Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
416 lines
16 KiB
416 lines
16 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: hash.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file defines the Abseil `hash` library and the Abseil hashing |
|
// framework. This framework consists of the following: |
|
// |
|
// * The `absl::Hash` functor, which is used to invoke the hasher within the |
|
// Abseil hashing framework. `absl::Hash<T>` supports most basic types and |
|
// a number of Abseil types out of the box. |
|
// * `AbslHashValue`, an extension point that allows you to extend types to |
|
// support Abseil hashing without requiring you to define a hashing |
|
// algorithm. |
|
// * `HashState`, a type-erased class which implements the manipulation of the |
|
// hash state (H) itself; contains member functions `combine()`, |
|
// `combine_contiguous()`, and `combine_unordered()`; and which you can use |
|
// to contribute to an existing hash state when hashing your types. |
|
// |
|
// Unlike `std::hash` or other hashing frameworks, the Abseil hashing framework |
|
// provides most of its utility by abstracting away the hash algorithm (and its |
|
// implementation) entirely. Instead, a type invokes the Abseil hashing |
|
// framework by simply combining its state with the state of known, hashable |
|
// types. Hashing of that combined state is separately done by `absl::Hash`. |
|
// |
|
// One should assume that a hash algorithm is chosen randomly at the start of |
|
// each process. E.g., `absl::Hash<int>{}(9)` in one process and |
|
// `absl::Hash<int>{}(9)` in another process are likely to differ. |
|
// |
|
// `absl::Hash` is intended to strongly mix input bits with a target of passing |
|
// an [Avalanche Test](https://en.wikipedia.org/wiki/Avalanche_effect). |
|
// |
|
// Example: |
|
// |
|
// // Suppose we have a class `Circle` for which we want to add hashing: |
|
// class Circle { |
|
// public: |
|
// ... |
|
// private: |
|
// std::pair<int, int> center_; |
|
// int radius_; |
|
// }; |
|
// |
|
// // To add hashing support to `Circle`, we simply need to add a free |
|
// // (non-member) function `AbslHashValue()`, and return the combined hash |
|
// // state of the existing hash state and the class state. You can add such a |
|
// // free function using a friend declaration within the body of the class: |
|
// class Circle { |
|
// public: |
|
// ... |
|
// template <typename H> |
|
// friend H AbslHashValue(H h, const Circle& c) { |
|
// return H::combine(std::move(h), c.center_, c.radius_); |
|
// } |
|
// ... |
|
// }; |
|
// |
|
// For more information, see Adding Type Support to `absl::Hash` below. |
|
// |
|
#ifndef ABSL_HASH_HASH_H_ |
|
#define ABSL_HASH_HASH_H_ |
|
|
|
#include <tuple> |
|
#include <utility> |
|
|
|
#include "absl/functional/function_ref.h" |
|
#include "absl/hash/internal/hash.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
// ----------------------------------------------------------------------------- |
|
// `absl::Hash` |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// `absl::Hash<T>` is a convenient general-purpose hash functor for any type `T` |
|
// satisfying any of the following conditions (in order): |
|
// |
|
// * T is an arithmetic or pointer type |
|
// * T defines an overload for `AbslHashValue(H, const T&)` for an arbitrary |
|
// hash state `H`. |
|
// - T defines a specialization of `std::hash<T>` |
|
// |
|
// `absl::Hash` intrinsically supports the following types: |
|
// |
|
// * All integral types (including bool) |
|
// * All enum types |
|
// * All floating-point types (although hashing them is discouraged) |
|
// * All pointer types, including nullptr_t |
|
// * std::pair<T1, T2>, if T1 and T2 are hashable |
|
// * std::tuple<Ts...>, if all the Ts... are hashable |
|
// * std::unique_ptr and std::shared_ptr |
|
// * All string-like types including: |
|
// * absl::Cord |
|
// * std::string |
|
// * std::string_view (as well as any instance of std::basic_string that |
|
// uses char and std::char_traits) |
