Mirror of BoringSSL (grpc依赖) https://boringssl.googlesource.com/boringssl
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

481 lines
13 KiB

/* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
* All rights reserved.
*
* This package is an SSL implementation written
* by Eric Young (eay@cryptsoft.com).
* The implementation was written so as to conform with Netscapes SSL.
*
* This library is free for commercial and non-commercial use as long as
* the following conditions are aheared to. The following conditions
* apply to all code found in this distribution, be it the RC4, RSA,
* lhash, DES, etc., code; not just the SSL code. The SSL documentation
* included with this distribution is covered by the same copyright terms
* except that the holder is Tim Hudson (tjh@cryptsoft.com).
*
* Copyright remains Eric Young's, and as such any Copyright notices in
* the code are not to be removed.
* If this package is used in a product, Eric Young should be given attribution
* as the author of the parts of the library used.
* This can be in the form of a textual message at program startup or
* in documentation (online or textual) provided with the package.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. All advertising materials mentioning features or use of this software
* must display the following acknowledgement:
* "This product includes cryptographic software written by
* Eric Young (eay@cryptsoft.com)"
* The word 'cryptographic' can be left out if the rouines from the library
* being used are not cryptographic related :-).
* 4. If you include any Windows specific code (or a derivative thereof) from
* the apps directory (application code) you must include an acknowledgement:
* "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
*
* THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
* The licence and distribution terms for any publically available version or
* derivative of this code cannot be changed. i.e. this code cannot simply be
* copied and put under another distribution licence
* [including the GNU Public Licence.] */
#include <openssl/base64.h>
#include <assert.h>
#include <limits.h>
#include <string.h>
#include "../internal.h"
// constant_time_lt_args_8 behaves like |constant_time_lt_8| but takes |uint8_t|
// arguments for a slightly simpler implementation.
static inline uint8_t constant_time_lt_args_8(uint8_t a, uint8_t b) {
crypto_word_t aw = a;
crypto_word_t bw = b;
// |crypto_word_t| is larger than |uint8_t|, so |aw| and |bw| have the same
// MSB. |aw| < |bw| iff MSB(|aw| - |bw|) is 1.
return constant_time_msb_w(aw - bw);
}
// constant_time_in_range_8 returns |CONSTTIME_TRUE_8| if |min| <= |a| <= |max|
// and |CONSTTIME_FALSE_8| otherwise.
static inline uint8_t constant_time_in_range_8(uint8_t a, uint8_t min,
uint8_t max) {
a -= min;
return constant_time_lt_args_8(a, max - min + 1);
}
// Encoding.
static uint8_t conv_bin2ascii(uint8_t a) {
// Since PEM is sometimes used to carry private keys, we encode base64 data
// itself in constant-time.
a &= 0x3f;
uint8_t ret = constant_time_select_8(constant_time_eq_8(a, 62), '+', '/');
ret =
constant_time_select_8(constant_time_lt_args_8(a, 62), a - 52 + '0', ret);
ret =
constant_time_select_8(constant_time_lt_args_8(a, 52), a - 26 + 'a', ret);
ret = constant_time_select_8(constant_time_lt_args_8(a, 26), a + 'A', ret);
return ret;
}
static_assert(sizeof(((EVP_ENCODE_CTX *)(NULL))->data) % 3 == 0,
"data length must be a multiple of base64 chunk size");
int EVP_EncodedLength(size_t *out_len, size_t len) {
if (len + 2 < len) {
return 0;
}
len += 2;
len /= 3;
if (((len << 2) >> 2) != len) {
return 0;
}
len <<= 2;
if (len + 1 < len) {
return 0;
}
len++;
*out_len = len;
return 1;
}
