Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
573 lines
20 KiB
573 lines
20 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/poisson_distribution.h" |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <iterator> |
|
#include <random> |
|
#include <sstream> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/container/flat_hash_map.h" |
|
#include "absl/random/internal/chi_square.h" |
|
#include "absl/random/internal/distribution_test_util.h" |
|
#include "absl/random/internal/pcg_engine.h" |
|
#include "absl/random/internal/sequence_urbg.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_format.h" |
|
#include "absl/strings/str_replace.h" |
|
#include "absl/strings/strip.h" |
|
|
|
// Notes about generating poisson variates: |
|
// |
|
// It is unlikely that any implementation of std::poisson_distribution |
|
// will be stable over time and across library implementations. For instance |
|
// the three different poisson variate generators listed below all differ: |
|
// |
|
// https://github.com/ampl/gsl/tree/master/randist/poisson.c |
|
// * GSL uses a gamma + binomial + knuth method to compute poisson variates. |
|
// |
|
// https://github.com/gcc-mirror/gcc/blob/master/libstdc%2B%2B-v3/include/bits/random.tcc |
|
// * GCC uses the Devroye rejection algorithm, based on |
|
// Devroye, L. Non-Uniform Random Variates Generation. Springer-Verlag, |
|
// New York, 1986, Ch. X, Sects. 3.3 & 3.4 (+ Errata!), ~p.511 |
|
// http://www.nrbook.com/devroye/ |
|
// |
|
// https://github.com/llvm-mirror/libcxx/blob/master/include/random |
|
// * CLANG uses a different rejection method, which appears to include a |
|
// normal-distribution approximation and an exponential distribution to |
|
// compute the threshold, including a similar factorial approximation to this |
|
// one, but it is unclear where the algorithm comes from, exactly. |
|
// |
|
|
|
namespace { |
|
|
|
using absl::random_internal::kChiSquared; |
|
|
|
// The PoissonDistributionInterfaceTest provides a basic test that |
|
// absl::poisson_distribution conforms to the interface and serialization |
|
// requirements imposed by [rand.req.dist] for the common integer types. |
|
|
|
template <typename IntType> |
|
class PoissonDistributionInterfaceTest : public ::testing::Test {}; |
|
|
|
using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t, |
|
uint8_t, uint16_t, uint32_t, uint64_t>; |
|
TYPED_TEST_CASE(PoissonDistributionInterfaceTest, IntTypes); |
|
|
|
TYPED_TEST(PoissonDistributionInterfaceTest, SerializeTest) { |
|
using param_type = typename absl::poisson_distribution<TypeParam>::param_type; |
|
const double kMax = |
|
std::min(1e10 /* assertion limit */, |
|
static_cast<double>(std::numeric_limits<TypeParam>::max())); |
|
|
|
const double kParams[] = { |
|
// Cases around 1. |
|
1, // |
|
std::nextafter(1.0, 0.0), // 1 - epsilon |
|
std::nextafter(1.0, 2.0), // 1 + epsilon |
|
// Arbitrary values. |
|
1e-8, 1e-4, |
|
0.0000005, // ~7.2e-7 |
|
0.2, // ~0.2x |
|
0.5, // 0.72 |
|
2, // ~2.8 |
|
20, // 3x ~9.6 |
|
100, 1e4, 1e8, 1.5e9, 1e20, |
|
// Boundary cases. |
|
std::numeric_limits<double>::max(), |
|
std::numeric_limits<double>::epsilon(), |
|
std::nextafter(std::numeric_limits<double>::min(), |
|
1.0), // min + epsilon |
|
std::numeric_limits<double>::min(), // smallest normal |
|
std::numeric_limits<double>::denorm_min(), // smallest denorm |
|
std::numeric_limits<double>::min() / 2, // denorm |
|
std::nextafter(std::numeric_limits<double>::min(), |
|
0.0), // denorm_max |
|
}; |
|
|
|
|
|
constexpr int kCount = 1000; |
|
absl::InsecureBitGen gen; |
|
for (const double m : kParams) { |
|
const double mean = std::min(kMax, m); |
|
const param_type param(mean); |
|
|
|
// Validate parameters. |
|
absl::poisson_distribution<TypeParam> before(mean); |
|
EXPECT_EQ(before.mean(), param.mean()); |
|
