Otherwise, this should be complete, including padding and compression. The main interesting point design-wise is that we run through ClientHello construction multiple times. We need to construct ClientHelloInner and ClientHelloOuter. Then each of those has slight variants: EncodedClientHelloInner is the compressed form, and ClientHelloOuterAAD just has the ECH extension erased to avoid a circular dependency. I've computed ClientHelloInner and EncodedClientHelloInner concurrently because the compression scheme requires shifting the extensions around to be contiguous. However, I've computed ClientHelloOuterAAD and ClientHelloOuter by running through the logic twice. This probably can be done better, but the next draft revises the construction anyway, so I'm thinking I'll rework it then. (In the next draft, we use a placeholder payload of the same length, so we can construct the ClientHello once and fill in the payload.) Additionally, now that we have a client available in ssl_test, this adds a threading test to confirm that SSL_CTX_set1_ech_keys is properly synchronized. (Confirmed that, if I drop the lock in SSL_CTX_set1_ech_keys, TSan notices.) Change-Id: Icaff68b595035bdcc73c468ff638e67c84239ef4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48004 Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (!tls13_init_key_schedule(
hs, ssl->s3->session_reused
? MakeConstSpan(hs->new_session->secret,
hs->new_session->secret_length)
: MakeConstSpan(kZeroes, hash_len))) {
return ssl_hs_error;
}
if (!key_share.present) {
// We do not support psk_ke and thus always require a key share.
OPENSSL_PUT_ERROR(SSL, SSL_R_MISSING_KEY_SHARE);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_MISSING_EXTENSION);
return ssl_hs_error;
}
// Resolve ECDHE and incorporate it into the secret.
Array<uint8_t> dhe_secret;
alert = SSL_AD_DECODE_ERROR;
if (!ssl_ext_key_share_parse_serverhello(hs, &dhe_secret, &alert,
&key_share.data)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
Update to draft-ietf-tls-esni-13. Later CLs will clean up the ClientHello construction a bit (draft-12 avoids computing ClientHelloOuter twice). I suspect the transcript handling on the client can also be simpler, but I'll see what's convenient after I've changed how ClientHelloOuter is constructed. Changes of note between draft-10 and draft-13: - There is now an ECH confirmation signal in both HRR and SH. We don't actually make much use of this in our client right now, but it resolves a bunch of weird issues around HRR, including edge cases if HRR applies to one ClientHello but not the other. - The confirmation signal no longer depends on key_share and PSK, so we don't have to work around a weird ordering issue. - ech_is_inner is now folded into the main encrypted_client_hello code point. This works better with some stuff around HRR. - Padding is moved from the padding extension, computed with ClientHelloInner, to something we fill in afterwards. This makes it easier to pad up the whole thing to a multiple of 32. I've accordingly updated to the latest recommended padding construction, and updated the GREASE logic to match. - ech_outer_extensions is much easier to process because the order is required to be consistent. We were doing that anyway, and now a simple linear scan works. - ClientHelloOuterAAD now uses an all zero placeholder payload of the same length. This lets us simplify the server code, but, for now, I've kept the client code the same. I'll follow this up with a CL to avoid computing ClientHelloOuter twice. - ClientHelloOuterAAD is allowed to contain a placeholder PSK. I haven't filled that in and will do it in a follow-up CL. Bug: 275 Change-Id: I7464345125c53968b2fe692f9268e392120fc2eb Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48912 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (!tls13_advance_key_schedule(hs, dhe_secret) ||
!ssl_hash_message(hs, msg) ||
!tls13_derive_handshake_secrets(hs)) {
return ssl_hs_error;
}
// If currently sending early data over TCP, we defer installing client
// traffic keys to when the early data stream is closed. See
// |close_early_data|. Note if the server has already rejected 0-RTT via
// HelloRetryRequest, |in_early_data| is already false.
