Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1405 lines
49 KiB
1405 lines
49 KiB
#include "absl/strings/internal/str_format/float_conversion.h" |
|
|
|
#include <string.h> |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <cmath> |
|
#include <limits> |
|
#include <string> |
|
|
|
#include "absl/base/attributes.h" |
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/bits.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/functional/function_ref.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/strings/numbers.h" |
|
#include "absl/types/optional.h" |
|
#include "absl/types/span.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace str_format_internal { |
|
|
|
namespace { |
|
|
|
// The code below wants to avoid heap allocations. |
|
// To do so it needs to allocate memory on the stack. |
|
// `StackArray` will allocate memory on the stack in the form of a uint32_t |
|
// array and call the provided callback with said memory. |
|
// It will allocate memory in increments of 512 bytes. We could allocate the |
|
// largest needed unconditionally, but that is more than we need in most of |
|
// cases. This way we use less stack in the common cases. |
|
class StackArray { |
|
using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>; |
|
static constexpr size_t kStep = 512 / sizeof(uint32_t); |
|
// 5 steps is 2560 bytes, which is enough to hold a long double with the |
|
// largest/smallest exponents. |
|
// The operations below will static_assert their particular maximum. |
|
static constexpr size_t kNumSteps = 5; |
|
|
|
// We do not want this function to be inlined. |
|
// Otherwise the caller will allocate the stack space unnecessarily for all |
|
// the variants even though it only calls one. |
|
template <size_t steps> |
|
ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) { |
|
uint32_t values[steps * kStep]{}; |
|
f(absl::MakeSpan(values)); |
|
} |
|
|
|
public: |
|
static constexpr size_t kMaxCapacity = kStep * kNumSteps; |
|
|
|
static void RunWithCapacity(size_t capacity, Func f) { |
|
assert(capacity <= kMaxCapacity); |
|
const size_t step = (capacity + kStep - 1) / kStep; |
|
assert(step <= kNumSteps); |
|
switch (step) { |
|
case 1: |
|
return RunWithCapacityImpl<1>(f); |
|
case 2: |
|
return RunWithCapacityImpl<2>(f); |
|
case 3: |
|
return RunWithCapacityImpl<3>(f); |
|
case 4: |
|
return RunWithCapacityImpl<4>(f); |
|
case 5: |
|
return RunWithCapacityImpl<5>(f); |
|
} |
|
|
|
assert(false && "Invalid capacity"); |
|
} |
|
}; |
|
|
|
// Calculates `10 * (*v) + carry` and stores the result in `*v` and returns |
|
// the carry. |
|
template <typename Int> |
|
inline Int MultiplyBy10WithCarry(Int *v, Int carry) { |
|
using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>; |
|
BiggerInt tmp = 10 * static_cast<BiggerInt>(*v) + carry; |
|
*v = static_cast<Int>(tmp); |
|
return static_cast<Int>(tmp >> (sizeof(Int) * 8)); |
|
} |
|
|
|
// Calculates `(2^64 * carry + *v) / 10`. |
|
// Stores the quotient in `*v` and returns the remainder. |
|
// Requires: `0 <= carry <= 9` |
|
inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) { |
|
constexpr uint64_t divisor = 10; |
|
// 2^64 / divisor = chunk_quotient + chunk_remainder / divisor |
|
constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2); |
|
constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor; |
|
|
|
const uint64_t mod = *v % divisor; |
|
const uint64_t next_carry = chunk_remainder * carry + mod; |
|
*v = *v / divisor + carry * chunk_quotient + next_carry / divisor; |
|
return next_carry % divisor; |
|
} |
|
|
|
// Generates the decimal representation for an integer of the form `v * 2^exp`, |
|
// where `v` and `exp` are both positive integers. |
|
// It generates the digits from the left (ie the most significant digit first) |
|
// to allow for direct printing into the sink. |
|
// |
|
// Requires `0 <= exp` and `exp <= numeric_limits<long double>::max_exponent`. |
|
class BinaryToDecimal { |
|
static constexpr int ChunksNeeded(int exp) { |
|
// We will left shift a uint128 by `exp` bits, so we need `128+exp` total |
|
// bits. Round up to 32. |
|
// See constructor for details about adding `10%` to the value. |
|
return (128 + exp + 31) / 32 * 11 / 10; |
|
} |
|
|
|
public: |
|
// Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`. |
|
// This function will allocate enough stack space to perform the conversion. |
|
static void RunConversion(uint128 v, int exp, |
|
absl::FunctionRef<void(BinaryToDecimal)> f) { |
|
assert(exp > 0); |
|
assert(exp <= std::numeric_limits<long double>::max_exponent); |
|
static_assert( |
|
StackArray::kMaxCapacity >= |
|
ChunksNeeded(std::numeric_limits<long double>::max_exponent), |
|
""); |
|
|
|
StackArray::RunWithCapacity( |
|
ChunksNeeded(exp), |
|
[=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); }); |
|
} |
|
|
|
int TotalDigits() const { |
|
return static_cast<int>((decimal_end_ - decimal_start_) * kDigitsPerChunk + |
|
CurrentDigits().size()); |
|
} |
|
|
|
// See the current block of digits. |
|
absl::string_view CurrentDigits() const { |
|
return absl::string_view(digits_ + kDigitsPerChunk - size_, size_); |
|
} |
|
|
|
// Advance the current view of digits. |
|
// Returns `false` when no more digits are available. |
|
bool AdvanceDigits() { |
|
if (decimal_start_ >= decimal_end_) return false; |
|
|
|
uint32_t w = data_[decimal_start_++]; |
|
for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) { |
|
digits_[kDigitsPerChunk - ++size_] = w % 10 + '0'; |
|
} |
|
return true; |
|
} |
|
|
|
private: |
|
BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) { |
|
// We need to print the digits directly into the sink object without |
|
// buffering them all first. To do this we need two things: |
|
// - to know the total number of digits to do padding when necessary |
|
// - to generate the decimal digits from the left. |
|
// |
|
// In order to do this, we do a two pass conversion. |
|
// On the first pass we convert the binary representation of the value into |
|
