Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
3059 lines
97 KiB
3059 lines
97 KiB
// Copyright 2020 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/strings/cord.h" |
|
|
|
#include <algorithm> |
|
#include <climits> |
|
#include <cstdio> |
|
#include <iterator> |
|
#include <map> |
|
#include <numeric> |
|
#include <random> |
|
#include <sstream> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/container/fixed_array.h" |
|
#include "absl/hash/hash.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/cord_test_helpers.h" |
|
#include "absl/strings/cordz_test_helpers.h" |
|
#include "absl/strings/match.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_format.h" |
|
#include "absl/strings/string_view.h" |
|
|
|
// convenience local constants |
|
static constexpr auto FLAT = absl::cord_internal::FLAT; |
|
static constexpr auto MAX_FLAT_TAG = absl::cord_internal::MAX_FLAT_TAG; |
|
|
|
typedef std::mt19937_64 RandomEngine; |
|
|
|
using absl::cord_internal::CordRep; |
|
using absl::cord_internal::CordRepBtree; |
|
using absl::cord_internal::CordRepConcat; |
|
using absl::cord_internal::CordRepCrc; |
|
using absl::cord_internal::CordRepExternal; |
|
using absl::cord_internal::CordRepFlat; |
|
using absl::cord_internal::CordRepSubstring; |
|
using absl::cord_internal::CordzUpdateTracker; |
|
using absl::cord_internal::kFlatOverhead; |
|
using absl::cord_internal::kMaxFlatLength; |
|
|
|
static std::string RandomLowercaseString(RandomEngine* rng); |
|
static std::string RandomLowercaseString(RandomEngine* rng, size_t length); |
|
|
|
static int GetUniformRandomUpTo(RandomEngine* rng, int upper_bound) { |
|
if (upper_bound > 0) { |
|
std::uniform_int_distribution<int> uniform(0, upper_bound - 1); |
|
return uniform(*rng); |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
static size_t GetUniformRandomUpTo(RandomEngine* rng, size_t upper_bound) { |
|
if (upper_bound > 0) { |
|
std::uniform_int_distribution<size_t> uniform(0, upper_bound - 1); |
|
return uniform(*rng); |
|
} else { |
|
return 0; |
|
} |
|
} |
|
|
|
static int32_t GenerateSkewedRandom(RandomEngine* rng, int max_log) { |
|
const uint32_t base = (*rng)() % (max_log + 1); |
|
const uint32_t mask = ((base < 32) ? (1u << base) : 0u) - 1u; |
|
return (*rng)() & mask; |
|
} |
|
|
|
static std::string RandomLowercaseString(RandomEngine* rng) { |
|
int length; |
|
std::bernoulli_distribution one_in_1k(0.001); |
|
std::bernoulli_distribution one_in_10k(0.0001); |
|
// With low probability, make a large fragment |
|
if (one_in_10k(*rng)) { |
|
length = GetUniformRandomUpTo(rng, 1048576); |
|
} else if (one_in_1k(*rng)) { |
|
length = GetUniformRandomUpTo(rng, 10000); |
|
} else { |
|
length = GenerateSkewedRandom(rng, 10); |
|
} |
|
return RandomLowercaseString(rng, length); |
|
} |
|
|
|
static std::string RandomLowercaseString(RandomEngine* rng, size_t length) { |
|
std::string result(length, '\0'); |
|
std::uniform_int_distribution<int> chars('a', 'z'); |
|
std::generate(result.begin(), result.end(), |
|
[&]() { return static_cast<char>(chars(*rng)); }); |
|
return result; |
|
} |
|
|
|
static void DoNothing(absl::string_view /* data */, void* /* arg */) {} |
|
|
|
static void DeleteExternalString(absl::string_view data, void* arg) { |
|
std::string* s = reinterpret_cast<std::string*>(arg); |
|
EXPECT_EQ(data, *s); |
|
delete s; |
|
} |
|
|
|
// Add "s" to *dst via `MakeCordFromExternal` |
|
static void AddExternalMemory(absl::string_view s, absl::Cord* dst) { |
|
std::string* str = new std::string(s.data(), s.size()); |
|
dst->Append(absl::MakeCordFromExternal(*str, [str](absl::string_view data) { |
|
DeleteExternalString(data, str); |
|
})); |
|
} |
|
|
|
static void DumpGrowth() { |
|
absl::Cord str; |
|
for (int i = 0; i < 1000; i++) { |
|
char c = 'a' + i % 26; |
|
str.Append(absl::string_view(&c, 1)); |
|
} |
|
} |
|
|
|
// Make a Cord with some number of fragments. Return the size (in bytes) |
|
// of the smallest fragment. |
|
static size_t AppendWithFragments(const std::string& s, RandomEngine* rng, |
|
absl::Cord* cord) { |
|
size_t j = 0; |
|
const size_t max_size = s.size() / 5; // Make approx. 10 fragments |
|
size_t min_size = max_size; // size of smallest fragment |
|
while (j < s.size()) { |
|
size_t N = 1 + GetUniformRandomUpTo(rng, max_size); |
|
if (N > (s.size() - j)) { |
|
N = s.size() - j; |
|
} |
|
if (N < min_size) { |
|
min_size = N; |
|
} |
|
|
|
std::bernoulli_distribution coin_flip(0.5); |
|
if (coin_flip(*rng)) { |
|
// Grow by adding an external-memory. |
|
AddExternalMemory(absl::string_view(s.data() + j, N), cord); |
|
} else { |
|
cord->Append(absl::string_view(s.data() + j, N)); |
|
} |
|
j += N; |
|
} |
|
return min_size; |
|
} |
|
|
|
// Add an external memory that contains the specified std::string to cord |
|
static void AddNewStringBlock(const std::string& str, absl::Cord* dst) { |
|
char* data = new char[str.size()]; |
|
memcpy(data, str.data(), str.size()); |
|