if (!hs->in_early_data || ssl->quic_method != nullptr) {
if (!tls13_set_traffic_key(ssl, ssl_encryption_handshake, evp_aead_seal,
hs->new_session.get(),
hs->client_handshake_secret())) {
return ssl_hs_error;
}
}
if (!tls13_set_traffic_key(ssl, ssl_encryption_handshake, evp_aead_open,
hs->new_session.get(),
hs->server_handshake_secret())) {
return ssl_hs_error;
}
ssl->method->next_message(ssl);
hs->tls13_state = state_read_encrypted_extensions;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_read_encrypted_extensions(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
if (!ssl_check_message_type(ssl, msg, SSL3_MT_ENCRYPTED_EXTENSIONS)) {
return ssl_hs_error;
}
CBS body = msg.body, extensions;
if (!CBS_get_u16_length_prefixed(&body, &extensions) ||
CBS_len(&body) != 0) {
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
return ssl_hs_error;
}
if (!ssl_parse_serverhello_tlsext(hs, &extensions)) {
OPENSSL_PUT_ERROR(SSL, SSL_R_PARSE_TLSEXT);
return ssl_hs_error;
}
if (ssl->s3->early_data_accepted) {
Add most of an ECH client implementation. Based on an initial implementation by Dan McArdle at https://boringssl-review.googlesource.com/c/boringssl/+/46784 This CL contains most of a client implementation for draft-ietf-tls-esni-10. The pieces missing so far, which will be done in follow-up CLs are: 1. While the ClientHelloInner is padded, the server Certificate message is not. I'll add that once we resolve the spec discussions on how to do that. (We were originally going to use TLS record-level padding, but that doesn't work well with QUIC.) 2. The client should check the public name is a valid DNS name before copying it into ClientHelloOuter.server_name. 3. The ClientHelloOuter handshake flow is not yet implemented. This CL can detect when the server selects ClientHelloOuter, but for now the handshake immediately fails. A follow-up CL will remove that logic and instead add the APIs and extra checks needed. Otherwise, this should be complete, including padding and compression. The main interesting point design-wise is that we run through ClientHello construction multiple times. We need to construct ClientHelloInner and ClientHelloOuter. Then each of those has slight variants: EncodedClientHelloInner is the compressed form, and ClientHelloOuterAAD just has the ECH extension erased to avoid a circular dependency. I've computed ClientHelloInner and EncodedClientHelloInner concurrently because the compression scheme requires shifting the extensions around to be contiguous. However, I've computed ClientHelloOuterAAD and ClientHelloOuter by running through the logic twice. This probably can be done better, but the next draft revises the construction anyway, so I'm thinking I'll rework it then. (In the next draft, we use a placeholder payload of the same length, so we can construct the ClientHello once and fill in the payload.) Additionally, now that we have a client available in ssl_test, this adds a threading test to confirm that SSL_CTX_set1_ech_keys is properly synchronized. (Confirmed that, if I drop the lock in SSL_CTX_set1_ech_keys, TSan notices.) Change-Id: Icaff68b595035bdcc73c468ff638e67c84239ef4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48004 Reviewed-by: Adam Langley <agl@google.com>
4 years ago
// The extension parser checks the server resumed the session.
assert(ssl->s3->session_reused);
// If offering ECH, the server may not accept early data with
// ClientHelloOuter. We do not offer sessions with ClientHelloOuter, so this
// this should be implied by checking |session_reused|.
Implement ClientHelloOuter handshakes. If a client offers ECH, but the server rejects it, the client completes the handshake with ClientHelloOuter in order to authenticate retry keys. Implement this flow. This is largely allowing the existing handshake to proceed, but with some changes: - Certificate verification uses the other name. This CL routes this up to the built-in verifier and adds SSL_get0_ech_name_override for the callback. - We need to disable False Start to pick up server Finished in TLS 1.2. - Client certificates, notably in TLS 1.3 where they're encrypted, should only be revealed to the true server. Fortunately, not sending client certs is always an option, so do that. Channel ID has a similar issue. I've just omitted the extension in ClientHelloOuter because it's deprecated and is unlikely to be used with ECH at this point. ALPS may be worth some pondering but, the way it's currently used, is not sensitive. (Possibly we should change the draft to terminate the handshake before even sending that flight...) - The session is never offered in ClientHelloOuter, but our internal book-keeping doesn't quite notice. I had to replace ech_accept with a tri-state ech_status to correctly handle an edge case in SSL_get0_ech_name_override: when ECH + 0-RTT + reverify_on_resume are all enabled, the first certificate verification is for the 0-RTT session and should be against the true name, yet we have selected_ech_config && !ech_accept. A tri-state tracks when ECH is actually rejected. I've maintained this on the server as well, though the server never actually cares. Bug: 275 Change-Id: Ie55966ca3dc4ffcc8c381479f0fe9bcacd34d0f8 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48135 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