// a decimal representation in which each uint32_t chunk holds up to 9 |
|
// decimal digits. In the second pass we take each decimal-holding-uint32_t |
|
// value and generate the ascii decimal digits into `digits_`. |
|
// |
|
// The binary and decimal representations actually share the same memory |
|
// region. As we go converting the chunks from binary to decimal we free |
|
// them up and reuse them for the decimal representation. One caveat is that |
|
// the decimal representation is around 7% less efficient in space than the |
|
// binary one. We allocate an extra 10% memory to account for this. See |
|
// ChunksNeeded for this calculation. |
|
int chunk_index = exp / 32; |
|
decimal_start_ = decimal_end_ = ChunksNeeded(exp); |
|
const int offset = exp % 32; |
|
// Left shift v by exp bits. |
|
data_[chunk_index] = static_cast<uint32_t>(v << offset); |
|
for (v >>= (32 - offset); v; v >>= 32) |
|
data_[++chunk_index] = static_cast<uint32_t>(v); |
|
|
|
while (chunk_index >= 0) { |
|
// While we have more than one chunk available, go in steps of 1e9. |
|
// `data_[chunk_index]` holds the highest non-zero binary chunk, so keep |
|
// the variable updated. |
|
uint32_t carry = 0; |
|
for (int i = chunk_index; i >= 0; --i) { |
|
uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32); |
|
data_[i] = static_cast<uint32_t>(tmp / uint64_t{1000000000}); |
|
carry = static_cast<uint32_t>(tmp % uint64_t{1000000000}); |
|
} |
|
|
|
// If the highest chunk is now empty, remove it from view. |
|
if (data_[chunk_index] == 0) --chunk_index; |
|
|
|
--decimal_start_; |
|
assert(decimal_start_ != chunk_index); |
|
data_[decimal_start_] = carry; |
|
} |
|
|
|
// Fill the first set of digits. The first chunk might not be complete, so |
|
// handle differently. |
|
for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) { |
|
digits_[kDigitsPerChunk - ++size_] = first % 10 + '0'; |
|
} |
|
} |
|
|
|
private: |
|
static constexpr int kDigitsPerChunk = 9; |
|
|
|
int decimal_start_; |
|
int decimal_end_; |
|
|
|
char digits_[kDigitsPerChunk]; |
|
int size_ = 0; |
|
|
|
absl::Span<uint32_t> data_; |
|
}; |
|
|
|
// Converts a value of the form `x * 2^-exp` into a sequence of decimal digits. |
|
// Requires `-exp < 0` and |
|
// `-exp >= limits<long double>::min_exponent - limits<long double>::digits`. |
|
class FractionalDigitGenerator { |
|
public: |
|
// Run the conversion for `v * 2^exp` and call `f(generator)`. |
|
// This function will allocate enough stack space to perform the conversion. |
|
static void RunConversion( |
|
uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) { |
|
using Limits = std::numeric_limits<long double>; |
|
assert(-exp < 0); |
|
assert(-exp >= Limits::min_exponent - 128); |
|
static_assert(StackArray::kMaxCapacity >= |
|
(Limits::digits + 128 - Limits::min_exponent + 31) / 32, |
|
""); |
|
StackArray::RunWithCapacity((Limits::digits + exp + 31) / 32, |
|
[=](absl::Span<uint32_t> input) { |
|
f(FractionalDigitGenerator(input, v, exp)); |
|
}); |
|
} |
|
|
|
// Returns true if there are any more non-zero digits left. |
|
bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; } |
|
|
|
// Returns true if the remainder digits are greater than 5000... |
|
bool IsGreaterThanHalf() const { |
|
return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0); |
|
} |
|
// Returns true if the remainder digits are exactly 5000... |
|
bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; } |
|
|
|
struct Digits { |
|
int digit_before_nine; |
|
int num_nines; |
|
}; |
|
|
|
// Get the next set of digits. |
|
// They are composed by a non-9 digit followed by a runs of zero or more 9s. |
|
Digits GetDigits() { |
|
Digits digits{next_digit_, 0}; |
|
|
|
next_digit_ = GetOneDigit(); |
|
while (next_digit_ == 9) { |
|
++digits.num_nines; |
|
next_digit_ = GetOneDigit(); |
|
} |
|
|
|
return digits; |
|
} |
|
|
|
private: |
|
// Return the next digit. |
|
int GetOneDigit() { |
|
if (chunk_index_ < 0) return 0; |
|
|
|
uint32_t carry = 0; |
|
for (int i = chunk_index_; i >= 0; --i) { |
|
carry = MultiplyBy10WithCarry(&data_[i], carry); |
|
} |
|
// If the lowest chunk is now empty, remove it from view. |
|
if (data_[chunk_index_] == 0) --chunk_index_; |
|
return carry; |
|
} |
|
|
|
FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp) |
|
: chunk_index_(exp / 32), data_(data) { |
|
const int offset = exp % 32; |
|
// Right shift `v` by `exp` bits. |
|
data_[chunk_index_] = static_cast<uint32_t>(v << (32 - offset)); |
|
v >>= offset; |
|
// Make sure we don't overflow the data. We already calculated that |
|
// non-zero bits fit, so we might not have space for leading zero bits. |
|
for (int pos = chunk_index_; v; v >>= 32) |
|
data_[--pos] = static_cast<uint32_t>(v); |
|
|
|
// Fill next_digit_, as GetDigits expects it to be populated always. |
|
next_digit_ = GetOneDigit(); |
|
} |
|
|
|
int next_digit_; |
|
int chunk_index_; |
|
absl::Span<uint32_t> data_; |
|
}; |
|
|
|
// Count the number of leading zero bits. |
|
int LeadingZeros(uint64_t v) { return base_internal::CountLeadingZeros64(v); } |
|
int LeadingZeros(uint128 v) { |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
return high != 0 ? base_internal::CountLeadingZeros64(high) |
|
: 64 + base_internal::CountLeadingZeros64(low); |
|
} |
|
|
|
// Round up the text digits starting at `p`. |
|
// The buffer must have an extra digit that is known to not need rounding. |
|
// This is done below by having an extra '0' digit on the left. |
|
void RoundUp(char *p) { |
|
while (*p == '9' || *p == '.') { |
|
if (*p == '9') *p = '0'; |
|
--p; |
|
} |
|
++*p; |
|
} |
|
|
|
// Check the previous digit and round up or down to follow the round-to-even |
|
// policy. |
|
void RoundToEven(char *p) { |
|
if (*p == '.') --p; |
|
if (*p % 2 == 1) RoundUp(p); |
|
} |
|
|
|
// Simple integral decimal digit printing for values that fit in 64-bits. |
|
// Returns the pointer to the last written digit. |
|
char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) { |
|
do { |
|