dst->Append(absl::MakeCordFromExternal( |
|
absl::string_view(data, str.size()), |
|
[](absl::string_view s) { delete[] s.data(); })); |
|
} |
|
|
|
// Make a Cord out of many different types of nodes. |
|
static absl::Cord MakeComposite() { |
|
absl::Cord cord; |
|
cord.Append("the"); |
|
AddExternalMemory(" quick brown", &cord); |
|
AddExternalMemory(" fox jumped", &cord); |
|
|
|
absl::Cord full(" over"); |
|
AddExternalMemory(" the lazy", &full); |
|
AddNewStringBlock(" dog slept the whole day away", &full); |
|
absl::Cord substring = full.Subcord(0, 18); |
|
|
|
// Make substring long enough to defeat the copying fast path in Append. |
|
substring.Append(std::string(1000, '.')); |
|
cord.Append(substring); |
|
cord = cord.Subcord(0, cord.size() - 998); // Remove most of extra junk |
|
|
|
return cord; |
|
} |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
class CordTestPeer { |
|
public: |
|
static void ForEachChunk( |
|
const Cord& c, absl::FunctionRef<void(absl::string_view)> callback) { |
|
c.ForEachChunk(callback); |
|
} |
|
|
|
static bool IsTree(const Cord& c) { return c.contents_.is_tree(); } |
|
static CordRep* Tree(const Cord& c) { return c.contents_.tree(); } |
|
|
|
static cord_internal::CordzInfo* GetCordzInfo(const Cord& c) { |
|
return c.contents_.cordz_info(); |
|
} |
|
|
|
static Cord MakeSubstring(Cord src, size_t offset, size_t length) { |
|
ABSL_RAW_CHECK(src.contents_.is_tree(), "Can not be inlined"); |
|
ABSL_RAW_CHECK(src.ExpectedChecksum() == absl::nullopt, |
|
"Can not be hardened"); |
|
Cord cord; |
|
auto* tree = cord_internal::SkipCrcNode(src.contents_.tree()); |
|
auto* rep = CordRepSubstring::Create(CordRep::Ref(tree), offset, length); |
|
cord.contents_.EmplaceTree(rep, CordzUpdateTracker::kSubCord); |
|
return cord; |
|
} |
|
}; |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
// The CordTest fixture runs all tests with and without Cord Btree enabled, |
|
// and with our without expected CRCs being set on the subject Cords. |
|
class CordTest : public testing::TestWithParam<int> { |
|
public: |
|
// Returns true if test is running with btree enabled. |
|
bool UseCrc() const { return GetParam() == 2 || GetParam() == 3; } |
|
void MaybeHarden(absl::Cord& c) { |
|
if (UseCrc()) { |
|
c.SetExpectedChecksum(1); |
|
} |
|
} |
|
absl::Cord MaybeHardened(absl::Cord c) { |
|
MaybeHarden(c); |
|
return c; |
|
} |
|
|
|
// Returns human readable string representation of the test parameter. |
|
static std::string ToString(testing::TestParamInfo<int> param) { |
|
switch (param.param) { |
|
case 0: |
|
return "Btree"; |
|
case 1: |
|
return "BtreeHardened"; |
|
default: |
|
assert(false); |
|
return "???"; |
|
} |
|
} |
|
}; |
|
|
|
INSTANTIATE_TEST_SUITE_P(WithParam, CordTest, testing::Values(0, 1), |
|
CordTest::ToString); |
|
|
|
TEST(CordRepFlat, AllFlatCapacities) { |
|
// Explicitly and redundantly assert built-in min/max limits |
|
static_assert(absl::cord_internal::kFlatOverhead < 32, ""); |
|
static_assert(absl::cord_internal::kMinFlatSize == 32, ""); |
|
static_assert(absl::cord_internal::kMaxLargeFlatSize == 256 << 10, ""); |
|
EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(FLAT), 32); |
|
EXPECT_EQ(absl::cord_internal::TagToAllocatedSize(MAX_FLAT_TAG), 256 << 10); |
|
|
|
// Verify all tags to map perfectly back and forth, and |
|
// that sizes are monotonically increasing. |
|
size_t last_size = 0; |
|
for (int tag = FLAT; tag <= MAX_FLAT_TAG; ++tag) { |
|
size_t size = absl::cord_internal::TagToAllocatedSize(tag); |
|
ASSERT_GT(size, last_size); |
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size); |
|
last_size = size; |
|
} |
|
|
|
// All flat size from 32 - 512 are 8 byte granularity |
|
for (size_t size = 32; size <= 512; size += 8) { |
|
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size); |
|
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size); |
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size); |
|
} |
|
|
|
// All flat sizes from 512 - 8192 are 64 byte granularity |
|
for (size_t size = 512; size <= 8192; size += 64) { |
|
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size); |
|
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size); |
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size); |
|
} |
|
|
|
// All flat sizes from 8KB to 256KB are 4KB granularity |
|
for (size_t size = 8192; size <= 256 * 1024; size += 4 * 1024) { |
|
ASSERT_EQ(absl::cord_internal::RoundUpForTag(size), size); |
|
uint8_t tag = absl::cord_internal::AllocatedSizeToTag(size); |
|
ASSERT_EQ(absl::cord_internal::TagToAllocatedSize(tag), size); |
|
} |
|
} |
|
|
|
TEST(CordRepFlat, MaxFlatSize) { |
|
CordRepFlat* flat = CordRepFlat::New(kMaxFlatLength); |
|
EXPECT_EQ(flat->Capacity(), kMaxFlatLength); |
|
CordRep::Unref(flat); |
|
|
|
flat = CordRepFlat::New(kMaxFlatLength * 4); |
|
EXPECT_EQ(flat->Capacity(), kMaxFlatLength); |
|
CordRep::Unref(flat); |
|
} |
|
|
|
TEST(CordRepFlat, MaxLargeFlatSize) { |