assert(ssl->s3->ech_status != ssl_ech_rejected);
Add most of an ECH client implementation. Based on an initial implementation by Dan McArdle at https://boringssl-review.googlesource.com/c/boringssl/+/46784 This CL contains most of a client implementation for draft-ietf-tls-esni-10. The pieces missing so far, which will be done in follow-up CLs are: 1. While the ClientHelloInner is padded, the server Certificate message is not. I'll add that once we resolve the spec discussions on how to do that. (We were originally going to use TLS record-level padding, but that doesn't work well with QUIC.) 2. The client should check the public name is a valid DNS name before copying it into ClientHelloOuter.server_name. 3. The ClientHelloOuter handshake flow is not yet implemented. This CL can detect when the server selects ClientHelloOuter, but for now the handshake immediately fails. A follow-up CL will remove that logic and instead add the APIs and extra checks needed. Otherwise, this should be complete, including padding and compression. The main interesting point design-wise is that we run through ClientHello construction multiple times. We need to construct ClientHelloInner and ClientHelloOuter. Then each of those has slight variants: EncodedClientHelloInner is the compressed form, and ClientHelloOuterAAD just has the ECH extension erased to avoid a circular dependency. I've computed ClientHelloInner and EncodedClientHelloInner concurrently because the compression scheme requires shifting the extensions around to be contiguous. However, I've computed ClientHelloOuterAAD and ClientHelloOuter by running through the logic twice. This probably can be done better, but the next draft revises the construction anyway, so I'm thinking I'll rework it then. (In the next draft, we use a placeholder payload of the same length, so we can construct the ClientHello once and fill in the payload.) Additionally, now that we have a client available in ssl_test, this adds a threading test to confirm that SSL_CTX_set1_ech_keys is properly synchronized. (Confirmed that, if I drop the lock in SSL_CTX_set1_ech_keys, TSan notices.) Change-Id: Icaff68b595035bdcc73c468ff638e67c84239ef4 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48004 Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (hs->early_session->cipher != hs->new_session->cipher) {
OPENSSL_PUT_ERROR(SSL, SSL_R_CIPHER_MISMATCH_ON_EARLY_DATA);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
if (MakeConstSpan(hs->early_session->early_alpn) !=
ssl->s3->alpn_selected) {
OPENSSL_PUT_ERROR(SSL, SSL_R_ALPN_MISMATCH_ON_EARLY_DATA);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
// Channel ID is incompatible with 0-RTT. The ALPS extension should be
// negotiated implicitly.
if (hs->channel_id_negotiated ||
hs->new_session->has_application_settings) {
OPENSSL_PUT_ERROR(SSL, SSL_R_UNEXPECTED_EXTENSION_ON_EARLY_DATA);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
return ssl_hs_error;
}
hs->new_session->has_application_settings =
hs->early_session->has_application_settings;
if (!hs->new_session->local_application_settings.CopyFrom(
hs->early_session->local_application_settings) ||
!hs->new_session->peer_application_settings.CopyFrom(
hs->early_session->peer_application_settings)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_hs_error;
}
}
// Store the negotiated ALPN in the session.
if (!hs->new_session->early_alpn.CopyFrom(ssl->s3->alpn_selected)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_hs_error;
}
if (!ssl_hash_message(hs, msg)) {
return ssl_hs_error;
}
ssl->method->next_message(ssl);
hs->tls13_state = state_read_certificate_request;
if (hs->in_early_data && !ssl->s3->early_data_accepted) {
if (!close_early_data(hs, ssl_encryption_handshake)) {
return ssl_hs_error;
}
return ssl_hs_early_data_rejected;
}
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_read_certificate_request(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
// CertificateRequest may only be sent in non-resumption handshakes.
if (ssl->s3->session_reused) {
if (ssl->ctx->reverify_on_resume && !ssl->s3->early_data_accepted) {
hs->tls13_state = state_server_certificate_reverify;
return ssl_hs_ok;
}
hs->tls13_state = state_read_server_finished;
return ssl_hs_ok;
}
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
// CertificateRequest is optional.
if (msg.type != SSL3_MT_CERTIFICATE_REQUEST) {
hs->tls13_state = state_read_server_certificate;
return ssl_hs_ok;
}
SSLExtension sigalgs(TLSEXT_TYPE_signature_algorithms),
ca(TLSEXT_TYPE_certificate_authorities);
CBS body = msg.body, context, extensions, supported_signature_algorithms;
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!CBS_get_u8_length_prefixed(&body, &context) ||
// The request context is always empty during the handshake.