Add various OpenSSL compatibility functions. The non-_ex EVP_CIPHER_CTX Final functions are a bit interesting. Unlike EVP_DigestFinal(_ex), where the non-_ex version calls EVP_MD_CTX_cleanup for you, the EVP_CIPHER_CTX ones do not automatically cleanup. EVP_CipherFinal and EVP_CipherFinal_ex are identical in all releases where they exist. This appears to date to OpenSSL 0.9.7: Prior to OpenSSL 0.9.7, EVP_MD_CTX and EVP_CIPHER_CTX did not use void* data fields. Instead, they just had a union of context structures for every algorithm OpenSSL implemented. EVP_MD_CTX was truly cleanup-less. There were no EVP_MD_CTX_init or EVP_MD_CTX_cleanup functions at all. EVP_DigestInit filled things in without reference to the previous state. EVP_DigestFinal didn't cleanup because there was nothing to cleanup. EVP_CIPHER_CTX was also a union, but for some reason did include EVP_CIPHER_CTX_init and EVP_CIPHER_CTX_cleanup. EVP_CIPHER_CTX_init seemed to be optional: EVP_CipherInit with non-NULL EVP_CIPHER similarly didn't reference the previous state. EVP_CipherFinal did not call EVP_CIPHER_CTX_cleanup, but EVP_CIPHER_CTX_cleanup didn't do anything. It called an optional cleanup hook on the EVP_CIPHER, but as far as I can tell, no EVP_CIPHER implemented it. Then OpenSSL 0.9.7 introduced ENGINE. The union didn't work anymore, so EVP_MD_CTX and EVP_CIPHER_CTX contained void* with allocated type-specific data. The introduced EVP_MD_CTX_init and EVP_MD_CTX_cleanup. For (imperfect!) backwards compatibility, EVP_DigestInit and EVP_DigestFinal transparently called init/cleanup for you. EVP_DigestInit_ex and EVP_DigestFinal_ex became the more flexible versions that left init/cleanup to the caller. EVP_CIPHER_CTX got the same treatment with EVP_CipherInit/EVP_CipherInit_ex, but *not* EVP_CipherFinal/EVP_CipherFinal_ex. The latter did the same thing. The history seems to be that 581f1c84940d77451c2592e9fa470893f6c3c3eb introduced the Final/Final_ex split, with the former doing an auto-cleanup, then 544a2aea4ba1fad76f0802fb70d92a5a8e6ad85a undid it. Looks like the motivation is that EVP_CIPHER_CTX objects are often reused to do multiple operations with a single key. But they missed that the split functions are now unnecessary. Amusingly, OpenSSL's documentation incorrectly said that EVP_CipherFinal cleaned up after the call until it was fixed in 538860a3ce0b9fd142a7f1a62e597cccb74475d3. The fix says that some releases cleaned up, but there were, as far as I can tell, no actual releases with that behavior. I've put the new Final functions in the deprecated section, purely because there is no sense in recommending two different versions of the same function to users, and Final_ex seems to be more popular. But there isn't actually anything wrong with plain Final. Change-Id: Ic2bfda48fdcf30f292141add8c5f745348036852 Reviewed-on: https://boringssl-review.googlesource.com/c/boringssl/+/50485 Reviewed-by: Adam Langley <agl@google.com>
3 years ago
EVP_ENCODE_CTX *EVP_ENCODE_CTX_new(void) {
EVP_ENCODE_CTX *ret = OPENSSL_malloc(sizeof(EVP_ENCODE_CTX));
if (ret == NULL) {
return NULL;
}
OPENSSL_memset(ret, 0, sizeof(EVP_ENCODE_CTX));
return ret;
}
void EVP_ENCODE_CTX_free(EVP_ENCODE_CTX *ctx) {
OPENSSL_free(ctx);
}
void EVP_EncodeInit(EVP_ENCODE_CTX *ctx) {
OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
}
void EVP_EncodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
const uint8_t *in, size_t in_len) {
size_t total = 0;
*out_len = 0;
if (in_len == 0) {
return;
}
assert(ctx->data_used < sizeof(ctx->data));
if (sizeof(ctx->data) - ctx->data_used > in_len) {
OPENSSL_memcpy(&ctx->data[ctx->data_used], in, in_len);
ctx->data_used += (unsigned)in_len;
return;
}
if (ctx->data_used != 0) {
const size_t todo = sizeof(ctx->data) - ctx->data_used;
OPENSSL_memcpy(&ctx->data[ctx->data_used], in, todo);
in += todo;
in_len -= todo;
size_t encoded = EVP_EncodeBlock(out, ctx->data, sizeof(ctx->data));
ctx->data_used = 0;
out += encoded;
*(out++) = '\n';
*out = '\0';
total = encoded + 1;
}
while (in_len >= sizeof(ctx->data)) {
size_t encoded = EVP_EncodeBlock(out, in, sizeof(ctx->data));
in += sizeof(ctx->data);
in_len -= sizeof(ctx->data);
out += encoded;
*(out++) = '\n';
*out = '\0';
if (total + encoded + 1 < total) {
*out_len = 0;
return;
}
total += encoded + 1;
}
if (in_len != 0) {
OPENSSL_memcpy(ctx->data, in, in_len);
}
ctx->data_used = (unsigned)in_len;
if (total > INT_MAX) {
// We cannot signal an error, but we can at least avoid making *out_len
// negative.