|
const size_t size = 256 * 1024 - kFlatOverhead; |
|
CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), size); |
|
EXPECT_GE(flat->Capacity(), size); |
|
CordRep::Unref(flat); |
|
} |
|
|
|
TEST(CordRepFlat, AllFlatSizes) { |
|
const size_t kMaxSize = 256 * 1024; |
|
for (size_t size = 32; size <= kMaxSize; size *=2) { |
|
const size_t length = size - kFlatOverhead - 1; |
|
CordRepFlat* flat = CordRepFlat::New(CordRepFlat::Large(), length); |
|
EXPECT_GE(flat->Capacity(), length); |
|
memset(flat->Data(), 0xCD, flat->Capacity()); |
|
CordRep::Unref(flat); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, AllFlatSizes) { |
|
using absl::strings_internal::CordTestAccess; |
|
|
|
for (size_t s = 0; s < CordTestAccess::MaxFlatLength(); s++) { |
|
// Make a string of length s. |
|
std::string src; |
|
while (src.size() < s) { |
|
src.push_back('a' + (src.size() % 26)); |
|
} |
|
|
|
absl::Cord dst(src); |
|
MaybeHarden(dst); |
|
EXPECT_EQ(std::string(dst), src) << s; |
|
} |
|
} |
|
|
|
// We create a Cord at least 128GB in size using the fact that Cords can |
|
// internally reference-count; thus the Cord is enormous without actually |
|
// consuming very much memory. |
|
TEST_P(CordTest, GigabyteCordFromExternal) { |
|
const size_t one_gig = 1024U * 1024U * 1024U; |
|
size_t max_size = 2 * one_gig; |
|
if (sizeof(max_size) > 4) max_size = 128 * one_gig; |
|
|
|
size_t length = 128 * 1024; |
|
char* data = new char[length]; |
|
absl::Cord from = absl::MakeCordFromExternal( |
|
absl::string_view(data, length), |
|
[](absl::string_view sv) { delete[] sv.data(); }); |
|
|
|
// This loop may seem odd due to its combination of exponential doubling of |
|
// size and incremental size increases. We do it incrementally to be sure the |
|
// Cord will need rebalancing and will exercise code that, in the past, has |
|
// caused crashes in production. We grow exponentially so that the code will |
|
// execute in a reasonable amount of time. |
|
absl::Cord c; |
|
c.Append(from); |
|
while (c.size() < max_size) { |
|
c.Append(c); |
|
c.Append(from); |
|
c.Append(from); |
|
c.Append(from); |
|
c.Append(from); |
|
MaybeHarden(c); |
|
} |
|
|
|
for (int i = 0; i < 1024; ++i) { |
|
c.Append(from); |
|
} |
|
ABSL_RAW_LOG(INFO, "Made a Cord with %zu bytes!", c.size()); |
|
// Note: on a 32-bit build, this comes out to 2,818,048,000 bytes. |
|
// Note: on a 64-bit build, this comes out to 171,932,385,280 bytes. |
|
} |
|
|
|
static absl::Cord MakeExternalCord(int size) { |
|
char* buffer = new char[size]; |
|
memset(buffer, 'x', size); |
|
absl::Cord cord; |
|
cord.Append(absl::MakeCordFromExternal( |
|
absl::string_view(buffer, size), |
|
[](absl::string_view s) { delete[] s.data(); })); |
|
return cord; |
|
} |
|
|
|
// Extern to fool clang that this is not constant. Needed to suppress |
|
// a warning of unsafe code we want to test. |
|
extern bool my_unique_true_boolean; |
|
bool my_unique_true_boolean = true; |
|
|
|
TEST_P(CordTest, Assignment) { |
|
absl::Cord x(absl::string_view("hi there")); |
|
absl::Cord y(x); |
|
MaybeHarden(y); |
|
ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt); |
|
ASSERT_EQ(std::string(x), "hi there"); |
|
ASSERT_EQ(std::string(y), "hi there"); |
|
ASSERT_TRUE(x == y); |
|
ASSERT_TRUE(x <= y); |
|
ASSERT_TRUE(y <= x); |
|
|
|
x = absl::string_view("foo"); |
|
ASSERT_EQ(std::string(x), "foo"); |
|
ASSERT_EQ(std::string(y), "hi there"); |
|
ASSERT_TRUE(x < y); |
|
ASSERT_TRUE(y > x); |
|
ASSERT_TRUE(x != y); |
|
ASSERT_TRUE(x <= y); |
|
ASSERT_TRUE(y >= x); |
|
|
|
x = "foo"; |
|
ASSERT_EQ(x, "foo"); |
|
|
|
// Test that going from inline rep to tree we don't leak memory. |
|
std::vector<std::pair<absl::string_view, absl::string_view>> |
|
test_string_pairs = {{"hi there", "foo"}, |
|
{"loooooong coooooord", "short cord"}, |
|
{"short cord", "loooooong coooooord"}, |
|
{"loooooong coooooord1", "loooooong coooooord2"}}; |
|
for (std::pair<absl::string_view, absl::string_view> test_strings : |
|
test_string_pairs) { |
|
absl::Cord tmp(test_strings.first); |
|
absl::Cord z(std::move(tmp)); |
|
ASSERT_EQ(std::string(z), test_strings.first); |
|
tmp = test_strings.second; |
|
z = std::move(tmp); |
|
ASSERT_EQ(std::string(z), test_strings.second); |
|
} |
|
{ |
|
// Test that self-move assignment doesn't crash/leak. |
|
// Do not write such code! |
|
absl::Cord my_small_cord("foo"); |
|
absl::Cord my_big_cord("loooooong coooooord"); |
|
// Bypass clang's warning on self move-assignment. |
|
absl::Cord* my_small_alias = |
|
my_unique_true_boolean ? &my_small_cord : &my_big_cord; |
|
absl::Cord* my_big_alias = |
|
!my_unique_true_boolean ? &my_small_cord : &my_big_cord; |
|
|
|
*my_small_alias = std::move(my_small_cord); |
|
*my_big_alias = std::move(my_big_cord); |
|
// my_small_cord and my_big_cord are in an unspecified but valid |
|
// state, and will be correctly destroyed here. |
|
} |
|
} |
|
|
|
TEST_P(CordTest, StartsEndsWith) { |
|