|
// * All the standard sequence containers (provided the elements are hashable) |
|
// * All the standard associative containers (provided the elements are |
|
// hashable) |
|
// * absl types such as the following: |
|
// * absl::string_view |
|
// * absl::uint128 |
|
// * absl::Time, absl::Duration, and absl::TimeZone |
|
// * absl containers (provided the elements are hashable) such as the |
|
// following: |
|
// * absl::flat_hash_set, absl::node_hash_set, absl::btree_set |
|
// * absl::flat_hash_map, absl::node_hash_map, absl::btree_map |
|
// * absl::btree_multiset, absl::btree_multimap |
|
// * absl::InlinedVector |
|
// * absl::FixedArray |
|
// |
|
// When absl::Hash is used to hash an unordered container with a custom hash |
|
// functor, the elements are hashed using default absl::Hash semantics, not |
|
// the custom hash functor. This is consistent with the behavior of |
|
// operator==() on unordered containers, which compares elements pairwise with |
|
// operator==() rather than the custom equality functor. It is usually a |
|
// mistake to use either operator==() or absl::Hash on unordered collections |
|
// that use functors incompatible with operator==() equality. |
|
// |
|
// Note: the list above is not meant to be exhaustive. Additional type support |
|
// may be added, in which case the above list will be updated. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// absl::Hash Invocation Evaluation |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// When invoked, `absl::Hash<T>` searches for supplied hash functions in the |
|
// following order: |
|
// |
|
// * Natively supported types out of the box (see above) |
|
// * Types for which an `AbslHashValue()` overload is provided (such as |
|
// user-defined types). See "Adding Type Support to `absl::Hash`" below. |
|
// * Types which define a `std::hash<T>` specialization |
|
// |
|
// The fallback to legacy hash functions exists mainly for backwards |
|
// compatibility. If you have a choice, prefer defining an `AbslHashValue` |
|
// overload instead of specializing any legacy hash functors. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// The Hash State Concept, and using `HashState` for Type Erasure |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// The `absl::Hash` framework relies on the Concept of a "hash state." Such a |
|
// hash state is used in several places: |
|
// |
|
// * Within existing implementations of `absl::Hash<T>` to store the hashed |
|
// state of an object. Note that it is up to the implementation how it stores |
|
// such state. A hash table, for example, may mix the state to produce an |
|
// integer value; a testing framework may simply hold a vector of that state. |
|
// * Within implementations of `AbslHashValue()` used to extend user-defined |
|
// types. (See "Adding Type Support to absl::Hash" below.) |
|
// * Inside a `HashState`, providing type erasure for the concept of a hash |
|
// state, which you can use to extend the `absl::Hash` framework for types |
|
// that are otherwise difficult to extend using `AbslHashValue()`. (See the |
|
// `HashState` class below.) |
|
// |
|
// The "hash state" concept contains three member functions for mixing hash |
|
// state: |
|
// |
|
// * `H::combine(state, values...)` |
|
// |
|
// Combines an arbitrary number of values into a hash state, returning the |
|
// updated state. Note that the existing hash state is move-only and must be |
|
// passed by value. |
|
// |
|
// Each of the value types T must be hashable by H. |
|
// |
|
// NOTE: |
|
// |
|
// state = H::combine(std::move(state), value1, value2, value3); |
|
// |
|
// must be guaranteed to produce the same hash expansion as |
|
// |
|
// state = H::combine(std::move(state), value1); |
|
// state = H::combine(std::move(state), value2); |
|
// state = H::combine(std::move(state), value3); |
|
// |
|
// * `H::combine_contiguous(state, data, size)` |
|
// |
|
// Combines a contiguous array of `size` elements into a hash state, |
|
