Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
275 lines
10 KiB
275 lines
10 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: uniform_int_distribution.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header defines a class for representing a uniform integer distribution |
|
// over the closed (inclusive) interval [a,b]. You use this distribution in |
|
// combination with an Abseil random bit generator to produce random values |
|
// according to the rules of the distribution. |
|
// |
|
// `absl::uniform_int_distribution` is a drop-in replacement for the C++11 |
|
// `std::uniform_int_distribution` [rand.dist.uni.int] but is considerably |
|
// faster than the libstdc++ implementation. |
|
|
|
#ifndef ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_ |
|
|
|
#include <cassert> |
|
#include <istream> |
|
#include <limits> |
|
#include <type_traits> |
|
|
|
#include "absl/base/optimization.h" |
|
#include "absl/random/internal/fast_uniform_bits.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
#include "absl/random/internal/traits.h" |
|
#include "absl/random/internal/wide_multiply.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
// absl::uniform_int_distribution<T> |
|
// |
|
// This distribution produces random integer values uniformly distributed in the |
|
// closed (inclusive) interval [a, b]. |
|
// |
|
// Example: |
|
// |
|
// absl::BitGen gen; |
|
// |
|
// // Use the distribution to produce a value between 1 and 6, inclusive. |
|
// int die_roll = absl::uniform_int_distribution<int>(1, 6)(gen); |
|
// |
|
template <typename IntType = int> |
|
class uniform_int_distribution { |
|
private: |
|
using unsigned_type = |
|
typename random_internal::make_unsigned_bits<IntType>::type; |
|
|
|
public: |
|
using result_type = IntType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = uniform_int_distribution; |
|
|
|
explicit param_type( |
|
result_type lo = 0, |
|
result_type hi = (std::numeric_limits<result_type>::max)()) |
|
: lo_(lo), |
|
range_(static_cast<unsigned_type>(hi) - |
|
static_cast<unsigned_type>(lo)) { |
|
// [rand.dist.uni.int] precondition 2 |
|
assert(lo <= hi); |
|
} |
|
|
|
result_type a() const { return lo_; } |
|
result_type b() const { |
|
return static_cast<result_type>(static_cast<unsigned_type>(lo_) + range_); |
|
} |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.lo_ == b.lo_ && a.range_ == b.range_; |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
friend class uniform_int_distribution; |
|
unsigned_type range() const { return range_; } |
|
|
|
result_type lo_; |
|
unsigned_type range_; |
|
|
|
static_assert(std::is_integral<result_type>::value, |
|
"Class-template absl::uniform_int_distribution<> must be " |
|
"parameterized using an integral type."); |
|
}; // param_type |
|
|
|
uniform_int_distribution() : uniform_int_distribution(0) {} |
|
|
|
explicit uniform_int_distribution( |
|
result_type lo, |
|
result_type hi = (std::numeric_limits<result_type>::max)()) |
|
: param_(lo, hi) {} |
|
|
|
explicit uniform_int_distribution(const param_type& param) : param_(param) {} |
|
|
|
// uniform_int_distribution<T>::reset() |
|
// |
|
// Resets the uniform int distribution. Note that this function has no effect |
|
// because the distribution already produces independent values. |
|
void reset() {} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& gen) { // NOLINT(runtime/references) |
|
return (*this)(gen, param()); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()( |
|
URBG& gen, const param_type& param) { // NOLINT(runtime/references) |
|
return param.a() + Generate(gen, param.range()); |
|
} |
|
|
|
result_type a() const { return param_.a(); } |
|
result_type b() const { return param_.b(); } |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& params) { param_ = params; } |
|
|
|
result_type(min)() const { return a(); } |
|
result_type(max)() const { return b(); } |
|
|
|
friend bool operator==(const uniform_int_distribution& a, |
|
const uniform_int_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const uniform_int_distribution& a, |
|
const uniform_int_distribution& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
// Generates a value in the *closed* interval [0, R] |
|
template <typename URBG> |
|
unsigned_type Generate(URBG& g, // NOLINT(runtime/references) |
|
unsigned_type R); |
|
param_type param_; |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Implementation details follow |
|
// ----------------------------------------------------------------------------- |
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, |
|
const uniform_int_distribution<IntType>& x) { |
|
using stream_type = |
|