absl::Cord x(absl::string_view("abcde")); |
|
MaybeHarden(x); |
|
absl::Cord empty(""); |
|
|
|
ASSERT_TRUE(x.StartsWith(absl::Cord("abcde"))); |
|
ASSERT_TRUE(x.StartsWith(absl::Cord("abc"))); |
|
ASSERT_TRUE(x.StartsWith(absl::Cord(""))); |
|
ASSERT_TRUE(empty.StartsWith(absl::Cord(""))); |
|
ASSERT_TRUE(x.EndsWith(absl::Cord("abcde"))); |
|
ASSERT_TRUE(x.EndsWith(absl::Cord("cde"))); |
|
ASSERT_TRUE(x.EndsWith(absl::Cord(""))); |
|
ASSERT_TRUE(empty.EndsWith(absl::Cord(""))); |
|
|
|
ASSERT_TRUE(!x.StartsWith(absl::Cord("xyz"))); |
|
ASSERT_TRUE(!empty.StartsWith(absl::Cord("xyz"))); |
|
ASSERT_TRUE(!x.EndsWith(absl::Cord("xyz"))); |
|
ASSERT_TRUE(!empty.EndsWith(absl::Cord("xyz"))); |
|
|
|
ASSERT_TRUE(x.StartsWith("abcde")); |
|
ASSERT_TRUE(x.StartsWith("abc")); |
|
ASSERT_TRUE(x.StartsWith("")); |
|
ASSERT_TRUE(empty.StartsWith("")); |
|
ASSERT_TRUE(x.EndsWith("abcde")); |
|
ASSERT_TRUE(x.EndsWith("cde")); |
|
ASSERT_TRUE(x.EndsWith("")); |
|
ASSERT_TRUE(empty.EndsWith("")); |
|
|
|
ASSERT_TRUE(!x.StartsWith("xyz")); |
|
ASSERT_TRUE(!empty.StartsWith("xyz")); |
|
ASSERT_TRUE(!x.EndsWith("xyz")); |
|
ASSERT_TRUE(!empty.EndsWith("xyz")); |
|
} |
|
|
|
TEST_P(CordTest, Subcord) { |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
const std::string s = RandomLowercaseString(&rng, 1024); |
|
|
|
absl::Cord a; |
|
AppendWithFragments(s, &rng, &a); |
|
MaybeHarden(a); |
|
ASSERT_EQ(s, std::string(a)); |
|
|
|
// Check subcords of a, from a variety of interesting points. |
|
std::set<size_t> positions; |
|
for (int i = 0; i <= 32; ++i) { |
|
positions.insert(i); |
|
positions.insert(i * 32 - 1); |
|
positions.insert(i * 32); |
|
positions.insert(i * 32 + 1); |
|
positions.insert(a.size() - i); |
|
} |
|
positions.insert(237); |
|
positions.insert(732); |
|
for (size_t pos : positions) { |
|
if (pos > a.size()) continue; |
|
for (size_t end_pos : positions) { |
|
if (end_pos < pos || end_pos > a.size()) continue; |
|
absl::Cord sa = a.Subcord(pos, end_pos - pos); |
|
ASSERT_EQ(absl::string_view(s).substr(pos, end_pos - pos), |
|
std::string(sa)) |
|
<< a; |
|
if (pos != 0 || end_pos != a.size()) { |
|
ASSERT_EQ(sa.ExpectedChecksum(), absl::nullopt); |
|
} |
|
} |
|
} |
|
|
|
// Do the same thing for an inline cord. |
|
const std::string sh = "short"; |
|
absl::Cord c(sh); |
|
for (size_t pos = 0; pos <= sh.size(); ++pos) { |
|
for (size_t n = 0; n <= sh.size() - pos; ++n) { |
|
absl::Cord sc = c.Subcord(pos, n); |
|
ASSERT_EQ(sh.substr(pos, n), std::string(sc)) << c; |
|
} |
|
} |
|
|
|
// Check subcords of subcords. |
|
absl::Cord sa = a.Subcord(0, a.size()); |
|
std::string ss = s.substr(0, s.size()); |
|
while (sa.size() > 1) { |
|
sa = sa.Subcord(1, sa.size() - 2); |
|
ss = ss.substr(1, ss.size() - 2); |
|
ASSERT_EQ(ss, std::string(sa)) << a; |
|
if (HasFailure()) break; // halt cascade |
|
} |
|
|
|
// It is OK to ask for too much. |
|
sa = a.Subcord(0, a.size() + 1); |
|
EXPECT_EQ(s, std::string(sa)); |
|
|
|
// It is OK to ask for something beyond the end. |
|
sa = a.Subcord(a.size() + 1, 0); |
|
EXPECT_TRUE(sa.empty()); |
|
sa = a.Subcord(a.size() + 1, 1); |
|
EXPECT_TRUE(sa.empty()); |
|
} |
|
|
|
TEST_P(CordTest, Swap) { |
|
absl::string_view a("Dexter"); |
|
absl::string_view b("Mandark"); |
|
absl::Cord x(a); |
|
absl::Cord y(b); |
|
MaybeHarden(x); |
|
swap(x, y); |
|
if (UseCrc()) { |
|
ASSERT_EQ(x.ExpectedChecksum(), absl::nullopt); |
|
ASSERT_EQ(y.ExpectedChecksum(), 1); |
|
} |
|
ASSERT_EQ(x, absl::Cord(b)); |
|
ASSERT_EQ(y, absl::Cord(a)); |
|
x.swap(y); |
|
if (UseCrc()) { |
|
ASSERT_EQ(x.ExpectedChecksum(), 1); |
|
ASSERT_EQ(y.ExpectedChecksum(), absl::nullopt); |
|
} |
|
ASSERT_EQ(x, absl::Cord(a)); |
|
ASSERT_EQ(y, absl::Cord(b)); |
|
} |
|
|
|
static void VerifyCopyToString(const absl::Cord& cord) { |
|
std::string initially_empty; |
|
absl::CopyCordToString(cord, &initially_empty); |
|
EXPECT_EQ(initially_empty, cord); |
|
|
|
constexpr size_t kInitialLength = 1024; |
|
std::string has_initial_contents(kInitialLength, 'x'); |
|
const char* address_before_copy = has_initial_contents.data(); |
|
absl::CopyCordToString(cord, &has_initial_contents); |
|
EXPECT_EQ(has_initial_contents, cord); |
|
|
|
if (cord.size() <= kInitialLength) { |
|
EXPECT_EQ(has_initial_contents.data(), address_before_copy) |
|
<< "CopyCordToString allocated new string storage; " |
|
"has_initial_contents = \"" |
|
<< has_initial_contents << "\""; |
|
} |
|
} |
|
|
|
TEST_P(CordTest, CopyToString) { |
|
VerifyCopyToString(absl::Cord()); // empty cords cannot carry CRCs |
|
VerifyCopyToString(MaybeHardened(absl::Cord("small cord"))); |
|
VerifyCopyToString(MaybeHardened( |
|
absl::MakeFragmentedCord({"fragmented ", "cord ", "to ", "test ", |
|
"copying ", "to ", "a ", "string."}))); |
|
} |
|
|
|
TEST_P(CordTest, AppendEmptyBuffer) { |
|
absl::Cord cord; |
|
cord.Append(absl::CordBuffer()); |
|
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000)); |
|
} |
|
|
|
TEST_P(CordTest, AppendEmptyBufferToFlat) { |