// returning the updated state. Note that the existing hash state is |
|
// move-only and must be passed by value. |
|
// |
|
// NOTE: |
|
// |
|
// state = H::combine_contiguous(std::move(state), data, size); |
|
// |
|
// need NOT be guaranteed to produce the same hash expansion as a loop |
|
// (it may perform internal optimizations). If you need this guarantee, use a |
|
// loop instead. |
|
// |
|
// * `H::combine_unordered(state, begin, end)` |
|
// |
|
// Combines a set of elements denoted by an iterator pair into a hash |
|
// state, returning the updated state. Note that the existing hash |
|
// state is move-only and must be passed by value. |
|
// |
|
// Unlike the other two methods, the hashing is order-independent. |
|
// This can be used to hash unordered collections. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// Adding Type Support to `absl::Hash` |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// To add support for your user-defined type, add a proper `AbslHashValue()` |
|
// overload as a free (non-member) function. The overload will take an |
|
// existing hash state and should combine that state with state from the type. |
|
// |
|
// Example: |
|
// |
|
// template <typename H> |
|
// H AbslHashValue(H state, const MyType& v) { |
|
// return H::combine(std::move(state), v.field1, ..., v.fieldN); |
|
// } |
|
// |
|
// where `(field1, ..., fieldN)` are the members you would use on your |
|
// `operator==` to define equality. |
|
// |
|
// Notice that `AbslHashValue` is not a class member, but an ordinary function. |
|
// An `AbslHashValue` overload for a type should only be declared in the same |
|
// file and namespace as said type. The proper `AbslHashValue` implementation |
|
// for a given type will be discovered via ADL. |
|
// |
|
// Note: unlike `std::hash', `absl::Hash` should never be specialized. It must |
|
// only be extended by adding `AbslHashValue()` overloads. |
|
// |
|
template <typename T> |
|
using Hash = absl::hash_internal::Hash<T>; |
|
|
|
// HashOf |
|
// |
|
// absl::HashOf() is a helper that generates a hash from the values of its |
|
// arguments. It dispatches to absl::Hash directly, as follows: |
|
// * HashOf(t) == absl::Hash<T>{}(t) |
|
// * HashOf(a, b, c) == HashOf(std::make_tuple(a, b, c)) |
|
// |
|
// HashOf(a1, a2, ...) == HashOf(b1, b2, ...) is guaranteed when |
|
// * The argument lists have pairwise identical C++ types |
|
// * a1 == b1 && a2 == b2 && ... |
|
// |
|
// The requirement that the arguments match in both type and value is critical. |
|
// It means that `a == b` does not necessarily imply `HashOf(a) == HashOf(b)` if |
|
// `a` and `b` have different types. For example, `HashOf(2) != HashOf(2.0)`. |
|
template <int&... ExplicitArgumentBarrier, typename... Types> |
|
size_t HashOf(const Types&... values) { |
|
auto tuple = std::tie(values...); |
|
return absl::Hash<decltype(tuple)>{}(tuple); |
|
} |
|
|
|
// HashState |
|
// |
|
// A type erased version of the hash state concept, for use in user-defined |
|
// `AbslHashValue` implementations that can't use templates (such as PImpl |
|
// classes, virtual functions, etc.). The type erasure adds overhead so it |
|
// should be avoided unless necessary. |
|
// |
|
// Note: This wrapper will only erase calls to |
|
// combine_contiguous(H, const unsigned char*, size_t) |
|
// RunCombineUnordered(H, CombinerF) |
|
// |
|
// All other calls will be handled internally and will not invoke overloads |
|
// provided by the wrapped class. |
|
// |
|
// Users of this class should still define a template `AbslHashValue` function, |
|
// but can use `absl::HashState::Create(&state)` to erase the type of the hash |
|
// state and dispatch to their private hashing logic. |
|
// |
|
// This state can be used like any other hash state. In particular, you can call |
|
// `HashState::combine()` and `HashState::combine_contiguous()` on it. |
|
// |
|
// Example: |
|
// |
|
// class Interface { |
|
// public: |
|
// template <typename H> |
|
// friend H AbslHashValue(H state, const Interface& value) { |
|