typename random_internal::stream_format_type<IntType>::type; |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os << static_cast<stream_type>(x.a()) << os.fill() |
|
<< static_cast<stream_type>(x.b()); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename IntType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, |
|
uniform_int_distribution<IntType>& x) { |
|
using param_type = typename uniform_int_distribution<IntType>::param_type; |
|
using result_type = typename uniform_int_distribution<IntType>::result_type; |
|
using stream_type = |
|
typename random_internal::stream_format_type<IntType>::type; |
|
|
|
stream_type a; |
|
stream_type b; |
|
|
|
auto saver = random_internal::make_istream_state_saver(is); |
|
is >> a >> b; |
|
if (!is.fail()) { |
|
x.param( |
|
param_type(static_cast<result_type>(a), static_cast<result_type>(b))); |
|
} |
|
return is; |
|
} |
|
|
|
template <typename IntType> |
|
template <typename URBG> |
|
typename random_internal::make_unsigned_bits<IntType>::type |
|
uniform_int_distribution<IntType>::Generate( |
|
URBG& g, // NOLINT(runtime/references) |
|
typename random_internal::make_unsigned_bits<IntType>::type R) { |
|
random_internal::FastUniformBits<unsigned_type> fast_bits; |
|
unsigned_type bits = fast_bits(g); |
|
const unsigned_type Lim = R + 1; |
|
if ((R & Lim) == 0) { |
|
// If the interval's length is a power of two range, just take the low bits. |
|
return bits & R; |
|
} |
|
|
|
// Generates a uniform variate on [0, Lim) using fixed-point multiplication. |
|
// The above fast-path guarantees that Lim is representable in unsigned_type. |
|
// |
|
// Algorithm adapted from |
|
// http://lemire.me/blog/2016/06/30/fast-random-shuffling/, with added |
|
// explanation. |
|
// |
|
// The algorithm creates a uniform variate `bits` in the interval [0, 2^N), |
|
// and treats it as the fractional part of a fixed-point real value in [0, 1), |
|
// multiplied by 2^N. For example, 0.25 would be represented as 2^(N - 2), |
|
// because 2^N * 0.25 == 2^(N - 2). |
|
// |
|
// Next, `bits` and `Lim` are multiplied with a wide-multiply to bring the |
|
// value into the range [0, Lim). The integral part (the high word of the |
|
// multiplication result) is then very nearly the desired result. However, |
|
// this is not quite accurate; viewing the multiplication result as one |
|
// double-width integer, the resulting values for the sample are mapped as |
|
// follows: |
|
// |
|
// If the result lies in this interval: Return this value: |
|
// [0, 2^N) 0 |
|
// [2^N, 2 * 2^N) 1 |
|
// ... ... |
|
// [K * 2^N, (K + 1) * 2^N) K |
|
// ... ... |
|
// [(Lim - 1) * 2^N, Lim * 2^N) Lim - 1 |
|
// |
|
// While all of these intervals have the same size, the result of `bits * Lim` |
|
// must be a multiple of `Lim`, and not all of these intervals contain the |
|
// same number of multiples of `Lim`. In particular, some contain |
|
// `F = floor(2^N / Lim)` and some contain `F + 1 = ceil(2^N / Lim)`. This |
|
// difference produces a small nonuniformity, which is corrected by applying |
|
// rejection sampling to one of the values in the "larger intervals" (i.e., |
|
// the intervals containing `F + 1` multiples of `Lim`. |
|
// |
|
// An interval contains `F + 1` multiples of `Lim` if and only if its smallest |
|
// value modulo 2^N is less than `2^N % Lim`. The unique value satisfying |
|
// this property is used as the one for rejection. That is, a value of |
|
// `bits * Lim` is rejected if `(bit * Lim) % 2^N < (2^N % Lim)`. |
|
|
|
using helper = random_internal::wide_multiply<unsigned_type>; |
|
auto product = helper::multiply(bits, Lim); |
|
|
|
// Two optimizations here: |
|
// * Rejection occurs with some probability less than 1/2, and for reasonable |
|
// ranges considerably less (in particular, less than 1/(F+1)), so |
|
// ABSL_PREDICT_FALSE is apt. |
|
// * `Lim` is an overestimate of `threshold`, and doesn't require a divide. |
|
if (ABSL_PREDICT_FALSE(helper::lo(product) < Lim)) { |
|
// This quantity is exactly equal to `2^N % Lim`, but does not require high |
|
// precision calculations: `2^N % Lim` is congruent to `(2^N - Lim) % Lim`. |
|
// Ideally this could be expressed simply as `-X` rather than `2^N - X`, but |
|
// for types smaller than int, this calculation is incorrect due to integer |
|
// promotion rules. |
|
const unsigned_type threshold = |
|
((std::numeric_limits<unsigned_type>::max)() - Lim + 1) % Lim; |
|
while (helper::lo(product) < threshold) { |
|
bits = fast_bits(g); |
|
product = helper::multiply(bits, Lim); |
|
} |
|
} |
|
|
|
return helper::hi(product); |
|
} |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_UNIFORM_INT_DISTRIBUTION_H_
|
|
|