CBS_len(&context) != 0 ||
!CBS_get_u16_length_prefixed(&body, &extensions) || //
CBS_len(&body) != 0 ||
!ssl_parse_extensions(&extensions, &alert, {&sigalgs, &ca},
/*ignore_unknown=*/true) ||
!sigalgs.present ||
!CBS_get_u16_length_prefixed(&sigalgs.data,
&supported_signature_algorithms) ||
!tls1_parse_peer_sigalgs(hs, &supported_signature_algorithms)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return ssl_hs_error;
}
if (ca.present) {
hs->ca_names = ssl_parse_client_CA_list(ssl, &alert, &ca.data);
if (!hs->ca_names) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return ssl_hs_error;
}
} else {
hs->ca_names.reset(sk_CRYPTO_BUFFER_new_null());
if (!hs->ca_names) {
OPENSSL_PUT_ERROR(SSL, ERR_R_MALLOC_FAILURE);
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
return ssl_hs_error;
}
}
hs->cert_request = true;
ssl->ctx->x509_method->hs_flush_cached_ca_names(hs);
if (!ssl_hash_message(hs, msg)) {
return ssl_hs_error;
}
ssl->method->next_message(ssl);
hs->tls13_state = state_read_server_certificate;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_read_server_certificate(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
if (msg.type != SSL3_MT_COMPRESSED_CERTIFICATE &&
!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE)) {
return ssl_hs_error;
}
if (!tls13_process_certificate(hs, msg, false /* certificate required */) ||
!ssl_hash_message(hs, msg)) {
return ssl_hs_error;
}
ssl->method->next_message(ssl);
hs->tls13_state = state_read_server_certificate_verify;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_read_server_certificate_verify(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
switch (ssl_verify_peer_cert(hs)) {
case ssl_verify_ok:
break;
case ssl_verify_invalid:
return ssl_hs_error;
case ssl_verify_retry:
hs->tls13_state = state_read_server_certificate_verify;
return ssl_hs_certificate_verify;
}
if (!ssl_check_message_type(ssl, msg, SSL3_MT_CERTIFICATE_VERIFY) ||
!tls13_process_certificate_verify(hs, msg) ||
!ssl_hash_message(hs, msg)) {
return ssl_hs_error;
}
ssl->method->next_message(ssl);
hs->tls13_state = state_read_server_finished;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_server_certificate_reverify(SSL_HANDSHAKE *hs) {
switch (ssl_reverify_peer_cert(hs, /*send_alert=*/true)) {
case ssl_verify_ok:
break;
case ssl_verify_invalid:
return ssl_hs_error;
case ssl_verify_retry:
hs->tls13_state = state_server_certificate_reverify;
return ssl_hs_certificate_verify;
}
hs->tls13_state = state_read_server_finished;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_read_server_finished(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
SSLMessage msg;
if (!ssl->method->get_message(ssl, &msg)) {
return ssl_hs_read_message;
}
if (!ssl_check_message_type(ssl, msg, SSL3_MT_FINISHED) ||
!tls13_process_finished(hs, msg, false /* don't use saved value */) ||
!ssl_hash_message(hs, msg) ||
// Update the secret to the master secret and derive traffic keys.
!tls13_advance_key_schedule(
hs, MakeConstSpan(kZeroes, hs->transcript.DigestLen())) ||
!tls13_derive_application_secrets(hs)) {
return ssl_hs_error;
}
// Finished should be the end of the flight.
if (ssl->method->has_unprocessed_handshake_data(ssl)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_UNEXPECTED_MESSAGE);
OPENSSL_PUT_ERROR(SSL, SSL_R_EXCESS_HANDSHAKE_DATA);
return ssl_hs_error;
}
ssl->method->next_message(ssl);
hs->tls13_state = state_send_end_of_early_data;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_send_end_of_early_data(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
if (ssl->s3->early_data_accepted) {
// QUIC omits the EndOfEarlyData message. See RFC 9001, section 8.3.