|
|
{ |
|
absl::poisson_distribution<TypeParam> via_param(param); |
|
EXPECT_EQ(via_param, before); |
|
EXPECT_EQ(via_param.param(), before.param()); |
|
} |
|
|
|
// Smoke test. |
|
auto sample_min = before.max(); |
|
auto sample_max = before.min(); |
|
for (int i = 0; i < kCount; i++) { |
|
auto sample = before(gen); |
|
EXPECT_GE(sample, before.min()); |
|
EXPECT_LE(sample, before.max()); |
|
if (sample > sample_max) sample_max = sample; |
|
if (sample < sample_min) sample_min = sample; |
|
} |
|
|
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat("Range {", param.mean(), "}: ", |
|
+sample_min, ", ", +sample_max)); |
|
|
|
// Validate stream serialization. |
|
std::stringstream ss; |
|
ss << before; |
|
|
|
absl::poisson_distribution<TypeParam> after(3.8); |
|
|
|
EXPECT_NE(before.mean(), after.mean()); |
|
EXPECT_NE(before.param(), after.param()); |
|
EXPECT_NE(before, after); |
|
|
|
ss >> after; |
|
|
|
EXPECT_EQ(before.mean(), after.mean()) // |
|
<< ss.str() << " " // |
|
<< (ss.good() ? "good " : "") // |
|
<< (ss.bad() ? "bad " : "") // |
|
<< (ss.eof() ? "eof " : "") // |
|
<< (ss.fail() ? "fail " : ""); |
|
} |
|
} |
|
|
|
// See http://www.itl.nist.gov/div898/handbook/eda/section3/eda366j.htm |
|
|
|
class PoissonModel { |
|
public: |
|
explicit PoissonModel(double mean) : mean_(mean) {} |
|
|
|
double mean() const { return mean_; } |
|
double variance() const { return mean_; } |
|
double stddev() const { return std::sqrt(variance()); } |
|
double skew() const { return 1.0 / mean_; } |
|
double kurtosis() const { return 3.0 + 1.0 / mean_; } |
|
|
|
// InitCDF() initializes the CDF for the distribution parameters. |
|
void InitCDF(); |
|
|
|
// The InverseCDF, or the Percent-point function returns x, P(x) < v. |
|
struct CDF { |
|
size_t index; |
|
double pmf; |
|
double cdf; |
|
}; |
|
CDF InverseCDF(double p) { |
|
CDF target{0, 0, p}; |
|
auto it = std::upper_bound( |
|
std::begin(cdf_), std::end(cdf_), target, |
|
[](const CDF& a, const CDF& b) { return a.cdf < b.cdf; }); |
|
return *it; |
|
} |
|
|
|
void LogCDF() { |
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat("CDF (mean = ", mean_, ")")); |
|
for (const auto c : cdf_) { |
|
ABSL_INTERNAL_LOG(INFO, |
|
absl::StrCat(c.index, ": pmf=", c.pmf, " cdf=", c.cdf)); |
|
} |
|
} |
|
|
|
private: |
|
const double mean_; |
|
|
|
std::vector<CDF> cdf_; |
|
}; |
|
|
|
// The goal is to compute an InverseCDF function, or percent point function for |
|
// the poisson distribution, and use that to partition our output into equal |
|
// range buckets. However there is no closed form solution for the inverse cdf |
|
// for poisson distributions (the closest is the incomplete gamma function). |
|
// Instead, `InitCDF` iteratively computes the PMF and the CDF. This enables |
|
// searching for the bucket points. |
|
void PoissonModel::InitCDF() { |
|
if (!cdf_.empty()) { |
|
// State already initialized. |
|
return; |
|
} |
|
ABSL_ASSERT(mean_ < 201.0); |
|
|
|
const size_t max_i = 50 * stddev() + mean(); |
|
const double e_neg_mean = std::exp(-mean()); |
|
ABSL_ASSERT(e_neg_mean > 0); |
|
|
|
double d = 1; |
|
double last_result = e_neg_mean; |
|
double cumulative = e_neg_mean; |
|
if (e_neg_mean > 1e-10) { |
|
cdf_.push_back({0, e_neg_mean, cumulative}); |
|
} |
|
for (size_t i = 1; i < max_i; i++) { |
|
d *= (mean() / i); |
|
double result = e_neg_mean * d; |
|
cumulative += result; |
|
if (result < 1e-10 && result < last_result && cumulative > 0.999999) { |
|
break; |
|
} |
|
if (result > 1e-7) { |
|
cdf_.push_back({i, result, cumulative}); |
|
} |
|
last_result = result; |
|
} |
|
ABSL_ASSERT(!cdf_.empty()); |
|
} |
|
|
|
// PoissonDistributionZTest implements a z-test for the poisson distribution. |
|
|
|
struct ZParam { |
|
double mean; |
|
double p_fail; // Z-Test probability of failure. |
|