total = 0;
}
*out_len = (int)total;
}
void EVP_EncodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
if (ctx->data_used == 0) {
*out_len = 0;
return;
}
size_t encoded = EVP_EncodeBlock(out, ctx->data, ctx->data_used);
out[encoded++] = '\n';
out[encoded] = '\0';
ctx->data_used = 0;
// ctx->data_used is bounded by sizeof(ctx->data), so this does not
// overflow.
assert(encoded <= INT_MAX);
*out_len = (int)encoded;
}
size_t EVP_EncodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
uint32_t l;
size_t remaining = src_len, ret = 0;
while (remaining) {
if (remaining >= 3) {
l = (((uint32_t)src[0]) << 16L) | (((uint32_t)src[1]) << 8L) | src[2];
*(dst++) = conv_bin2ascii(l >> 18L);
*(dst++) = conv_bin2ascii(l >> 12L);
*(dst++) = conv_bin2ascii(l >> 6L);
*(dst++) = conv_bin2ascii(l);
remaining -= 3;
} else {
l = ((uint32_t)src[0]) << 16L;
if (remaining == 2) {
l |= ((uint32_t)src[1] << 8L);
}
*(dst++) = conv_bin2ascii(l >> 18L);
*(dst++) = conv_bin2ascii(l >> 12L);
*(dst++) = (remaining == 1) ? '=' : conv_bin2ascii(l >> 6L);
*(dst++) = '=';
remaining = 0;
}
ret += 4;
src += 3;
}
*dst = '\0';
return ret;
}
// Decoding.
int EVP_DecodedLength(size_t *out_len, size_t len) {
if (len % 4 != 0) {
return 0;
}
*out_len = (len / 4) * 3;
return 1;
}
void EVP_DecodeInit(EVP_ENCODE_CTX *ctx) {
OPENSSL_memset(ctx, 0, sizeof(EVP_ENCODE_CTX));
}
static uint8_t base64_ascii_to_bin(uint8_t a) {
// Since PEM is sometimes used to carry private keys, we decode base64 data
// itself in constant-time.
const uint8_t is_upper = constant_time_in_range_8(a, 'A', 'Z');
const uint8_t is_lower = constant_time_in_range_8(a, 'a', 'z');
const uint8_t is_digit = constant_time_in_range_8(a, '0', '9');
const uint8_t is_plus = constant_time_eq_8(a, '+');
const uint8_t is_slash = constant_time_eq_8(a, '/');
const uint8_t is_equals = constant_time_eq_8(a, '=');
uint8_t ret = 0;
ret |= is_upper & (a - 'A'); // [0,26)
ret |= is_lower & (a - 'a' + 26); // [26,52)
ret |= is_digit & (a - '0' + 52); // [52,62)
ret |= is_plus & 62;
ret |= is_slash & 63;
// Invalid inputs, 'A', and '=' have all been mapped to zero. Map invalid
// inputs to 0xff. Note '=' is padding and handled separately by the caller.
const uint8_t is_valid =
is_upper | is_lower | is_digit | is_plus | is_slash | is_equals;
ret |= ~is_valid;
return ret;
}
// base64_decode_quad decodes a single “quad” (i.e. four characters) of base64
// data and writes up to three bytes to |out|. It sets |*out_num_bytes| to the
// number of bytes written, which will be less than three if the quad ended
// with padding. It returns one on success or zero on error.
