Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
358 lines
13 KiB
358 lines
13 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/uniform_real_distribution.h" |
|
|
|
#include <cfloat> |
|
#include <cmath> |
|
#include <cstdint> |
|
#include <iterator> |
|
#include <random> |
|
#include <sstream> |
|
#include <string> |
|
#include <type_traits> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/numeric/internal/representation.h" |
|
#include "absl/random/internal/chi_square.h" |
|
#include "absl/random/internal/distribution_test_util.h" |
|
#include "absl/random/internal/pcg_engine.h" |
|
#include "absl/random/internal/sequence_urbg.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/str_cat.h" |
|
|
|
// NOTES: |
|
// * Some documentation on generating random real values suggests that |
|
// it is possible to use std::nextafter(b, DBL_MAX) to generate a value on |
|
// the closed range [a, b]. Unfortunately, that technique is not universally |
|
// reliable due to floating point quantization. |
|
// |
|
// * absl::uniform_real_distribution<float> generates between 2^28 and 2^29 |
|
// distinct floating point values in the range [0, 1). |
|
// |
|
// * absl::uniform_real_distribution<float> generates at least 2^23 distinct |
|
// floating point values in the range [1, 2). This should be the same as |
|
// any other range covered by a single exponent in IEEE 754. |
|
// |
|
// * absl::uniform_real_distribution<double> generates more than 2^52 distinct |
|
// values in the range [0, 1), and should generate at least 2^52 distinct |
|
// values in the range of [1, 2). |
|
// |
|
|
|
namespace { |
|
|
|
template <typename RealType> |
|
class UniformRealDistributionTest : public ::testing::Test {}; |
|
|
|
// double-double arithmetic is not supported well by either GCC or Clang; see |
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048, |
|
// https://bugs.llvm.org/show_bug.cgi?id=49131, and |
|
// https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests |
|
// with double doubles until compiler support is better. |
|
using RealTypes = |
|
std::conditional<absl::numeric_internal::IsDoubleDouble(), |
|
::testing::Types<float, double>, |
|
::testing::Types<float, double, long double>>::type; |
|
|
|
TYPED_TEST_SUITE(UniformRealDistributionTest, RealTypes); |
|
|
|
TYPED_TEST(UniformRealDistributionTest, ParamSerializeTest) { |
|
#if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0 |
|
// We're using an x87-compatible FPU, and intermediate operations are |
|
// performed with 80-bit floats. This produces slightly different results from |
|
// what we expect below. |
|
GTEST_SKIP() |
|
<< "Skipping the test because we detected x87 floating-point semantics"; |
|
#endif |
|
|
|
using param_type = |
|
typename absl::uniform_real_distribution<TypeParam>::param_type; |
|
|
|
constexpr const TypeParam a{1152921504606846976}; |
|
|
|
constexpr int kCount = 1000; |
|
absl::InsecureBitGen gen; |
|
for (const auto& param : { |
|
param_type(), |
|
param_type(TypeParam(2.0), TypeParam(2.0)), // Same |
|
param_type(TypeParam(-0.1), TypeParam(0.1)), |
|
param_type(TypeParam(0.05), TypeParam(0.12)), |
|
param_type(TypeParam(-0.05), TypeParam(0.13)), |
|
param_type(TypeParam(-0.05), TypeParam(-0.02)), |
|
// double range = 0 |
|
// 2^60 , 2^60 + 2^6 |
|
param_type(a, TypeParam(1152921504606847040)), |
|
// 2^60 , 2^60 + 2^7 |
|
param_type(a, TypeParam(1152921504606847104)), |
|
// double range = 2^8 |
|
// 2^60 , 2^60 + 2^8 |
|
param_type(a, TypeParam(1152921504606847232)), |
|
// float range = 0 |
|
// 2^60 , 2^60 + 2^36 |
|
param_type(a, TypeParam(1152921573326323712)), |
|
// 2^60 , 2^60 + 2^37 |
|
param_type(a, TypeParam(1152921642045800448)), |
|
// float range = 2^38 |
|
// 2^60 , 2^60 + 2^38 |
|
param_type(a, TypeParam(1152921779484753920)), |
|
// Limits |
|
param_type(0, std::numeric_limits<TypeParam>::max()), |
|