int trials; // Z-Test trials. |
|
size_t samples; // Z-Test samples. |
|
}; |
|
|
|
class PoissonDistributionZTest : public testing::TestWithParam<ZParam>, |
|
public PoissonModel { |
|
public: |
|
PoissonDistributionZTest() : PoissonModel(GetParam().mean) {} |
|
|
|
// ZTestImpl provides a basic z-squared test of the mean vs. expected |
|
// mean for data generated by the poisson distribution. |
|
template <typename D> |
|
bool SingleZTest(const double p, const size_t samples); |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; |
|
}; |
|
|
|
template <typename D> |
|
bool PoissonDistributionZTest::SingleZTest(const double p, |
|
const size_t samples) { |
|
D dis(mean()); |
|
|
|
absl::flat_hash_map<int32_t, int> buckets; |
|
std::vector<double> data; |
|
data.reserve(samples); |
|
for (int j = 0; j < samples; j++) { |
|
const auto x = dis(rng_); |
|
buckets[x]++; |
|
data.push_back(x); |
|
} |
|
|
|
// The null-hypothesis is that the distribution is a poisson distribution with |
|
// the provided mean (not estimated from the data). |
|
const auto m = absl::random_internal::ComputeDistributionMoments(data); |
|
const double max_err = absl::random_internal::MaxErrorTolerance(p); |
|
const double z = absl::random_internal::ZScore(mean(), m); |
|
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); |
|
|
|
if (!pass) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrFormat("p=%f max_err=%f\n" |
|
" mean=%f vs. %f\n" |
|
" stddev=%f vs. %f\n" |
|
" skewness=%f vs. %f\n" |
|
" kurtosis=%f vs. %f\n" |
|
" z=%f", |
|
p, max_err, m.mean, mean(), std::sqrt(m.variance), |
|
stddev(), m.skewness, skew(), m.kurtosis, |
|
kurtosis(), z)); |
|
} |
|
return pass; |
|
} |
|
|
|
TEST_P(PoissonDistributionZTest, AbslPoissonDistribution) { |
|
const auto& param = GetParam(); |
|
const int expected_failures = |
|
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail))); |
|
const double p = absl::random_internal::RequiredSuccessProbability( |
|
param.p_fail, param.trials); |
|
|
|
int failures = 0; |
|
for (int i = 0; i < param.trials; i++) { |
|
failures += |
|
SingleZTest<absl::poisson_distribution<int32_t>>(p, param.samples) ? 0 |
|
: 1; |
|
} |
|
EXPECT_LE(failures, expected_failures); |
|
} |
|
|
|
std::vector<ZParam> GetZParams() { |
|
// These values have been adjusted from the "exact" computed values to reduce |
|
// failure rates. |
|
// |
|
// It turns out that the actual values are not as close to the expected values |
|
// as would be ideal. |
|
return std::vector<ZParam>({ |
|
// Knuth method. |
|
ZParam{0.5, 0.01, 100, 1000}, |
|
ZParam{1.0, 0.01, 100, 1000}, |
|
ZParam{10.0, 0.01, 100, 5000}, |
|
// Split-knuth method. |
|
ZParam{20.0, 0.01, 100, 10000}, |
|
ZParam{50.0, 0.01, 100, 10000}, |
|
// Ratio of gaussians method. |
|
ZParam{51.0, 0.01, 100, 10000}, |
|
ZParam{200.0, 0.05, 10, 100000}, |
|
ZParam{100000.0, 0.05, 10, 1000000}, |
|
}); |
|
} |
|
|
|
std::string ZParamName(const ::testing::TestParamInfo<ZParam>& info) { |
|
const auto& p = info.param; |
|
std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean)); |
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionZTest, |
|
::testing::ValuesIn(GetZParams()), ZParamName); |
|
|
|
// The PoissonDistributionChiSquaredTest class provides a basic test framework |
|
// for variates generated by a conforming poisson_distribution. |
|
class PoissonDistributionChiSquaredTest : public testing::TestWithParam<double>, |
|
public PoissonModel { |
|
public: |
|
PoissonDistributionChiSquaredTest() : PoissonModel(GetParam()) {} |
|
|
|
// The ChiSquaredTestImpl provides a chi-squared goodness of fit test for data |
|
// generated by the poisson distribution. |
|
template <typename D> |
|
double ChiSquaredTestImpl(); |
|
|
|
private: |
|
void InitChiSquaredTest(const double buckets); |
|
|
|
std::vector<size_t> cutoffs_; |
|