*--p = DivideBy10WithCarry(&v, 0) + '0'; |
|
} while (v != 0); |
|
return p; |
|
} |
|
|
|
// Simple integral decimal digit printing for values that fit in 128-bits. |
|
// Returns the pointer to the last written digit. |
|
char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) { |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
|
|
while (high != 0) { |
|
uint64_t carry = DivideBy10WithCarry(&high, 0); |
|
carry = DivideBy10WithCarry(&low, carry); |
|
*--p = carry + '0'; |
|
} |
|
return PrintIntegralDigitsFromRightFast(low, p); |
|
} |
|
|
|
// Simple fractional decimal digit printing for values that fir in 64-bits after |
|
// shifting. |
|
// Performs rounding if necessary to fit within `precision`. |
|
// Returns the pointer to one after the last character written. |
|
char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp, |
|
int precision) { |
|
char *p = start; |
|
v <<= (64 - exp); |
|
while (precision > 0) { |
|
if (!v) return p; |
|
*p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0'; |
|
--precision; |
|
} |
|
|
|
// We need to round. |
|
if (v < 0x8000000000000000) { |
|
// We round down, so nothing to do. |
|
} else if (v > 0x8000000000000000) { |
|
// We round up. |
|
RoundUp(p - 1); |
|
} else { |
|
RoundToEven(p - 1); |
|
} |
|
|
|
assert(precision == 0); |
|
// Precision can only be zero here. |
|
return p; |
|
} |
|
|
|
// Simple fractional decimal digit printing for values that fir in 128-bits |
|
// after shifting. |
|
// Performs rounding if necessary to fit within `precision`. |
|
// Returns the pointer to one after the last character written. |
|
char *PrintFractionalDigitsFast(uint128 v, char *start, int exp, |
|
int precision) { |
|
char *p = start; |
|
v <<= (128 - exp); |
|
auto high = static_cast<uint64_t>(v >> 64); |
|
auto low = static_cast<uint64_t>(v); |
|
|
|
// While we have digits to print and `low` is not empty, do the long |
|
// multiplication. |
|
while (precision > 0 && low != 0) { |
|
uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0}); |
|
carry = MultiplyBy10WithCarry(&high, carry); |
|
|
|
*p++ = carry + '0'; |
|
--precision; |
|
} |
|
|
|
// Now `low` is empty, so use a faster approach for the rest of the digits. |
|
// This block is pretty much the same as the main loop for the 64-bit case |
|
// above. |
|
while (precision > 0) { |
|
if (!high) return p; |
|
*p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0'; |
|
--precision; |
|
} |
|
|
|
// We need to round. |
|
if (high < 0x8000000000000000) { |
|
// We round down, so nothing to do. |
|
} else if (high > 0x8000000000000000 || low != 0) { |
|
// We round up. |
|
RoundUp(p - 1); |
|
} else { |
|
RoundToEven(p - 1); |
|
} |
|
|
|
assert(precision == 0); |
|
// Precision can only be zero here. |
|
return p; |
|
} |
|
|
|
struct FormatState { |
|
char sign_char; |
|
int precision; |
|
const FormatConversionSpecImpl &conv; |
|
FormatSinkImpl *sink; |
|
|
|
// In `alt` mode (flag #) we keep the `.` even if there are no fractional |
|
// digits. In non-alt mode, we strip it. |
|
bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); } |
|
}; |
|
|
|
struct Padding { |
|
int left_spaces; |
|
int zeros; |
|
int right_spaces; |
|
}; |
|
|
|
Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) { |
|
if (state.conv.width() < 0 || |
|
static_cast<size_t>(state.conv.width()) <= total_size) { |
|
return {0, 0, 0}; |
|
} |
|
int missing_chars = state.conv.width() - total_size; |
|
if (state.conv.has_left_flag()) { |
|
return {0, 0, missing_chars}; |
|
} else if (state.conv.has_zero_flag()) { |
|
return {0, missing_chars, 0}; |
|
} else { |
|
return {missing_chars, 0, 0}; |
|
} |
|
} |
|
|
|
void FinalPrint(const FormatState &state, absl::string_view data, |
|
int padding_offset, int trailing_zeros, |
|
absl::string_view data_postfix) { |
|
if (state.conv.width() < 0) { |
|
// No width specified. Fast-path. |
|
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
|
state.sink->Append(data); |
|
state.sink->Append(trailing_zeros, '0'); |
|
state.sink->Append(data_postfix); |
|
return; |
|
} |
|
|
|
auto padding = ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) + |
|
data.size() + data_postfix.size() + |
|
static_cast<size_t>(trailing_zeros), |
|
state); |
|
|
|
state.sink->Append(padding.left_spaces, ' '); |
|
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
|
// Padding in general needs to be inserted somewhere in the middle of `data`. |
|
state.sink->Append(data.substr(0, padding_offset)); |
|
state.sink->Append(padding.zeros, '0'); |
|
state.sink->Append(data.substr(padding_offset)); |
|
state.sink->Append(trailing_zeros, '0'); |
|
state.sink->Append(data_postfix); |
|
state.sink->Append(padding.right_spaces, ' '); |
|
} |
|
|
|
// Fastpath %f formatter for when the shifted value fits in a simple integral |
|
// type. |
|
// Prints `v*2^exp` with the options from `state`. |
|
template <typename Int> |
|
void FormatFFast(Int v, int exp, const FormatState &state) { |
|
constexpr int input_bits = sizeof(Int) * 8; |
|
|
|
static constexpr size_t integral_size = |
|
/* in case we need to round up an extra digit */ 1 + |
|
/* decimal digits for uint128 */ 40 + 1; |
|
char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128]; |
|
buffer[integral_size] = '.'; |
|
char *const integral_digits_end = buffer + integral_size; |
|
char *integral_digits_start; |
|
char *const fractional_digits_start = buffer + integral_size + 1; |
|
char *fractional_digits_end = fractional_digits_start; |
|
|
|
if (exp >= 0) { |
|
const int total_bits = input_bits - LeadingZeros(v) + exp; |
|
integral_digits_start = |
|
total_bits <= 64 |
|
? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp, |
|
integral_digits_end) |
|
: PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp, |
|
integral_digits_end); |
|
} else { |
|
exp = -exp; |
|
|
|
integral_digits_start = PrintIntegralDigitsFromRightFast( |
|
exp < input_bits ? v >> exp : 0, integral_digits_end); |
|
// PrintFractionalDigits may pull a carried 1 all the way up through the |