// state = H::combine(std::move(state), std::type_index(typeid(*this))); |
|
// value.HashValue(absl::HashState::Create(&state)); |
|
// return state; |
|
// } |
|
// private: |
|
// virtual void HashValue(absl::HashState state) const = 0; |
|
// }; |
|
// |
|
// class Impl : Interface { |
|
// private: |
|
// void HashValue(absl::HashState state) const override { |
|
// absl::HashState::combine(std::move(state), v1_, v2_); |
|
// } |
|
// int v1_; |
|
// std::string v2_; |
|
// }; |
|
class HashState : public hash_internal::HashStateBase<HashState> { |
|
public: |
|
// HashState::Create() |
|
// |
|
// Create a new `HashState` instance that wraps `state`. All calls to |
|
// `combine()` and `combine_contiguous()` on the new instance will be |
|
// redirected to the original `state` object. The `state` object must outlive |
|
// the `HashState` instance. |
|
template <typename T> |
|
static HashState Create(T* state) { |
|
HashState s; |
|
s.Init(state); |
|
return s; |
|
} |
|
|
|
HashState(const HashState&) = delete; |
|
HashState& operator=(const HashState&) = delete; |
|
HashState(HashState&&) = default; |
|
HashState& operator=(HashState&&) = default; |
|
|
|
// HashState::combine() |
|
// |
|
// Combines an arbitrary number of values into a hash state, returning the |
|
// updated state. |
|
using HashState::HashStateBase::combine; |
|
|
|
// HashState::combine_contiguous() |
|
// |
|
// Combines a contiguous array of `size` elements into a hash state, returning |
|
// the updated state. |
|
static HashState combine_contiguous(HashState hash_state, |
|
const unsigned char* first, size_t size) { |
|
hash_state.combine_contiguous_(hash_state.state_, first, size); |
|
return hash_state; |
|
} |
|
using HashState::HashStateBase::combine_contiguous; |
|
|
|
private: |
|
HashState() = default; |
|
|
|
friend class HashState::HashStateBase; |
|
|
|
template <typename T> |
|
static void CombineContiguousImpl(void* p, const unsigned char* first, |
|
size_t size) { |
|
T& state = *static_cast<T*>(p); |
|
state = T::combine_contiguous(std::move(state), first, size); |
|
} |
|
|
|
template <typename T> |
|
void Init(T* state) { |
|
state_ = state; |
|
combine_contiguous_ = &CombineContiguousImpl<T>; |
|
run_combine_unordered_ = &RunCombineUnorderedImpl<T>; |
|
} |
|
|
|
template <typename HS> |
|
struct CombineUnorderedInvoker { |
|
template <typename T, typename ConsumerT> |
|
void operator()(T inner_state, ConsumerT inner_cb) { |
|
f(HashState::Create(&inner_state), |
|
[&](HashState& inner_erased) { inner_cb(inner_erased.Real<T>()); }); |
|
} |
|
|
|
absl::FunctionRef<void(HS, absl::FunctionRef<void(HS&)>)> f; |
|
}; |
|
|
|
template <typename T> |
|
static HashState RunCombineUnorderedImpl( |
|
HashState state, |
|
absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)> |
|
f) { |
|
// Note that this implementation assumes that inner_state and outer_state |
|
// are the same type. This isn't true in the SpyHash case, but SpyHash |
|
// types are move-convertible to each other, so this still works. |
|
T& real_state = state.Real<T>(); |
|
real_state = T::RunCombineUnordered( |
|
std::move(real_state), CombineUnorderedInvoker<HashState>{f}); |
|
return state; |
|
} |
|
|
|
template <typename CombinerT> |
|
static HashState RunCombineUnordered(HashState state, CombinerT combiner) { |
|
auto* run = state.run_combine_unordered_; |
|
return run(std::move(state), std::ref(combiner)); |
|
} |
|
|
|
// Do not erase an already erased state. |
|
void Init(HashState* state) { |
|
state_ = state->state_; |
|
combine_contiguous_ = state->combine_contiguous_; |
|
run_combine_unordered_ = state->run_combine_unordered_; |
|
} |
|
|
|
template <typename T> |
|
T& Real() { |
|
return *static_cast<T*>(state_); |
|
} |
|
|
|
void* state_; |
|
void (*combine_contiguous_)(void*, const unsigned char*, size_t); |
|
HashState (*run_combine_unordered_)( |
|
HashState state, |
|
absl::FunctionRef<void(HashState, absl::FunctionRef<void(HashState&)>)>); |
|
}; |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_HASH_HASH_H_
|
|
|