|
absl::Cord cord(std::string(2000, 'x')); |
|
cord.Append(absl::CordBuffer()); |
|
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000)); |
|
} |
|
|
|
TEST_P(CordTest, AppendEmptyBufferToTree) { |
|
absl::Cord cord(std::string(2000, 'x')); |
|
cord.Append(std::string(2000, 'y')); |
|
cord.Append(absl::CordBuffer()); |
|
cord.Append(absl::CordBuffer::CreateWithDefaultLimit(2000)); |
|
} |
|
|
|
TEST_P(CordTest, AppendSmallBuffer) { |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3); |
|
ASSERT_THAT(buffer.capacity(), ::testing::Le(15)); |
|
memcpy(buffer.data(), "Abc", 3); |
|
buffer.SetLength(3); |
|
cord.Append(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(3); |
|
memcpy(buffer.data(), "defgh", 5); |
|
buffer.SetLength(5); |
|
cord.Append(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
EXPECT_THAT(cord.Chunks(), ::testing::ElementsAre("Abcdefgh")); |
|
} |
|
|
|
TEST_P(CordTest, AppendAndPrependBufferArePrecise) { |
|
// Create a cord large enough to force 40KB flats. |
|
std::string test_data(absl::cord_internal::kMaxFlatLength * 10, 'x'); |
|
absl::Cord cord1(test_data); |
|
absl::Cord cord2(test_data); |
|
const size_t size1 = cord1.EstimatedMemoryUsage(); |
|
const size_t size2 = cord2.EstimatedMemoryUsage(); |
|
|
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3); |
|
memcpy(buffer.data(), "Abc", 3); |
|
buffer.SetLength(3); |
|
cord1.Append(std::move(buffer)); |
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(3); |
|
memcpy(buffer.data(), "Abc", 3); |
|
buffer.SetLength(3); |
|
cord2.Prepend(std::move(buffer)); |
|
|
|
#ifndef NDEBUG |
|
// Allow 32 bytes new CordRepFlat, and 128 bytes for 'glue nodes' |
|
constexpr size_t kMaxDelta = 128 + 32; |
|
#else |
|
// Allow 256 bytes extra for 'allocation debug overhead' |
|
constexpr size_t kMaxDelta = 128 + 32 + 256; |
|
#endif |
|
|
|
EXPECT_LE(cord1.EstimatedMemoryUsage() - size1, kMaxDelta); |
|
EXPECT_LE(cord2.EstimatedMemoryUsage() - size2, kMaxDelta); |
|
|
|
EXPECT_EQ(cord1, absl::StrCat(test_data, "Abc")); |
|
EXPECT_EQ(cord2, absl::StrCat("Abc", test_data)); |
|
} |
|
|
|
TEST_P(CordTest, PrependSmallBuffer) { |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(3); |
|
ASSERT_THAT(buffer.capacity(), ::testing::Le(15)); |
|
memcpy(buffer.data(), "Abc", 3); |
|
buffer.SetLength(3); |
|
cord.Prepend(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(3); |
|
memcpy(buffer.data(), "defgh", 5); |
|
buffer.SetLength(5); |
|
cord.Prepend(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
EXPECT_THAT(cord.Chunks(), ::testing::ElementsAre("defghAbc")); |
|
} |
|
|
|
TEST_P(CordTest, AppendLargeBuffer) { |
|
absl::Cord cord; |
|
|
|
std::string s1(700, '1'); |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size()); |
|
memcpy(buffer.data(), s1.data(), s1.size()); |
|
buffer.SetLength(s1.size()); |
|
cord.Append(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
std::string s2(1000, '2'); |
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size()); |
|
memcpy(buffer.data(), s2.data(), s2.size()); |
|
buffer.SetLength(s2.size()); |
|
cord.Append(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
EXPECT_THAT(cord.Chunks(), ::testing::ElementsAre(s1, s2)); |
|
} |
|
|
|
TEST_P(CordTest, PrependLargeBuffer) { |
|
absl::Cord cord; |
|
|
|
std::string s1(700, '1'); |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(s1.size()); |
|
memcpy(buffer.data(), s1.data(), s1.size()); |
|
buffer.SetLength(s1.size()); |
|
cord.Prepend(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
std::string s2(1000, '2'); |
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(s2.size()); |
|
memcpy(buffer.data(), s2.data(), s2.size()); |
|
buffer.SetLength(s2.size()); |
|
cord.Prepend(std::move(buffer)); |
|
EXPECT_EQ(buffer.length(), 0); // NOLINT |
|
EXPECT_GT(buffer.capacity(), 0); // NOLINT |
|
|
|
EXPECT_THAT(cord.Chunks(), ::testing::ElementsAre(s2, s1)); |
|
} |
|
|
|
class CordAppendBufferTest : public testing::TestWithParam<bool> { |
|
public: |
|
size_t is_default() const { return GetParam(); } |
|
|
|
// Returns human readable string representation of the test parameter. |
|
static std::string ToString(testing::TestParamInfo<bool> param) { |
|
return param.param ? "DefaultLimit" : "CustomLimit"; |
|
} |
|
|
|
size_t limit() const { |
|
return is_default() ? absl::CordBuffer::kDefaultLimit |
|
: absl::CordBuffer::kCustomLimit; |
|
} |
|
|
|
size_t maximum_payload() const { |
|
return is_default() ? absl::CordBuffer::MaximumPayload() |
|
: absl::CordBuffer::MaximumPayload(limit()); |
|
} |
|
|
|
absl::CordBuffer GetAppendBuffer(absl::Cord& cord, size_t capacity, |
|
size_t min_capacity = 16) { |
|
return is_default() |
|
? cord.GetAppendBuffer(capacity, min_capacity) |
|
: cord.GetCustomAppendBuffer(limit(), capacity, min_capacity); |
|
} |
|
}; |
|
|
|
INSTANTIATE_TEST_SUITE_P(WithParam, CordAppendBufferTest, testing::Bool(), |
|