|
// integral portion. |
|
integral_digits_start[-1] = '0'; |
|
|
|
fractional_digits_end = |
|
exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp, |
|
state.precision) |
|
: PrintFractionalDigitsFast(static_cast<uint128>(v), |
|
fractional_digits_start, exp, |
|
state.precision); |
|
// There was a carry, so include the first digit too. |
|
if (integral_digits_start[-1] != '0') --integral_digits_start; |
|
} |
|
|
|
size_t size = fractional_digits_end - integral_digits_start; |
|
|
|
// In `alt` mode (flag #) we keep the `.` even if there are no fractional |
|
// digits. In non-alt mode, we strip it. |
|
if (!state.ShouldPrintDot()) --size; |
|
FinalPrint(state, absl::string_view(integral_digits_start, size), |
|
/*padding_offset=*/0, |
|
static_cast<int>(state.precision - (fractional_digits_end - |
|
fractional_digits_start)), |
|
/*data_postfix=*/""); |
|
} |
|
|
|
// Slow %f formatter for when the shifted value does not fit in a uint128, and |
|
// `exp > 0`. |
|
// Prints `v*2^exp` with the options from `state`. |
|
// This one is guaranteed to not have fractional digits, so we don't have to |
|
// worry about anything after the `.`. |
|
void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) { |
|
BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) { |
|
const size_t total_digits = |
|
btd.TotalDigits() + |
|
(state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0); |
|
|
|
const auto padding = ExtraWidthToPadding( |
|
total_digits + (state.sign_char != '\0' ? 1 : 0), state); |
|
|
|
state.sink->Append(padding.left_spaces, ' '); |
|
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
|
state.sink->Append(padding.zeros, '0'); |
|
|
|
do { |
|
state.sink->Append(btd.CurrentDigits()); |
|
} while (btd.AdvanceDigits()); |
|
|
|
if (state.ShouldPrintDot()) state.sink->Append(1, '.'); |
|
state.sink->Append(state.precision, '0'); |
|
state.sink->Append(padding.right_spaces, ' '); |
|
}); |
|
} |
|
|
|
// Slow %f formatter for when the shifted value does not fit in a uint128, and |
|
// `exp < 0`. |
|
// Prints `v*2^exp` with the options from `state`. |
|
// This one is guaranteed to be < 1.0, so we don't have to worry about integral |
|
// digits. |
|
void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) { |
|
const size_t total_digits = |
|
/* 0 */ 1 + |
|
(state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0); |
|
auto padding = |
|
ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state); |
|
padding.zeros += 1; |
|
state.sink->Append(padding.left_spaces, ' '); |
|
if (state.sign_char != '\0') state.sink->Append(1, state.sign_char); |
|
state.sink->Append(padding.zeros, '0'); |
|
|
|
if (state.ShouldPrintDot()) state.sink->Append(1, '.'); |
|
|
|
// Print digits |
|
int digits_to_go = state.precision; |
|
|
|
FractionalDigitGenerator::RunConversion( |
|
v, exp, [&](FractionalDigitGenerator digit_gen) { |
|
// There are no digits to print here. |
|
if (state.precision == 0) return; |
|
|
|
// We go one digit at a time, while keeping track of runs of nines. |
|
// The runs of nines are used to perform rounding when necessary. |
|
|
|
while (digits_to_go > 0 && digit_gen.HasMoreDigits()) { |
|
auto digits = digit_gen.GetDigits(); |
|
|
|
// Now we have a digit and a run of nines. |
|
// See if we can print them all. |
|
if (digits.num_nines + 1 < digits_to_go) { |
|
// We don't have to round yet, so print them. |
|
state.sink->Append(1, digits.digit_before_nine + '0'); |
|
state.sink->Append(digits.num_nines, '9'); |
|
digits_to_go -= digits.num_nines + 1; |
|
|
|
} else { |
|
// We can't print all the nines, see where we have to truncate. |
|
|
|
bool round_up = false; |
|
if (digits.num_nines + 1 > digits_to_go) { |
|
// We round up at a nine. No need to print them. |
|
round_up = true; |
|
} else { |
|
// We can fit all the nines, but truncate just after it. |
|
if (digit_gen.IsGreaterThanHalf()) { |
|
round_up = true; |
|
} else if (digit_gen.IsExactlyHalf()) { |
|
// Round to even |
|
round_up = |
|
digits.num_nines != 0 || digits.digit_before_nine % 2 == 1; |
|
} |
|
} |
|
|
|
if (round_up) { |
|
state.sink->Append(1, digits.digit_before_nine + '1'); |
|
--digits_to_go; |
|
// The rest will be zeros. |
|
} else { |
|
state.sink->Append(1, digits.digit_before_nine + '0'); |
|
state.sink->Append(digits_to_go - 1, '9'); |
|
digits_to_go = 0; |
|
} |
|
return; |
|
} |
|
} |
|
}); |
|
|
|
state.sink->Append(digits_to_go, '0'); |
|
state.sink->Append(padding.right_spaces, ' '); |
|
} |
|
|
|
template <typename Int> |
|
void FormatF(Int mantissa, int exp, const FormatState &state) { |
|
if (exp >= 0) { |
|
const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp; |
|
|
|
// Fallback to the slow stack-based approach if we can't do it in a 64 or |
|
// 128 bit state. |
|
if (ABSL_PREDICT_FALSE(total_bits > 128)) { |
|
return FormatFPositiveExpSlow(mantissa, exp, state); |
|
} |
|
} else { |
|
// Fallback to the slow stack-based approach if we can't do it in a 64 or |
|
// 128 bit state. |
|
if (ABSL_PREDICT_FALSE(exp < -128)) { |
|
return FormatFNegativeExpSlow(mantissa, -exp, state); |
|
} |
|
} |
|
return FormatFFast(mantissa, exp, state); |
|
} |
|
|
|
// Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to |
|
// bits 4-7. |
|
template <typename Int> |
|
uint8_t GetNibble(Int n, int nibble_index) { |
|
constexpr Int mask_low_nibble = Int{0xf}; |
|
int shift = nibble_index * 4; |
|
n &= mask_low_nibble << shift; |
|
return static_cast<uint8_t>((n >> shift) & 0xf); |
|
} |
|
|
|
// Add one to the given nibble, applying carry to higher nibbles. Returns true |
|
// if overflow, false otherwise. |
|
template <typename Int> |
|
bool IncrementNibble(int nibble_index, Int *n) { |
|
constexpr int kShift = sizeof(Int) * 8 - 1; |
|
constexpr int kNumNibbles = sizeof(Int) * 8 / 4; |
|
Int before = *n >> kShift; |
|
// Here we essentially want to take the number 1 and move it into the requsted |
|
// nibble, then add it to *n to effectively increment the nibble. However, |
|