if (ssl->quic_method == nullptr) {
ScopedCBB cbb;
CBB body;
if (!ssl->method->init_message(ssl, cbb.get(), &body,
SSL3_MT_END_OF_EARLY_DATA) ||
!ssl_add_message_cbb(ssl, cbb.get())) {
return ssl_hs_error;
}
}
if (!close_early_data(hs, ssl_encryption_handshake)) {
return ssl_hs_error;
}
}
hs->tls13_state = state_send_client_encrypted_extensions;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_send_client_encrypted_extensions(
SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
// For now, only one extension uses client EncryptedExtensions. This function
// may be generalized if others use it in the future.
if (hs->new_session->has_application_settings &&
!ssl->s3->early_data_accepted) {
ScopedCBB cbb;
CBB body, extensions, extension;
if (!ssl->method->init_message(ssl, cbb.get(), &body,
SSL3_MT_ENCRYPTED_EXTENSIONS) ||
!CBB_add_u16_length_prefixed(&body, &extensions) ||
!CBB_add_u16(&extensions, TLSEXT_TYPE_application_settings) ||
!CBB_add_u16_length_prefixed(&extensions, &extension) ||
!CBB_add_bytes(&extension,
hs->new_session->local_application_settings.data(),
hs->new_session->local_application_settings.size()) ||
!ssl_add_message_cbb(ssl, cbb.get())) {
return ssl_hs_error;
}
}
hs->tls13_state = state_send_client_certificate;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_send_client_certificate(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
// The peer didn't request a certificate.
if (!hs->cert_request) {
hs->tls13_state = state_complete_second_flight;
return ssl_hs_ok;
}
Implement ClientHelloOuter handshakes. If a client offers ECH, but the server rejects it, the client completes the handshake with ClientHelloOuter in order to authenticate retry keys. Implement this flow. This is largely allowing the existing handshake to proceed, but with some changes: - Certificate verification uses the other name. This CL routes this up to the built-in verifier and adds SSL_get0_ech_name_override for the callback. - We need to disable False Start to pick up server Finished in TLS 1.2. - Client certificates, notably in TLS 1.3 where they're encrypted, should only be revealed to the true server. Fortunately, not sending client certs is always an option, so do that. Channel ID has a similar issue. I've just omitted the extension in ClientHelloOuter because it's deprecated and is unlikely to be used with ECH at this point. ALPS may be worth some pondering but, the way it's currently used, is not sensitive. (Possibly we should change the draft to terminate the handshake before even sending that flight...) - The session is never offered in ClientHelloOuter, but our internal book-keeping doesn't quite notice. I had to replace ech_accept with a tri-state ech_status to correctly handle an edge case in SSL_get0_ech_name_override: when ECH + 0-RTT + reverify_on_resume are all enabled, the first certificate verification is for the 0-RTT session and should be against the true name, yet we have selected_ech_config && !ech_accept. A tri-state tracks when ECH is actually rejected. I've maintained this on the server as well, though the server never actually cares. Bug: 275 Change-Id: Ie55966ca3dc4ffcc8c381479f0fe9bcacd34d0f8 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/48135 Commit-Queue: David Benjamin <davidben@google.com> Reviewed-by: Adam Langley <agl@google.com>
4 years ago
if (ssl->s3->ech_status == ssl_ech_rejected) {
// Do not send client certificates on ECH reject. We have not authenticated
// the server for the name that can learn the certificate.
SSL_certs_clear(ssl);
} else if (hs->config->cert->cert_cb != nullptr) {
// Call cert_cb to update the certificate.
int rv = hs->config->cert->cert_cb(ssl, hs->config->cert->cert_cb_arg);
if (rv == 0) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_INTERNAL_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_CERT_CB_ERROR);
return ssl_hs_error;
}
if (rv < 0) {
hs->tls13_state = state_send_client_certificate;
return ssl_hs_x509_lookup;
}
}
if (!ssl_on_certificate_selected(hs) ||
!tls13_add_certificate(hs)) {
return ssl_hs_error;
}
hs->tls13_state = state_send_client_certificate_verify;
return ssl_hs_ok;
}
static enum ssl_hs_wait_t do_send_client_certificate_verify(SSL_HANDSHAKE *hs) {
// Don't send CertificateVerify if there is no certificate.