CordAppendBufferTest::ToString); |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnEmptyCord) { |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = GetAppendBuffer(cord, 1000); |
|
EXPECT_GE(buffer.capacity(), 1000); |
|
EXPECT_EQ(buffer.length(), 0); |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCord) { |
|
static constexpr int kInlinedSize = sizeof(absl::CordBuffer) - 1; |
|
for (int size : {6, kInlinedSize - 3, kInlinedSize - 2, 1000}) { |
|
absl::Cord cord("Abc"); |
|
absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1); |
|
EXPECT_GE(buffer.capacity(), 3 + size); |
|
EXPECT_EQ(buffer.length(), 3); |
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc"); |
|
EXPECT_TRUE(cord.empty()); |
|
} |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnInlinedCordCapacityCloseToMax) { |
|
// Cover the use case where we have a non empty inlined cord with some size |
|
// 'n', and ask for something like 'uint64_max - k', assuming internal logic |
|
// could overflow on 'uint64_max - k + size', and return a valid, but |
|
// inefficiently smaller buffer if it would provide is the max allowed size. |
|
for (size_t dist_from_max = 0; dist_from_max <= 4; ++dist_from_max) { |
|
absl::Cord cord("Abc"); |
|
size_t size = std::numeric_limits<size_t>::max() - dist_from_max; |
|
absl::CordBuffer buffer = GetAppendBuffer(cord, size, 1); |
|
EXPECT_GE(buffer.capacity(), maximum_payload()); |
|
EXPECT_EQ(buffer.length(), 3); |
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc"); |
|
EXPECT_TRUE(cord.empty()); |
|
} |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnFlat) { |
|
// Create a cord with a single flat and extra capacity |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
const size_t expected_capacity = buffer.capacity(); |
|
buffer.SetLength(3); |
|
memcpy(buffer.data(), "Abc", 3); |
|
cord.Append(std::move(buffer)); |
|
|
|
buffer = GetAppendBuffer(cord, 6); |
|
EXPECT_EQ(buffer.capacity(), expected_capacity); |
|
EXPECT_EQ(buffer.length(), 3); |
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), "Abc"); |
|
EXPECT_TRUE(cord.empty()); |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnFlatWithoutMinCapacity) { |
|
// Create a cord with a single flat and extra capacity |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
buffer.SetLength(30); |
|
memset(buffer.data(), 'x', 30); |
|
cord.Append(std::move(buffer)); |
|
|
|
buffer = GetAppendBuffer(cord, 1000, 900); |
|
EXPECT_GE(buffer.capacity(), 1000); |
|
EXPECT_EQ(buffer.length(), 0); |
|
EXPECT_EQ(cord, std::string(30, 'x')); |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnTree) { |
|
RandomEngine rng; |
|
for (int num_flats : {2, 3, 100}) { |
|
// Create a cord with `num_flats` flats and extra capacity |
|
absl::Cord cord; |
|
std::string prefix; |
|
std::string last; |
|
for (int i = 0; i < num_flats - 1; ++i) { |
|
prefix += last; |
|
last = RandomLowercaseString(&rng, 10); |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
buffer.SetLength(10); |
|
memcpy(buffer.data(), last.data(), 10); |
|
cord.Append(std::move(buffer)); |
|
} |
|
absl::CordBuffer buffer = GetAppendBuffer(cord, 6); |
|
EXPECT_GE(buffer.capacity(), 500); |
|
EXPECT_EQ(buffer.length(), 10); |
|
EXPECT_EQ(absl::string_view(buffer.data(), buffer.length()), last); |
|
EXPECT_EQ(cord, prefix); |
|
} |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnTreeWithoutMinCapacity) { |
|
absl::Cord cord; |
|
for (int i = 0; i < 2; ++i) { |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
buffer.SetLength(3); |
|
memcpy(buffer.data(), i ? "def" : "Abc", 3); |
|
cord.Append(std::move(buffer)); |
|
} |
|
absl::CordBuffer buffer = GetAppendBuffer(cord, 1000, 900); |
|
EXPECT_GE(buffer.capacity(), 1000); |
|
EXPECT_EQ(buffer.length(), 0); |
|
EXPECT_EQ(cord, "Abcdef"); |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnSubstring) { |
|
// Create a large cord with a single flat and some extra capacity |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
buffer.SetLength(450); |
|
memset(buffer.data(), 'x', 450); |
|
cord.Append(std::move(buffer)); |
|
cord.RemovePrefix(1); |
|
|
|
// Deny on substring |
|
buffer = GetAppendBuffer(cord, 6); |
|
EXPECT_EQ(buffer.length(), 0); |
|
EXPECT_EQ(cord, std::string(449, 'x')); |
|
} |
|
|
|
TEST_P(CordAppendBufferTest, GetAppendBufferOnSharedCord) { |
|
// Create a shared cord with a single flat and extra capacity |
|
absl::Cord cord; |
|
absl::CordBuffer buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
buffer.SetLength(3); |
|
memcpy(buffer.data(), "Abc", 3); |
|
cord.Append(std::move(buffer)); |
|
absl::Cord shared_cord = cord; |
|
|
|
// Deny on flat |
|
buffer = GetAppendBuffer(cord, 6); |
|
EXPECT_EQ(buffer.length(), 0); |
|
EXPECT_EQ(cord, "Abc"); |
|
|
|
buffer = absl::CordBuffer::CreateWithDefaultLimit(500); |
|
buffer.SetLength(3); |
|
memcpy(buffer.data(), "def", 3); |
|
cord.Append(std::move(buffer)); |
|
shared_cord = cord; |
|
|
|
// Deny on tree |
|
buffer = GetAppendBuffer(cord, 6); |
|