// ASan will complain if we try to shift the 1 beyond the limits of the Int, |
|
// i.e., if the nibble_index is out of range. So therefore we check for this |
|
// and if we are out of range we just add 0 which leaves *n unchanged, which |
|
// seems like the reasonable thing to do in that case. |
|
*n += ((nibble_index >= kNumNibbles) ? 0 : (Int{1} << (nibble_index * 4))); |
|
Int after = *n >> kShift; |
|
return (before && !after) || (nibble_index >= kNumNibbles); |
|
} |
|
|
|
// Return a mask with 1's in the given nibble and all lower nibbles. |
|
template <typename Int> |
|
Int MaskUpToNibbleInclusive(int nibble_index) { |
|
constexpr int kNumNibbles = sizeof(Int) * 8 / 4; |
|
static const Int ones = ~Int{0}; |
|
return ones >> std::max(0, 4 * (kNumNibbles - nibble_index - 1)); |
|
} |
|
|
|
// Return a mask with 1's below the given nibble. |
|
template <typename Int> |
|
Int MaskUpToNibbleExclusive(int nibble_index) { |
|
return nibble_index <= 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1); |
|
} |
|
|
|
template <typename Int> |
|
Int MoveToNibble(uint8_t nibble, int nibble_index) { |
|
return Int{nibble} << (4 * nibble_index); |
|
} |
|
|
|
// Given mantissa size, find optimal # of mantissa bits to put in initial digit. |
|
// |
|
// In the hex representation we keep a single hex digit to the left of the dot. |
|
// However, the question as to how many bits of the mantissa should be put into |
|
// that hex digit in theory is arbitrary, but in practice it is optimal to |
|
// choose based on the size of the mantissa. E.g., for a `double`, there are 53 |
|
// mantissa bits, so that means that we should put 1 bit to the left of the dot, |
|
// thereby leaving 52 bits to the right, which is evenly divisible by four and |
|
// thus all fractional digits represent actual precision. For a `long double`, |
|
// on the other hand, there are 64 bits of mantissa, thus we can use all four |
|
// bits for the initial hex digit and still have a number left over (60) that is |
|
// a multiple of four. Once again, the goal is to have all fractional digits |
|
// represent real precision. |
|
template <typename Float> |
|
constexpr int HexFloatLeadingDigitSizeInBits() { |
|
return std::numeric_limits<Float>::digits % 4 > 0 |
|
? std::numeric_limits<Float>::digits % 4 |
|
: 4; |
|
} |
|
|
|
// This function captures the rounding behavior of glibc for hex float |
|
// representations. E.g. when rounding 0x1.ab800000 to a precision of .2 |
|
// ("%.2a") glibc will round up because it rounds toward the even number (since |
|
// 0xb is an odd number, it will round up to 0xc). However, when rounding at a |
|
// point that is not followed by 800000..., it disregards the parity and rounds |
|
// up if > 8 and rounds down if < 8. |
|
template <typename Int> |
|
bool HexFloatNeedsRoundUp(Int mantissa, int final_nibble_displayed, |
|
uint8_t leading) { |
|
// If the last nibble (hex digit) to be displayed is the lowest on in the |
|
// mantissa then that means that we don't have any further nibbles to inform |
|
// rounding, so don't round. |
|
if (final_nibble_displayed <= 0) { |
|
return false; |
|
} |
|
int rounding_nibble_idx = final_nibble_displayed - 1; |
|
constexpr int kTotalNibbles = sizeof(Int) * 8 / 4; |
|
assert(final_nibble_displayed <= kTotalNibbles); |
|
Int mantissa_up_to_rounding_nibble_inclusive = |
|
mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx); |
|
Int eight = MoveToNibble<Int>(8, rounding_nibble_idx); |
|
if (mantissa_up_to_rounding_nibble_inclusive != eight) { |
|
return mantissa_up_to_rounding_nibble_inclusive > eight; |
|
} |
|
// Nibble in question == 8. |
|
uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles) |
|
? leading |
|
: GetNibble(mantissa, final_nibble_displayed); |
|
return round_if_odd % 2 == 1; |
|
} |
|
|
|
// Stores values associated with a Float type needed by the FormatA |
|
// implementation in order to avoid templatizing that function by the Float |
|
// type. |
|
struct HexFloatTypeParams { |
|
template <typename Float> |
|
explicit HexFloatTypeParams(Float) |
|
: min_exponent(std::numeric_limits<Float>::min_exponent - 1), |
|
leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) { |
|
assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4); |
|
} |
|
|
|
int min_exponent; |
|
int leading_digit_size_bits; |
|
}; |
|
|
|
// Hex Float Rounding. First check if we need to round; if so, then we do that |
|
// by manipulating (incrementing) the mantissa, that way we can later print the |
|
// mantissa digits by iterating through them in the same way regardless of |
|
// whether a rounding happened. |
|
template <typename Int> |
|
void FormatARound(bool precision_specified, const FormatState &state, |
|
uint8_t *leading, Int *mantissa, int *exp) { |
|
constexpr int kTotalNibbles = sizeof(Int) * 8 / 4; |
|
// Index of the last nibble that we could display given precision. |
|
int final_nibble_displayed = |
|
precision_specified ? std::max(0, (kTotalNibbles - state.precision)) : 0; |
|
if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) { |
|
// Need to round up. |
|
bool overflow = IncrementNibble(final_nibble_displayed, mantissa); |
|
*leading += (overflow ? 1 : 0); |
|
if (ABSL_PREDICT_FALSE(*leading > 15)) { |
|
// We have overflowed the leading digit. This would mean that we would |
|
// need two hex digits to the left of the dot, which is not allowed. So |
|
// adjust the mantissa and exponent so that the result is always 1.0eXXX. |
|
*leading = 1; |
|
*mantissa = 0; |
|
*exp += 4; |
|
} |
|
} |
|
// Now that we have handled a possible round-up we can go ahead and zero out |
|
// all the nibbles of the mantissa that we won't need. |
|
if (precision_specified) { |
|
*mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed); |
|
} |
|
} |
|
|
|
template <typename Int> |
|
void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading, |
|
Int *mantissa, int *exp) { |
|
constexpr int kIntBits = sizeof(Int) * 8; |
|
static const Int kHighIntBit = Int{1} << (kIntBits - 1); |
|