static int base64_decode_quad(uint8_t *out, size_t *out_num_bytes,
const uint8_t *in) {
const uint8_t a = base64_ascii_to_bin(in[0]);
const uint8_t b = base64_ascii_to_bin(in[1]);
const uint8_t c = base64_ascii_to_bin(in[2]);
const uint8_t d = base64_ascii_to_bin(in[3]);
if (a == 0xff || b == 0xff || c == 0xff || d == 0xff) {
return 0;
}
const uint32_t v = ((uint32_t)a) << 18 | ((uint32_t)b) << 12 |
((uint32_t)c) << 6 | (uint32_t)d;
const unsigned padding_pattern = (in[0] == '=') << 3 |
(in[1] == '=') << 2 |
(in[2] == '=') << 1 |
(in[3] == '=');
switch (padding_pattern) {
case 0:
// The common case of no padding.
*out_num_bytes = 3;
out[0] = v >> 16;
out[1] = v >> 8;
out[2] = v;
break;
case 1: // xxx=
*out_num_bytes = 2;
out[0] = v >> 16;
out[1] = v >> 8;
break;
case 3: // xx==
*out_num_bytes = 1;
out[0] = v >> 16;
break;
default:
return 0;
}
return 1;
}
int EVP_DecodeUpdate(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len,
const uint8_t *in, size_t in_len) {
*out_len = 0;
if (ctx->error_encountered) {
return -1;
}
size_t bytes_out = 0, i;
for (i = 0; i < in_len; i++) {
const char c = in[i];
switch (c) {
case ' ':
case '\t':
case '\r':
case '\n':
continue;
}
if (ctx->eof_seen) {
ctx->error_encountered = 1;
return -1;
}
ctx->data[ctx->data_used++] = c;
if (ctx->data_used == 4) {
size_t num_bytes_resulting;
if (!base64_decode_quad(out, &num_bytes_resulting, ctx->data)) {
ctx->error_encountered = 1;
return -1;
}
ctx->data_used = 0;
bytes_out += num_bytes_resulting;
out += num_bytes_resulting;
if (num_bytes_resulting < 3) {
ctx->eof_seen = 1;
}
}
}
if (bytes_out > INT_MAX) {
ctx->error_encountered = 1;
*out_len = 0;
return -1;
}
*out_len = (int)bytes_out;
if (ctx->eof_seen) {
return 0;
}
return 1;
}
int EVP_DecodeFinal(EVP_ENCODE_CTX *ctx, uint8_t *out, int *out_len) {
*out_len = 0;
if (ctx->error_encountered || ctx->data_used != 0) {
return -1;
}
return 1;
}
int EVP_DecodeBase64(uint8_t *out, size_t *out_len, size_t max_out,
const uint8_t *in, size_t in_len) {
*out_len = 0;
if (in_len % 4 != 0) {
return 0;
}
size_t max_len;
if (!EVP_DecodedLength(&max_len, in_len) ||
max_out < max_len) {
return 0;
}
size_t i, bytes_out = 0;
for (i = 0; i < in_len; i += 4) {
size_t num_bytes_resulting;
if (!base64_decode_quad(out, &num_bytes_resulting, &in[i])) {
return 0;
}
bytes_out += num_bytes_resulting;
out += num_bytes_resulting;
if (num_bytes_resulting != 3 && i != in_len - 4) {
return 0;
}
}
*out_len = bytes_out;
return 1;
}
int EVP_DecodeBlock(uint8_t *dst, const uint8_t *src, size_t src_len) {
// Trim spaces and tabs from the beginning of the input.
while (src_len > 0) {
if (src[0] != ' ' && src[0] != '\t') {
break;
}
src++;
src_len--;
}
// Trim newlines, spaces and tabs from the end of the line.
while (src_len > 0) {
switch (src[src_len-1]) {
case ' ':
case '\t':
case '\r':
case '\n':
src_len--;
continue;
}
break;
}
size_t dst_len;
if (!EVP_DecodedLength(&dst_len, src_len) ||
dst_len > INT_MAX ||
!EVP_DecodeBase64(dst, &dst_len, dst_len, src, src_len)) {
return -1;
}
// EVP_DecodeBlock does not take padding into account, so put the
// NULs back in... so the caller can strip them back out.
while (dst_len % 3 != 0) {
dst[dst_len++] = '\0';
}
assert(dst_len <= INT_MAX);
return (int)dst_len;
}