std::vector<double> expected_; |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; |
|
}; |
|
|
|
void PoissonDistributionChiSquaredTest::InitChiSquaredTest( |
|
const double buckets) { |
|
if (!cutoffs_.empty() && !expected_.empty()) { |
|
return; |
|
} |
|
InitCDF(); |
|
|
|
// The code below finds cuttoffs that yield approximately equally-sized |
|
// buckets to the extent that it is possible. However for poisson |
|
// distributions this is particularly challenging for small mean parameters. |
|
// Track the expected proportion of items in each bucket. |
|
double last_cdf = 0; |
|
const double inc = 1.0 / buckets; |
|
for (double p = inc; p <= 1.0; p += inc) { |
|
auto result = InverseCDF(p); |
|
if (!cutoffs_.empty() && cutoffs_.back() == result.index) { |
|
continue; |
|
} |
|
double d = result.cdf - last_cdf; |
|
cutoffs_.push_back(result.index); |
|
expected_.push_back(d); |
|
last_cdf = result.cdf; |
|
} |
|
cutoffs_.push_back(std::numeric_limits<size_t>::max()); |
|
expected_.push_back(std::max(0.0, 1.0 - last_cdf)); |
|
} |
|
|
|
template <typename D> |
|
double PoissonDistributionChiSquaredTest::ChiSquaredTestImpl() { |
|
const int kSamples = 2000; |
|
const int kBuckets = 50; |
|
|
|
// The poisson CDF fails for large mean values, since e^-mean exceeds the |
|
// machine precision. For these cases, using a normal approximation would be |
|
// appropriate. |
|
ABSL_ASSERT(mean() <= 200); |
|
InitChiSquaredTest(kBuckets); |
|
|
|
D dis(mean()); |
|
|
|
std::vector<int32_t> counts(cutoffs_.size(), 0); |
|
for (int j = 0; j < kSamples; j++) { |
|
const size_t x = dis(rng_); |
|
auto it = std::lower_bound(std::begin(cutoffs_), std::end(cutoffs_), x); |
|
counts[std::distance(cutoffs_.begin(), it)]++; |
|
} |
|
|
|
// Normalize the counts. |
|
std::vector<int32_t> e(expected_.size(), 0); |
|
for (int i = 0; i < e.size(); i++) { |
|
e[i] = kSamples * expected_[i]; |
|
} |
|
|
|
// The null-hypothesis is that the distribution is a poisson distribution with |
|
// the provided mean (not estimated from the data). |
|
const int dof = static_cast<int>(counts.size()) - 1; |
|
|
|
// The threshold for logging is 1-in-50. |
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); |
|
|
|
const double chi_square = absl::random_internal::ChiSquare( |
|
std::begin(counts), std::end(counts), std::begin(e), std::end(e)); |
|
|
|
const double p = absl::random_internal::ChiSquarePValue(chi_square, dof); |
|
|
|
// Log if the chi_squared value is above the threshold. |
|
if (chi_square > threshold) { |
|
LogCDF(); |
|
|
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat("VALUES buckets=", counts.size(), |
|
" samples=", kSamples)); |
|
for (size_t i = 0; i < counts.size(); i++) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrCat(cutoffs_[i], ": ", counts[i], " vs. E=", e[i])); |
|
} |
|
|
|
ABSL_INTERNAL_LOG( |
|
INFO, |
|
absl::StrCat(kChiSquared, "(data, dof=", dof, ") = ", chi_square, " (", |
|
p, ")\n", " vs.\n", kChiSquared, " @ 0.98 = ", threshold)); |
|
} |
|
return p; |
|
} |
|
|
|
TEST_P(PoissonDistributionChiSquaredTest, AbslPoissonDistribution) { |
|
const int kTrials = 20; |
|
|
|
// Large values are not yet supported -- this requires estimating the cdf |
|
// using the normal distribution instead of the poisson in this case. |
|
ASSERT_LE(mean(), 200.0); |
|
if (mean() > 200.0) { |
|
return; |
|
} |
|
|
|
int failures = 0; |
|
for (int i = 0; i < kTrials; i++) { |
|
double p_value = ChiSquaredTestImpl<absl::poisson_distribution<int32_t>>(); |
|
if (p_value < 0.005) { |
|
failures++; |
|
} |
|
} |
|
// There is a 0.10% chance of producing at least one failure, so raise the |
|
// failure threshold high enough to allow for a flake rate < 10,000. |
|
EXPECT_LE(failures, 4); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(All, PoissonDistributionChiSquaredTest, |
|