const int kLeadDigitBitsCount = float_traits.leading_digit_size_bits; |
|
// Normalize mantissa so that highest bit set is in MSB position, unless we |
|
// get interrupted by the exponent threshold. |
|
while (*mantissa && !(*mantissa & kHighIntBit)) { |
|
if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) { |
|
*mantissa >>= (float_traits.min_exponent - *exp); |
|
*exp = float_traits.min_exponent; |
|
return; |
|
} |
|
*mantissa <<= 1; |
|
--*exp; |
|
} |
|
// Extract bits for leading digit then shift them away leaving the |
|
// fractional part. |
|
*leading = |
|
static_cast<uint8_t>(*mantissa >> (kIntBits - kLeadDigitBitsCount)); |
|
*exp -= (*mantissa != 0) ? kLeadDigitBitsCount : *exp; |
|
*mantissa <<= kLeadDigitBitsCount; |
|
} |
|
|
|
template <typename Int> |
|
void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp, |
|
bool uppercase, const FormatState &state) { |
|
// Int properties. |
|
constexpr int kIntBits = sizeof(Int) * 8; |
|
constexpr int kTotalNibbles = sizeof(Int) * 8 / 4; |
|
// Did the user specify a precision explicitly? |
|
const bool precision_specified = state.conv.precision() >= 0; |
|
|
|
// ========== Normalize/Denormalize ========== |
|
exp += kIntBits; // make all digits fractional digits. |
|
// This holds the (up to four) bits of leading digit, i.e., the '1' in the |
|
// number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal. |
|
uint8_t leading = 0; |
|
FormatANormalize(float_traits, &leading, &mantissa, &exp); |
|
|
|
// =============== Rounding ================== |
|
// Check if we need to round; if so, then we do that by manipulating |
|
// (incrementing) the mantissa before beginning to print characters. |
|
FormatARound(precision_specified, state, &leading, &mantissa, &exp); |
|
|
|
// ============= Format Result =============== |
|
// This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the |
|
// size with long double which is the largest of the floats. |
|
constexpr size_t kBufSizeForHexFloatRepr = |
|
2 // 0x |
|
+ std::numeric_limits<long double>::digits / 4 // number of hex digits |
|
+ 1 // round up |
|
+ 1; // "." (dot) |
|
char digits_buffer[kBufSizeForHexFloatRepr]; |
|
char *digits_iter = digits_buffer; |
|
const char *const digits = |
|
static_cast<const char *>("0123456789ABCDEF0123456789abcdef") + |
|
(uppercase ? 0 : 16); |
|
|
|
// =============== Hex Prefix ================ |
|
*digits_iter++ = '0'; |
|
*digits_iter++ = uppercase ? 'X' : 'x'; |
|
|
|
// ========== Non-Fractional Digit =========== |
|
*digits_iter++ = digits[leading]; |
|
|
|
// ================== Dot ==================== |
|
// There are three reasons we might need a dot. Keep in mind that, at this |
|
// point, the mantissa holds only the fractional part. |
|
if ((precision_specified && state.precision > 0) || |
|
(!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) { |
|
*digits_iter++ = '.'; |
|
} |
|
|
|
// ============ Fractional Digits ============ |
|
int digits_emitted = 0; |
|
while (mantissa > 0) { |
|
*digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)]; |
|
mantissa <<= 4; |
|
++digits_emitted; |
|
} |
|
int trailing_zeros = |
|
precision_specified ? state.precision - digits_emitted : 0; |
|
assert(trailing_zeros >= 0); |
|
auto digits_result = string_view(digits_buffer, digits_iter - digits_buffer); |
|
|
|
// =============== Exponent ================== |
|
constexpr size_t kBufSizeForExpDecRepr = |
|
numbers_internal::kFastToBufferSize // requred for FastIntToBuffer |
|
+ 1 // 'p' or 'P' |
|
+ 1; // '+' or '-' |
|
char exp_buffer[kBufSizeForExpDecRepr]; |
|
exp_buffer[0] = uppercase ? 'P' : 'p'; |
|
exp_buffer[1] = exp >= 0 ? '+' : '-'; |
|
numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2); |
|
|
|
// ============ Assemble Result ============== |
|
FinalPrint(state, // |
|
digits_result, // 0xN.NNN... |
|
2, // offset in `data` to start padding if needed. |
|
trailing_zeros, // num remaining mantissa padding zeros |
|
exp_buffer); // exponent |
|
} |
|
|
|
char *CopyStringTo(absl::string_view v, char *out) { |
|
std::memcpy(out, v.data(), v.size()); |
|
return out + v.size(); |
|
} |
|
|
|
template <typename Float> |
|
bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
int w = conv.width() >= 0 ? conv.width() : 0; |
|
int p = conv.precision() >= 0 ? conv.precision() : -1; |
|
char fmt[32]; |
|
{ |
|
char *fp = fmt; |
|
*fp++ = '%'; |
|
fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp); |
|
fp = CopyStringTo("*.*", fp); |
|
if (std::is_same<long double, Float>()) { |
|
*fp++ = 'L'; |
|
} |
|
*fp++ = FormatConversionCharToChar(conv.conversion_char()); |
|
*fp = 0; |
|
assert(fp < fmt + sizeof(fmt)); |
|
} |
|
std::string space(512, '\0'); |
|
absl::string_view result; |
|
while (true) { |
|
int n = snprintf(&space[0], space.size(), fmt, w, p, v); |
|
if (n < 0) return false; |
|
if (static_cast<size_t>(n) < space.size()) { |
|
result = absl::string_view(space.data(), n); |
|
break; |
|
} |
|
space.resize(n + 1); |
|
} |
|
sink->Append(result); |
|
return true; |
|
} |
|
|
|
// 128-bits in decimal: ceil(128*log(2)/log(10)) |
|
// or std::numeric_limits<__uint128_t>::digits10 |
|
constexpr int kMaxFixedPrecision = 39; |
|
|
|
constexpr int kBufferLength = /*sign*/ 1 + |
|
/*integer*/ kMaxFixedPrecision + |
|
/*point*/ 1 + |
|
/*fraction*/ kMaxFixedPrecision + |
|
/*exponent e+123*/ 5; |
|
|
|
struct Buffer { |
|
void push_front(char c) { |
|
assert(begin > data); |
|
*--begin = c; |
|
} |
|
void push_back(char c) { |
|
assert(end < data + sizeof(data)); |
|
*end++ = c; |
|
} |
|
void pop_back() { |
|
assert(begin < end); |
|
--end; |
|
} |
|
|
|
char &back() { |
|
assert(begin < end); |
|
return end[-1]; |
|
} |
|
|
|
char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; } |
|
|
|
int size() const { return static_cast<int>(end - begin); } |
|
|
|
char data[kBufferLength]; |
|
char *begin; |
|
char *end; |
|
}; |
|
|
|
enum class FormatStyle { Fixed, Precision }; |
|
|
|
// If the value is Inf or Nan, print it and return true. |
|
// Otherwise, return false. |
|