if (!ssl_has_certificate(hs)) {
hs->tls13_state = state_complete_second_flight;
return ssl_hs_ok;
}
switch (tls13_add_certificate_verify(hs)) {
case ssl_private_key_success:
hs->tls13_state = state_complete_second_flight;
return ssl_hs_ok;
case ssl_private_key_retry:
hs->tls13_state = state_send_client_certificate_verify;
return ssl_hs_private_key_operation;
case ssl_private_key_failure:
return ssl_hs_error;
}
assert(0);
return ssl_hs_error;
}
static enum ssl_hs_wait_t do_complete_second_flight(SSL_HANDSHAKE *hs) {
SSL *const ssl = hs->ssl;
hs->can_release_private_key = true;
// Send a Channel ID assertion if necessary.
if (hs->channel_id_negotiated) {
ScopedCBB cbb;
CBB body;
if (!ssl->method->init_message(ssl, cbb.get(), &body, SSL3_MT_CHANNEL_ID) ||
!tls1_write_channel_id(hs, &body) ||
!ssl_add_message_cbb(ssl, cbb.get())) {
return ssl_hs_error;
}
}
// Send a Finished message.
if (!tls13_add_finished(hs)) {
return ssl_hs_error;
}
// Derive the final keys and enable them.
if (!tls13_set_traffic_key(ssl, ssl_encryption_application, evp_aead_seal,
hs->new_session.get(),
hs->client_traffic_secret_0()) ||
!tls13_set_traffic_key(ssl, ssl_encryption_application, evp_aead_open,
hs->new_session.get(),
hs->server_traffic_secret_0()) ||
!tls13_derive_resumption_secret(hs)) {
return ssl_hs_error;
}
hs->tls13_state = state_done;
return ssl_hs_flush;
}
enum ssl_hs_wait_t tls13_client_handshake(SSL_HANDSHAKE *hs) {
while (hs->tls13_state != state_done) {
enum ssl_hs_wait_t ret = ssl_hs_error;
enum client_hs_state_t state =
static_cast<enum client_hs_state_t>(hs->tls13_state);
switch (state) {
case state_read_hello_retry_request:
ret = do_read_hello_retry_request(hs);
break;
case state_send_second_client_hello:
ret = do_send_second_client_hello(hs);
break;
case state_read_server_hello:
ret = do_read_server_hello(hs);
break;
case state_read_encrypted_extensions:
ret = do_read_encrypted_extensions(hs);
break;
case state_read_certificate_request:
ret = do_read_certificate_request(hs);
break;
case state_read_server_certificate:
ret = do_read_server_certificate(hs);
break;
case state_read_server_certificate_verify:
ret = do_read_server_certificate_verify(hs);
break;
case state_server_certificate_reverify:
ret = do_server_certificate_reverify(hs);
break;
case state_read_server_finished:
ret = do_read_server_finished(hs);
break;
case state_send_end_of_early_data:
ret = do_send_end_of_early_data(hs);
break;
case state_send_client_certificate:
ret = do_send_client_certificate(hs);
break;
case state_send_client_encrypted_extensions:
ret = do_send_client_encrypted_extensions(hs);
break;
case state_send_client_certificate_verify:
ret = do_send_client_certificate_verify(hs);
break;
case state_complete_second_flight:
ret = do_complete_second_flight(hs);
break;
case state_done:
ret = ssl_hs_ok;
break;
}
if (hs->tls13_state != state) {
ssl_do_info_callback(hs->ssl, SSL_CB_CONNECT_LOOP, 1);
}
if (ret != ssl_hs_ok) {
return ret;
}
}
return ssl_hs_ok;
}
const char *tls13_client_handshake_state(SSL_HANDSHAKE *hs) {
enum client_hs_state_t state =
static_cast<enum client_hs_state_t>(hs->tls13_state);
switch (state) {
case state_read_hello_retry_request:
return "TLS 1.3 client read_hello_retry_request";
case state_send_second_client_hello:
return "TLS 1.3 client send_second_client_hello";
case state_read_server_hello:
return "TLS 1.3 client read_server_hello";
case state_read_encrypted_extensions:
return "TLS 1.3 client read_encrypted_extensions";
case state_read_certificate_request:
return "TLS 1.3 client read_certificate_request";
case state_read_server_certificate:
return "TLS 1.3 client read_server_certificate";
case state_read_server_certificate_verify:
return "TLS 1.3 client read_server_certificate_verify";
case state_server_certificate_reverify:
return "TLS 1.3 client server_certificate_reverify";
case state_read_server_finished:
return "TLS 1.3 client read_server_finished";
case state_send_end_of_early_data:
return "TLS 1.3 client send_end_of_early_data";
case state_send_client_encrypted_extensions:
return "TLS 1.3 client send_client_encrypted_extensions";
case state_send_client_certificate:
return "TLS 1.3 client send_client_certificate";
case state_send_client_certificate_verify:
return "TLS 1.3 client send_client_certificate_verify";
case state_complete_second_flight:
return "TLS 1.3 client complete_second_flight";
case state_done:
return "TLS 1.3 client done";
}
return "TLS 1.3 client unknown";
}
bool tls13_process_new_session_ticket(SSL *ssl, const SSLMessage &msg) {
if (ssl->s3->write_shutdown != ssl_shutdown_none) {
// Ignore tickets on shutdown. Callers tend to indiscriminately call
// |SSL_shutdown| before destroying an |SSL|, at which point calling the new
// session callback may be confusing.