::testing::Values(0.5, 1.0, 2.0, 10.0, 50.0, 51.0, |
|
200.0)); |
|
|
|
// NOTE: absl::poisson_distribution is not guaranteed to be stable. |
|
TEST(PoissonDistributionTest, StabilityTest) { |
|
using testing::ElementsAre; |
|
// absl::poisson_distribution stability relies on stability of |
|
// std::exp, std::log, std::sqrt, std::ceil, std::floor, and |
|
// absl::FastUniformBits, absl::StirlingLogFactorial, absl::RandU64ToDouble. |
|
absl::random_internal::sequence_urbg urbg({ |
|
0x035b0dc7e0a18acfull, 0x06cebe0d2653682eull, 0x0061e9b23861596bull, |
|
0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull, |
|
0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull, |
|
0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull, |
|
0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull, |
|
0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full, |
|
0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull, |
|
0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull, |
|
0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull, |
|
0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull, |
|
0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull, 0xffe6ea4d6edb0c73ull, |
|
0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull, 0xEAAD8E716B93D5A0ull, |
|
0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull, 0x8FF6E2FBF2122B64ull, |
|
0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull, 0xD1CFF191B3A8C1ADull, |
|
0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull, 0xE5A0CC0FB56F74E8ull, |
|
0x18ACF3D6CE89E299ull, 0xB4A84FE0FD13E0B7ull, 0x7CC43B81D2ADA8D9ull, |
|
0x165FA26680957705ull, 0x93CC7314211A1477ull, 0xE6AD206577B5FA86ull, |
|
0xC75442F5FB9D35CFull, 0xEBCDAF0C7B3E89A0ull, 0xD6411BD3AE1E7E49ull, |
|
0x00250E2D2071B35Eull, 0x226800BB57B8E0AFull, 0x2464369BF009B91Eull, |
|
0x5563911D59DFA6AAull, 0x78C14389D95A537Full, 0x207D5BA202E5B9C5ull, |
|
0x832603766295CFA9ull, 0x11C819684E734A41ull, 0xB3472DCA7B14A94Aull, |
|
}); |
|
|
|
std::vector<int> output(10); |
|
|
|
// Method 1. |
|
{ |
|
absl::poisson_distribution<int> dist(5); |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return dist(urbg); }); |
|
} |
|
EXPECT_THAT(output, // mean = 4.2 |
|
ElementsAre(1, 0, 0, 4, 2, 10, 3, 3, 7, 12)); |
|
|
|
// Method 2. |
|
{ |
|
urbg.reset(); |
|
absl::poisson_distribution<int> dist(25); |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return dist(urbg); }); |
|
} |
|
EXPECT_THAT(output, // mean = 19.8 |
|
ElementsAre(9, 35, 18, 10, 35, 18, 10, 35, 18, 10)); |
|
|
|
// Method 3. |
|
{ |
|
urbg.reset(); |
|
absl::poisson_distribution<int> dist(121); |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return dist(urbg); }); |
|
} |
|
EXPECT_THAT(output, // mean = 124.1 |
|
ElementsAre(161, 122, 129, 124, 112, 112, 117, 120, 130, 114)); |
|
} |
|
|
|
TEST(PoissonDistributionTest, AlgorithmExpectedValue_1) { |
|
// This tests small values of the Knuth method. |
|
// The underlying uniform distribution will generate exactly 0.5. |
|
absl::random_internal::sequence_urbg urbg({0x8000000000000001ull}); |
|
absl::poisson_distribution<int> dist(5); |
|
EXPECT_EQ(7, dist(urbg)); |
|
} |
|
|
|
TEST(PoissonDistributionTest, AlgorithmExpectedValue_2) { |
|
// This tests larger values of the Knuth method. |
|
// The underlying uniform distribution will generate exactly 0.5. |
|
absl::random_internal::sequence_urbg urbg({0x8000000000000001ull}); |
|
absl::poisson_distribution<int> dist(25); |
|
EXPECT_EQ(36, dist(urbg)); |
|
} |
|
|
|
TEST(PoissonDistributionTest, AlgorithmExpectedValue_3) { |
|
// This variant uses the ratio of uniforms method. |
|
absl::random_internal::sequence_urbg urbg( |
|
{0x7fffffffffffffffull, 0x8000000000000000ull}); |
|
|
|
absl::poisson_distribution<int> dist(121); |
|
EXPECT_EQ(121, dist(urbg)); |
|
} |
|
|
|
} // namespace
|
|
|