template <typename Float> |
|
bool ConvertNonNumericFloats(char sign_char, Float v, |
|
const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
char text[4], *ptr = text; |
|
if (sign_char != '\0') *ptr++ = sign_char; |
|
if (std::isnan(v)) { |
|
ptr = std::copy_n( |
|
FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3, |
|
ptr); |
|
} else if (std::isinf(v)) { |
|
ptr = std::copy_n( |
|
FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3, |
|
ptr); |
|
} else { |
|
return false; |
|
} |
|
|
|
return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1, |
|
conv.has_left_flag()); |
|
} |
|
|
|
// Round up the last digit of the value. |
|
// It will carry over and potentially overflow. 'exp' will be adjusted in that |
|
// case. |
|
template <FormatStyle mode> |
|
void RoundUp(Buffer *buffer, int *exp) { |
|
char *p = &buffer->back(); |
|
while (p >= buffer->begin && (*p == '9' || *p == '.')) { |
|
if (*p == '9') *p = '0'; |
|
--p; |
|
} |
|
|
|
if (p < buffer->begin) { |
|
*p = '1'; |
|
buffer->begin = p; |
|
if (mode == FormatStyle::Precision) { |
|
std::swap(p[1], p[2]); // move the . |
|
++*exp; |
|
buffer->pop_back(); |
|
} |
|
} else { |
|
++*p; |
|
} |
|
} |
|
|
|
void PrintExponent(int exp, char e, Buffer *out) { |
|
out->push_back(e); |
|
if (exp < 0) { |
|
out->push_back('-'); |
|
exp = -exp; |
|
} else { |
|
out->push_back('+'); |
|
} |
|
// Exponent digits. |
|
if (exp > 99) { |
|
out->push_back(exp / 100 + '0'); |
|
out->push_back(exp / 10 % 10 + '0'); |
|
out->push_back(exp % 10 + '0'); |
|
} else { |
|
out->push_back(exp / 10 + '0'); |
|
out->push_back(exp % 10 + '0'); |
|
} |
|
} |
|
|
|
template <typename Float, typename Int> |
|
constexpr bool CanFitMantissa() { |
|
return |
|
#if defined(__clang__) && !defined(__SSE3__) |
|
// Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289 |
|
// Casting from long double to uint64_t is miscompiled and drops bits. |
|
(!std::is_same<Float, long double>::value || |
|
!std::is_same<Int, uint64_t>::value) && |
|
#endif |
|
std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits; |
|
} |
|
|
|
template <typename Float> |
|
struct Decomposed { |
|
using MantissaType = |
|
absl::conditional_t<std::is_same<long double, Float>::value, uint128, |
|
uint64_t>; |
|
static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8, |
|
""); |
|
MantissaType mantissa; |
|
int exponent; |
|
}; |
|
|
|
// Decompose the double into an integer mantissa and an exponent. |
|
template <typename Float> |
|
Decomposed<Float> Decompose(Float v) { |
|
int exp; |
|
Float m = std::frexp(v, &exp); |
|
m = std::ldexp(m, std::numeric_limits<Float>::digits); |
|
exp -= std::numeric_limits<Float>::digits; |
|
|
|
return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp}; |
|
} |
|
|
|
// Print 'digits' as decimal. |
|
// In Fixed mode, we add a '.' at the end. |
|
// In Precision mode, we add a '.' after the first digit. |
|
template <FormatStyle mode, typename Int> |
|
int PrintIntegralDigits(Int digits, Buffer *out) { |
|
int printed = 0; |
|
if (digits) { |
|
for (; digits; digits /= 10) out->push_front(digits % 10 + '0'); |
|
printed = out->size(); |
|
if (mode == FormatStyle::Precision) { |
|
out->push_front(*out->begin); |
|
out->begin[1] = '.'; |
|
} else { |
|
out->push_back('.'); |
|
} |
|
} else if (mode == FormatStyle::Fixed) { |
|
out->push_front('0'); |
|
out->push_back('.'); |
|
printed = 1; |
|
} |
|
return printed; |
|
} |
|
|
|
// Back out 'extra_digits' digits and round up if necessary. |
|
bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value, |
|
Buffer *out, int *exp_out) { |
|
if (extra_digits <= 0) return false; |
|
|
|
// Back out the extra digits |
|
out->end -= extra_digits; |
|
|
|
bool needs_to_round_up = [&] { |
|
// We look at the digit just past the end. |
|
// There must be 'extra_digits' extra valid digits after end. |
|
if (*out->end > '5') return true; |
|
if (*out->end < '5') return false; |
|
if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits, |
|
[](char c) { return c != '0'; })) |
|
return true; |
|
|
|
// Ends in ...50*, round to even. |
|
return out->last_digit() % 2 == 1; |
|
}(); |
|
|
|
if (needs_to_round_up) { |
|
RoundUp<FormatStyle::Precision>(out, exp_out); |
|
} |
|
return true; |
|
} |
|
|
|
// Print the value into the buffer. |
|
// This will not include the exponent, which will be returned in 'exp_out' for |
|
// Precision mode. |
|
template <typename Int, typename Float, FormatStyle mode> |
|
bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out, |
|
int *exp_out) { |
|
assert((CanFitMantissa<Float, Int>())); |
|
|
|
const int int_bits = std::numeric_limits<Int>::digits; |
|
|
|
// In precision mode, we start printing one char to the right because it will |
|
// also include the '.' |
|
// In fixed mode we put the dot afterwards on the right. |
|
out->begin = out->end = |
|
out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision); |
|
|
|
if (exp >= 0) { |
|
if (std::numeric_limits<Float>::digits + exp > int_bits) { |
|
// The value will overflow the Int |
|
return false; |
|
} |
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out); |
|
int digits_to_zero_pad = precision; |
|
if (mode == FormatStyle::Precision) { |
|
*exp_out = digits_printed - 1; |
|
digits_to_zero_pad -= digits_printed - 1; |
|
if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) { |
|
return true; |
|
} |
|
} |
|
for (; digits_to_zero_pad-- > 0;) out->push_back('0'); |
|
return true; |
|
} |
|
|
|
exp = -exp; |
|
// We need at least 4 empty bits for the next decimal digit. |
|
// We will multiply by 10. |
|
if (exp > int_bits - 4) return false; |
|
|
|
const Int mask = (Int{1} << exp) - 1; |
|
|
|
// Print the integral part first. |
|
int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out); |
|
int_mantissa &= mask; |
|
|
|
int fractional_count = precision; |
|
if (mode == FormatStyle::Precision) { |
|
if (digits_printed == 0) { |
|
// Find the first non-zero digit, when in Precision mode. |
|
*exp_out = 0; |
|
if (int_mantissa) { |
|