EXPECT_EQ(buffer.length(), 0); |
|
EXPECT_EQ(cord, "Abcdef"); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatEmpty) { |
|
absl::Cord c; |
|
EXPECT_EQ(c.TryFlat(), ""); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatFlat) { |
|
absl::Cord c("hello"); |
|
MaybeHarden(c); |
|
EXPECT_EQ(c.TryFlat(), "hello"); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatSubstrInlined) { |
|
absl::Cord c("hello"); |
|
c.RemovePrefix(1); |
|
MaybeHarden(c); |
|
EXPECT_EQ(c.TryFlat(), "ello"); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatSubstrFlat) { |
|
absl::Cord c("longer than 15 bytes"); |
|
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1); |
|
MaybeHarden(sub); |
|
EXPECT_EQ(sub.TryFlat(), "onger than 15 bytes"); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatConcat) { |
|
absl::Cord c = absl::MakeFragmentedCord({"hel", "lo"}); |
|
MaybeHarden(c); |
|
EXPECT_EQ(c.TryFlat(), absl::nullopt); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatExternal) { |
|
absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {}); |
|
MaybeHarden(c); |
|
EXPECT_EQ(c.TryFlat(), "hell"); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatSubstrExternal) { |
|
absl::Cord c = absl::MakeCordFromExternal("hell", [](absl::string_view) {}); |
|
absl::Cord sub = absl::CordTestPeer::MakeSubstring(c, 1, c.size() - 1); |
|
MaybeHarden(sub); |
|
EXPECT_EQ(sub.TryFlat(), "ell"); |
|
} |
|
|
|
TEST_P(CordTest, TryFlatCommonlyAssumedInvariants) { |
|
// The behavior tested below is not part of the API contract of Cord, but it's |
|
// something we intend to be true in our current implementation. This test |
|
// exists to detect and prevent accidental breakage of the implementation. |
|
absl::string_view fragments[] = {"A fragmented test", |
|
" cord", |
|
" to test subcords", |
|
" of ", |
|
"a", |
|
" cord for", |
|
" each chunk " |
|
"returned by the ", |
|
"iterator"}; |
|
absl::Cord c = absl::MakeFragmentedCord(fragments); |
|
MaybeHarden(c); |
|
int fragment = 0; |
|
int offset = 0; |
|
absl::Cord::CharIterator itc = c.char_begin(); |
|
for (absl::string_view sv : c.Chunks()) { |
|
absl::string_view expected = fragments[fragment]; |
|
absl::Cord subcord1 = c.Subcord(offset, sv.length()); |
|
absl::Cord subcord2 = absl::Cord::AdvanceAndRead(&itc, sv.size()); |
|
EXPECT_EQ(subcord1.TryFlat(), expected); |
|
EXPECT_EQ(subcord2.TryFlat(), expected); |
|
++fragment; |
|
offset += sv.length(); |
|
} |
|
} |
|
|
|
static bool IsFlat(const absl::Cord& c) { |
|
return c.chunk_begin() == c.chunk_end() || ++c.chunk_begin() == c.chunk_end(); |
|
} |
|
|
|
static void VerifyFlatten(absl::Cord c) { |
|
std::string old_contents(c); |
|
absl::string_view old_flat; |
|
bool already_flat_and_non_empty = IsFlat(c) && !c.empty(); |
|
if (already_flat_and_non_empty) { |
|
old_flat = *c.chunk_begin(); |
|
} |
|
absl::string_view new_flat = c.Flatten(); |
|
|
|
// Verify that the contents of the flattened Cord are correct. |
|
EXPECT_EQ(new_flat, old_contents); |
|
EXPECT_EQ(std::string(c), old_contents); |
|
|
|
// If the Cord contained data and was already flat, verify that the data |
|
// wasn't copied. |
|
if (already_flat_and_non_empty) { |
|
EXPECT_EQ(old_flat.data(), new_flat.data()) |
|
<< "Allocated new memory even though the Cord was already flat."; |
|
} |
|
|
|
// Verify that the flattened Cord is in fact flat. |
|
EXPECT_TRUE(IsFlat(c)); |
|
} |
|
|
|
TEST_P(CordTest, Flatten) { |
|
VerifyFlatten(absl::Cord()); |
|
VerifyFlatten(MaybeHardened(absl::Cord("small cord"))); |
|
VerifyFlatten( |
|
MaybeHardened(absl::Cord("larger than small buffer optimization"))); |
|
VerifyFlatten(MaybeHardened( |
|
absl::MakeFragmentedCord({"small ", "fragmented ", "cord"}))); |
|
|
|
// Test with a cord that is longer than the largest flat buffer |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
VerifyFlatten(MaybeHardened(absl::Cord(RandomLowercaseString(&rng, 8192)))); |
|
} |
|
|
|
// Test data |
|
namespace { |
|
class TestData { |
|
private: |
|
std::vector<std::string> data_; |
|
|
|
// Return a std::string of the specified length. |
|
static std::string MakeString(int length) { |
|
std::string result; |
|
char buf[30]; |
|
snprintf(buf, sizeof(buf), "(%d)", length); |
|
while (result.size() < length) { |
|
result += buf; |
|
} |
|
result.resize(length); |
|
return result; |
|
} |
|
|
|
public: |
|
TestData() { |
|
// short strings increasing in length by one |
|
for (int i = 0; i < 30; i++) { |
|
data_.push_back(MakeString(i)); |
|
} |
|
|
|
// strings around half kMaxFlatLength |
|
static const int kMaxFlatLength = 4096 - 9; |
|
static const int kHalf = kMaxFlatLength / 2; |
|
|
|
for (int i = -10; i <= +10; i++) { |
|
data_.push_back(MakeString(kHalf + i)); |
|
} |
|
|
|
for (int i = -10; i <= +10; i++) { |
|
data_.push_back(MakeString(kMaxFlatLength + i)); |
|
} |
|
} |
|
|
|
size_t size() const { return data_.size(); } |
|
const std::string& data(size_t i) const { return data_[i]; } |
|
}; |
|