return true;
}
CBS body = msg.body;
UniquePtr<SSL_SESSION> session = tls13_create_session_with_ticket(ssl, &body);
if (!session) {
return false;
}
if ((ssl->session_ctx->session_cache_mode & SSL_SESS_CACHE_CLIENT) &&
ssl->session_ctx->new_session_cb != NULL &&
ssl->session_ctx->new_session_cb(ssl, session.get())) {
// |new_session_cb|'s return value signals that it took ownership.
session.release();
}
return true;
}
UniquePtr<SSL_SESSION> tls13_create_session_with_ticket(SSL *ssl, CBS *body) {
UniquePtr<SSL_SESSION> session = SSL_SESSION_dup(
ssl->s3->established_session.get(), SSL_SESSION_INCLUDE_NONAUTH);
if (!session) {
return nullptr;
}
ssl_session_rebase_time(ssl, session.get());
uint32_t server_timeout;
CBS ticket_nonce, ticket, extensions;
if (!CBS_get_u32(body, &server_timeout) ||
!CBS_get_u32(body, &session->ticket_age_add) ||
!CBS_get_u8_length_prefixed(body, &ticket_nonce) ||
!CBS_get_u16_length_prefixed(body, &ticket) ||
!session->ticket.CopyFrom(ticket) ||
!CBS_get_u16_length_prefixed(body, &extensions) ||
CBS_len(body) != 0) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return nullptr;
}
// Cap the renewable lifetime by the server advertised value. This avoids
// wasting bandwidth on 0-RTT when we know the server will reject it.
if (session->timeout > server_timeout) {
session->timeout = server_timeout;
}
if (!tls13_derive_session_psk(session.get(), ticket_nonce)) {
return nullptr;
}
SSLExtension early_data(TLSEXT_TYPE_early_data);
uint8_t alert = SSL_AD_DECODE_ERROR;
if (!ssl_parse_extensions(&extensions, &alert, {&early_data},
/*ignore_unknown=*/true)) {
ssl_send_alert(ssl, SSL3_AL_FATAL, alert);
return nullptr;
}
if (early_data.present) {
if (!CBS_get_u32(&early_data.data, &session->ticket_max_early_data) ||
CBS_len(&early_data.data) != 0) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_DECODE_ERROR);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return nullptr;
}
// QUIC does not use the max_early_data_size parameter and always sets it to
// a fixed value. See RFC 9001, section 4.6.1.
if (ssl->quic_method != nullptr &&
session->ticket_max_early_data != 0xffffffff) {
ssl_send_alert(ssl, SSL3_AL_FATAL, SSL_AD_ILLEGAL_PARAMETER);
OPENSSL_PUT_ERROR(SSL, SSL_R_DECODE_ERROR);
return nullptr;
}
}
// Historically, OpenSSL filled in fake session IDs for ticket-based sessions.
// Envoy's tests depend on this, although perhaps they shouldn't.
SHA256(CBS_data(&ticket), CBS_len(&ticket), session->session_id);
session->session_id_length = SHA256_DIGEST_LENGTH;
session->ticket_age_add_valid = true;
session->not_resumable = false;
return session;
}
BSSL_NAMESPACE_END