while (int_mantissa <= mask) { |
|
int_mantissa *= 10; |
|
--*exp_out; |
|
} |
|
} |
|
out->push_front(static_cast<char>(int_mantissa >> exp) + '0'); |
|
out->push_back('.'); |
|
int_mantissa &= mask; |
|
} else { |
|
// We already have a digit, and a '.' |
|
*exp_out = digits_printed - 1; |
|
fractional_count -= *exp_out; |
|
if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out, |
|
exp_out)) { |
|
// If we had enough digits, return right away. |
|
// The code below will try to round again otherwise. |
|
return true; |
|
} |
|
} |
|
} |
|
|
|
auto get_next_digit = [&] { |
|
int_mantissa *= 10; |
|
int digit = static_cast<int>(int_mantissa >> exp); |
|
int_mantissa &= mask; |
|
return digit; |
|
}; |
|
|
|
// Print fractional_count more digits, if available. |
|
for (; fractional_count > 0; --fractional_count) { |
|
out->push_back(get_next_digit() + '0'); |
|
} |
|
|
|
int next_digit = get_next_digit(); |
|
if (next_digit > 5 || |
|
(next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) { |
|
RoundUp<mode>(out, exp_out); |
|
} |
|
|
|
return true; |
|
} |
|
|
|
template <FormatStyle mode, typename Float> |
|
bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out, |
|
int *exp) { |
|
if (precision > kMaxFixedPrecision) return false; |
|
|
|
// Try with uint64_t. |
|
if (CanFitMantissa<Float, std::uint64_t>() && |
|
FloatToBufferImpl<std::uint64_t, Float, mode>( |
|
static_cast<std::uint64_t>(decomposed.mantissa), |
|
static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp)) |
|
return true; |
|
|
|
#if defined(ABSL_HAVE_INTRINSIC_INT128) |
|
// If that is not enough, try with __uint128_t. |
|
return CanFitMantissa<Float, __uint128_t>() && |
|
FloatToBufferImpl<__uint128_t, Float, mode>( |
|
static_cast<__uint128_t>(decomposed.mantissa), |
|
static_cast<__uint128_t>(decomposed.exponent), precision, out, |
|
exp); |
|
#endif |
|
return false; |
|
} |
|
|
|
void WriteBufferToSink(char sign_char, absl::string_view str, |
|
const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
int left_spaces = 0, zeros = 0, right_spaces = 0; |
|
int missing_chars = |
|
conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) - |
|
static_cast<int>(sign_char != 0), |
|
0) |
|
: 0; |
|
if (conv.has_left_flag()) { |
|
right_spaces = missing_chars; |
|
} else if (conv.has_zero_flag()) { |
|
zeros = missing_chars; |
|
} else { |
|
left_spaces = missing_chars; |
|
} |
|
|
|
sink->Append(left_spaces, ' '); |
|
if (sign_char != '\0') sink->Append(1, sign_char); |
|
sink->Append(zeros, '0'); |
|
sink->Append(str); |
|
sink->Append(right_spaces, ' '); |
|
} |
|
|
|
template <typename Float> |
|
bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
// Print the sign or the sign column. |
|
Float abs_v = v; |
|
char sign_char = 0; |
|
if (std::signbit(abs_v)) { |
|
sign_char = '-'; |
|
abs_v = -abs_v; |
|
} else if (conv.has_show_pos_flag()) { |
|
sign_char = '+'; |
|
} else if (conv.has_sign_col_flag()) { |
|
sign_char = ' '; |
|
} |
|
|
|
// Print nan/inf. |
|
if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) { |
|
return true; |
|
} |
|
|
|
int precision = conv.precision() < 0 ? 6 : conv.precision(); |
|
|
|
int exp = 0; |
|
|
|
auto decomposed = Decompose(abs_v); |
|
|
|
Buffer buffer; |
|
|
|
FormatConversionChar c = conv.conversion_char(); |
|
|
|
if (c == FormatConversionCharInternal::f || |
|
c == FormatConversionCharInternal::F) { |
|
FormatF(decomposed.mantissa, decomposed.exponent, |
|
{sign_char, precision, conv, sink}); |
|
return true; |
|
} else if (c == FormatConversionCharInternal::e || |
|
c == FormatConversionCharInternal::E) { |
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
|
&exp)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back(); |
|
PrintExponent( |
|
exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e', |
|
&buffer); |
|
} else if (c == FormatConversionCharInternal::g || |
|
c == FormatConversionCharInternal::G) { |
|
precision = std::max(0, precision - 1); |
|
if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer, |
|
&exp)) { |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
if (precision + 1 > exp && exp >= -4) { |
|
if (exp < 0) { |
|
// Have 1.23456, needs 0.00123456 |
|
// Move the first digit |
|
buffer.begin[1] = *buffer.begin; |
|
// Add some zeros |
|
for (; exp < -1; ++exp) *buffer.begin-- = '0'; |
|
*buffer.begin-- = '.'; |
|
*buffer.begin = '0'; |
|
} else if (exp > 0) { |
|
// Have 1.23456, needs 1234.56 |
|
// Move the '.' exp positions to the right. |
|
std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2); |
|
} |
|
exp = 0; |
|
} |
|
if (!conv.has_alt_flag()) { |
|
while (buffer.back() == '0') buffer.pop_back(); |
|
if (buffer.back() == '.') buffer.pop_back(); |
|
} |
|
if (exp) { |
|
PrintExponent( |
|
exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e', |
|
&buffer); |
|
} |
|
} else if (c == FormatConversionCharInternal::a || |
|
c == FormatConversionCharInternal::A) { |
|
bool uppercase = (c == FormatConversionCharInternal::A); |
|
FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa, |
|
decomposed.exponent, uppercase, {sign_char, precision, conv, sink}); |
|
return true; |
|
} else { |
|
return false; |
|
} |
|
|
|
WriteBufferToSink(sign_char, |
|
absl::string_view(buffer.begin, buffer.end - buffer.begin), |
|
conv, sink); |
|
|
|
return true; |
|
} |
|
|
|
} // namespace |
|
|
|
bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
if (std::numeric_limits<long double>::digits == |
|
2 * std::numeric_limits<double>::digits) { |
|
// This is the `double-double` representation of `long double`. |
|
// We do not handle it natively. Fallback to snprintf. |
|
return FallbackToSnprintf(v, conv, sink); |
|
} |
|
|
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
return FloatToSink(static_cast<double>(v), conv, sink); |
|
} |
|
|
|
bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv, |
|
FormatSinkImpl *sink) { |
|
return FloatToSink(v, conv, sink); |
|
} |
|
|
|
} // namespace str_format_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|