param_type(std::numeric_limits<TypeParam>::lowest(), 0), |
|
param_type(0, std::numeric_limits<TypeParam>::epsilon()), |
|
param_type(-std::numeric_limits<TypeParam>::epsilon(), |
|
std::numeric_limits<TypeParam>::epsilon()), |
|
param_type(std::numeric_limits<TypeParam>::epsilon(), |
|
2 * std::numeric_limits<TypeParam>::epsilon()), |
|
}) { |
|
// Validate parameters. |
|
const auto a = param.a(); |
|
const auto b = param.b(); |
|
absl::uniform_real_distribution<TypeParam> before(a, b); |
|
EXPECT_EQ(before.a(), param.a()); |
|
EXPECT_EQ(before.b(), param.b()); |
|
|
|
{ |
|
absl::uniform_real_distribution<TypeParam> via_param(param); |
|
EXPECT_EQ(via_param, before); |
|
} |
|
|
|
std::stringstream ss; |
|
ss << before; |
|
absl::uniform_real_distribution<TypeParam> after(TypeParam(1.0), |
|
TypeParam(3.1)); |
|
|
|
EXPECT_NE(before.a(), after.a()); |
|
EXPECT_NE(before.b(), after.b()); |
|
EXPECT_NE(before.param(), after.param()); |
|
EXPECT_NE(before, after); |
|
|
|
ss >> after; |
|
|
|
EXPECT_EQ(before.a(), after.a()); |
|
EXPECT_EQ(before.b(), after.b()); |
|
EXPECT_EQ(before.param(), after.param()); |
|
EXPECT_EQ(before, after); |
|
|
|
// Smoke test. |
|
auto sample_min = after.max(); |
|
auto sample_max = after.min(); |
|
for (int i = 0; i < kCount; i++) { |
|
auto sample = after(gen); |
|
// Failure here indicates a bug in uniform_real_distribution::operator(), |
|
// or bad parameters--range too large, etc. |
|
if (after.min() == after.max()) { |
|
EXPECT_EQ(sample, after.min()); |
|
} else { |
|
EXPECT_GE(sample, after.min()); |
|
EXPECT_LT(sample, after.max()); |
|
} |
|
if (sample > sample_max) { |
|
sample_max = sample; |
|
} |
|
if (sample < sample_min) { |
|
sample_min = sample; |
|
} |
|
} |
|
|
|
if (!std::is_same<TypeParam, long double>::value) { |
|
// static_cast<double>(long double) can overflow. |
|
std::string msg = absl::StrCat("Range: ", static_cast<double>(sample_min), |
|
", ", static_cast<double>(sample_max)); |
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str()); |
|
} |
|
} |
|
} |
|
|
|
#ifdef _MSC_VER |
|
#pragma warning(push) |
|
#pragma warning(disable:4756) // Constant arithmetic overflow. |
|
#endif |
|
TYPED_TEST(UniformRealDistributionTest, ViolatesPreconditionsDeathTest) { |
|
#if GTEST_HAS_DEATH_TEST |
|
// Hi < Lo |
|
EXPECT_DEBUG_DEATH( |
|
{ absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); }, ""); |
|
|
|
// Hi - Lo > numeric_limits<>::max() |
|
EXPECT_DEBUG_DEATH( |
|
{ |
|
absl::uniform_real_distribution<TypeParam> dist( |
|
std::numeric_limits<TypeParam>::lowest(), |
|
std::numeric_limits<TypeParam>::max()); |
|
}, |
|
""); |
|
#endif // GTEST_HAS_DEATH_TEST |
|
#if defined(NDEBUG) |
|
// opt-mode, for invalid parameters, will generate a garbage value, |
|
// but should not enter an infinite loop. |
|
absl::InsecureBitGen gen; |
|
{ |
|
absl::uniform_real_distribution<TypeParam> dist(10.0, 1.0); |
|
auto x = dist(gen); |
|
EXPECT_FALSE(std::isnan(x)) << x; |
|
} |
|
{ |
|
absl::uniform_real_distribution<TypeParam> dist( |
|
std::numeric_limits<TypeParam>::lowest(), |
|
std::numeric_limits<TypeParam>::max()); |
|
auto x = dist(gen); |
|
// Infinite result. |
|
EXPECT_FALSE(std::isfinite(x)) << x; |
|
} |
|
#endif // NDEBUG |
|
} |
|
#ifdef _MSC_VER |
|
#pragma warning(pop) // warning(disable:4756) |
|
#endif |
|
|
|
TYPED_TEST(UniformRealDistributionTest, TestMoments) { |
|
constexpr int kSize = 1000000; |
|
std::vector<double> values(kSize); |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6}; |
|
|
|
absl::uniform_real_distribution<TypeParam> dist; |
|
for (int i = 0; i < kSize; i++) { |
|
values[i] = dist(rng); |
|
} |
|
|
|
const auto moments = |
|
absl::random_internal::ComputeDistributionMoments(values); |
|
EXPECT_NEAR(0.5, moments.mean, 0.01); |
|
EXPECT_NEAR(1 / 12.0, moments.variance, 0.015); |
|
EXPECT_NEAR(0.0, moments.skewness, 0.02); |
|
EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.015); |
|
} |
|
|
|
TYPED_TEST(UniformRealDistributionTest, ChiSquaredTest50) { |
|
using absl::random_internal::kChiSquared; |
|
using param_type = |
|
typename absl::uniform_real_distribution<TypeParam>::param_type; |
|
|
|
constexpr size_t kTrials = 100000; |
|
constexpr int kBuckets = 50; |
|
constexpr double kExpected = |
|
static_cast<double>(kTrials) / static_cast<double>(kBuckets); |
|
|
|
// 1-in-100000 threshold, but remember, there are about 8 tests |
|
// in this file. And the test could fail for other reasons. |
|
// Empirically validated with --runs_per_test=10000. |
|
const int kThreshold = |
|
absl::random_internal::ChiSquareValue(kBuckets - 1, 0.999999); |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng{0x2B7E151628AED2A6}; |
|
|
|
for (const auto& param : {param_type(0, 1), param_type(5, 12), |
|
param_type(-5, 13), param_type(-5, -2)}) { |
|
const double min_val = param.a(); |
|
const double max_val = param.b(); |
|
const double factor = kBuckets / (max_val - min_val); |
|
|
|
std::vector<int32_t> counts(kBuckets, 0); |
|
absl::uniform_real_distribution<TypeParam> dist(param); |
|
for (size_t i = 0; i < kTrials; i++) { |
|
auto x = dist(rng); |
|
auto bucket = static_cast<size_t>((x - min_val) * factor); |
|
counts[bucket]++; |
|
} |
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected( |
|
std::begin(counts), std::end(counts), kExpected); |
|
if (chi_square > kThreshold) { |
|
double p_value = |
|
absl::random_internal::ChiSquarePValue(chi_square, kBuckets); |
|
|
|
// Chi-squared test failed. Output does not appear to be uniform. |
|
std::string msg; |
|
for (const auto& a : counts) { |
|
absl::StrAppend(&msg, a, "\n"); |
|
} |
|
absl::StrAppend(&msg, kChiSquared, " p-value ", p_value, "\n"); |
|
absl::StrAppend(&msg, "High ", kChiSquared, " value: ", chi_square, " > ", |
|
kThreshold); |
|
ABSL_RAW_LOG(INFO, "%s", msg.c_str()); |
|
FAIL() << msg; |
|
} |
|
} |
|
} |
|
|
|
TYPED_TEST(UniformRealDistributionTest, StabilityTest) { |
|
// absl::uniform_real_distribution stability relies only on |
|
// random_internal::RandU64ToDouble and random_internal::RandU64ToFloat. |
|
absl::random_internal::sequence_urbg urbg( |
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
|
|
|
std::vector<int> output(12); |
|
|
|
absl::uniform_real_distribution<TypeParam> dist; |
|
std::generate(std::begin(output), std::end(output), [&] { |
|
return static_cast<int>(TypeParam(1000000) * dist(urbg)); |
|
}); |
|
|
|
EXPECT_THAT( |
|
output, // |
|
testing::ElementsAre(59, 999246, 762494, 395876, 167716, 82545, 925251, |
|
77341, 12527, 708791, 834451, 932808)); |
|
} |
|
|
|
TEST(UniformRealDistributionTest, AlgorithmBounds) { |
|
absl::uniform_real_distribution<double> dist; |
|
|
|
{ |
|
// This returns the smallest value >0 from absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg({0x0000000000000001ull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 5.42101086242752217004e-20); |
|
} |
|
|
|
{ |
|
// This returns a value very near 0.5 from absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg({0x7fffffffffffffefull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 0.499999999999999944489); |
|
} |
|
{ |
|
// This returns a value very near 0.5 from absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg({0x8000000000000000ull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 0.5); |
|
} |
|
|
|
{ |
|
// This returns the largest value <1 from absl::uniform_real_distribution. |
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFEFull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 0.999999999999999888978); |
|
} |
|
{ |
|
// This *ALSO* returns the largest value <1. |
|
absl::random_internal::sequence_urbg urbg({0xFFFFFFFFFFFFFFFFull}); |
|
double a = dist(urbg); |
|
EXPECT_EQ(a, 0.999999999999999888978); |
|
} |
|
} |
|
|
|
} // namespace
|
|
|