} // namespace |
|
|
|
TEST_P(CordTest, MultipleLengths) { |
|
TestData d; |
|
for (size_t i = 0; i < d.size(); i++) { |
|
std::string a = d.data(i); |
|
|
|
{ // Construct from Cord |
|
absl::Cord tmp(a); |
|
absl::Cord x(tmp); |
|
MaybeHarden(x); |
|
EXPECT_EQ(a, std::string(x)) << "'" << a << "'"; |
|
} |
|
|
|
{ // Construct from absl::string_view |
|
absl::Cord x(a); |
|
MaybeHarden(x); |
|
EXPECT_EQ(a, std::string(x)) << "'" << a << "'"; |
|
} |
|
|
|
{ // Append cord to self |
|
absl::Cord self(a); |
|
MaybeHarden(self); |
|
self.Append(self); |
|
EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'"; |
|
} |
|
|
|
{ // Prepend cord to self |
|
absl::Cord self(a); |
|
MaybeHarden(self); |
|
self.Prepend(self); |
|
EXPECT_EQ(a + a, std::string(self)) << "'" << a << "' + '" << a << "'"; |
|
} |
|
|
|
// Try to append/prepend others |
|
for (size_t j = 0; j < d.size(); j++) { |
|
std::string b = d.data(j); |
|
|
|
{ // CopyFrom Cord |
|
absl::Cord x(a); |
|
absl::Cord y(b); |
|
MaybeHarden(x); |
|
x = y; |
|
EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'"; |
|
} |
|
|
|
{ // CopyFrom absl::string_view |
|
absl::Cord x(a); |
|
MaybeHarden(x); |
|
x = b; |
|
EXPECT_EQ(b, std::string(x)) << "'" << a << "' + '" << b << "'"; |
|
} |
|
|
|
{ // Cord::Append(Cord) |
|
absl::Cord x(a); |
|
absl::Cord y(b); |
|
MaybeHarden(x); |
|
x.Append(y); |
|
EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'"; |
|
} |
|
|
|
{ // Cord::Append(absl::string_view) |
|
absl::Cord x(a); |
|
MaybeHarden(x); |
|
x.Append(b); |
|
EXPECT_EQ(a + b, std::string(x)) << "'" << a << "' + '" << b << "'"; |
|
} |
|
|
|
{ // Cord::Prepend(Cord) |
|
absl::Cord x(a); |
|
absl::Cord y(b); |
|
MaybeHarden(x); |
|
x.Prepend(y); |
|
EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'"; |
|
} |
|
|
|
{ // Cord::Prepend(absl::string_view) |
|
absl::Cord x(a); |
|
MaybeHarden(x); |
|
x.Prepend(b); |
|
EXPECT_EQ(b + a, std::string(x)) << "'" << b << "' + '" << a << "'"; |
|
} |
|
} |
|
} |
|
} |
|
|
|
namespace { |
|
|
|
TEST_P(CordTest, RemoveSuffixWithExternalOrSubstring) { |
|
absl::Cord cord = absl::MakeCordFromExternal( |
|
"foo bar baz", [](absl::string_view s) { DoNothing(s, nullptr); }); |
|
EXPECT_EQ("foo bar baz", std::string(cord)); |
|
|
|
MaybeHarden(cord); |
|
|
|
// This RemoveSuffix() will wrap the EXTERNAL node in a SUBSTRING node. |
|
cord.RemoveSuffix(4); |
|
EXPECT_EQ("foo bar", std::string(cord)); |
|
|
|
MaybeHarden(cord); |
|
|
|
// This RemoveSuffix() will adjust the SUBSTRING node in-place. |
|
cord.RemoveSuffix(4); |
|
EXPECT_EQ("foo", std::string(cord)); |
|
} |
|
|
|
TEST_P(CordTest, RemoveSuffixMakesZeroLengthNode) { |
|
absl::Cord c; |
|
c.Append(absl::Cord(std::string(100, 'x'))); |
|
absl::Cord other_ref = c; // Prevent inplace appends |
|
MaybeHarden(c); |
|
c.Append(absl::Cord(std::string(200, 'y'))); |
|
c.RemoveSuffix(200); |
|
EXPECT_EQ(std::string(100, 'x'), std::string(c)); |
|
} |
|
|
|
} // namespace |
|
|
|
// CordSpliceTest contributed by hendrie. |
|
namespace { |
|
|
|
// Create a cord with an external memory block filled with 'z' |
|
absl::Cord CordWithZedBlock(size_t size) { |
|
char* data = new char[size]; |
|
if (size > 0) { |
|
memset(data, 'z', size); |
|
} |
|
absl::Cord cord = absl::MakeCordFromExternal( |
|
absl::string_view(data, size), |
|
[](absl::string_view s) { delete[] s.data(); }); |
|
return cord; |
|
} |
|
|
|
// Establish that ZedBlock does what we think it does. |
|
TEST_P(CordTest, CordSpliceTestZedBlock) { |
|
absl::Cord blob = CordWithZedBlock(10); |
|
MaybeHarden(blob); |
|
EXPECT_EQ(10, blob.size()); |
|
std::string s; |
|
absl::CopyCordToString(blob, &s); |
|
EXPECT_EQ("zzzzzzzzzz", s); |
|
} |
|
|
|
TEST_P(CordTest, CordSpliceTestZedBlock0) { |
|
absl::Cord blob = CordWithZedBlock(0); |
|
MaybeHarden(blob); |
|
EXPECT_EQ(0, blob.size()); |
|
std::string s; |
|
absl::CopyCordToString(blob, &s); |
|
EXPECT_EQ("", s); |
|
} |
|
|
|
TEST_P(CordTest, CordSpliceTestZedBlockSuffix1) { |
|
absl::Cord blob = CordWithZedBlock(10); |
|
MaybeHarden(blob); |
|
EXPECT_EQ(10, blob.size()); |
|
absl::Cord suffix(blob); |
|
suffix.RemovePrefix(9); |
|
EXPECT_EQ(1, suffix.size()); |
|
std::string s; |
|
absl::CopyCordToString(suffix, &s); |
|
EXPECT_EQ("z", s); |
|
} |
|
|
|
// Remove all of a prefix block |
|
TEST_P(CordTest, CordSpliceTestZedBlockSuffix0) { |
|
absl::Cord blob = CordWithZedBlock(10); |
|
MaybeHarden(blob); |
|
EXPECT_EQ(10, blob.size()); |
|
absl::Cord suffix(blob); |
|
suffix.RemovePrefix(10); |
|
EXPECT_EQ(0, suffix.size()); |
|
std::string s; |
|
absl::CopyCordToString(suffix, &s); |
|
EXPECT_EQ("", s); |
|
} |
|
|
|
absl::Cord BigCord(size_t len, char v) { |
|
std::string s(len, v); |
|
return absl::Cord(s); |
|
} |
|
|
|
// Splice block into cord. |
|
absl::Cord SpliceCord(const absl::Cord& blob, int64_t offset, |
|
const absl::Cord& block) { |
|
ABSL_RAW_CHECK(offset >= 0, ""); |
|
ABSL_RAW_CHECK(offset + block.size() <= blob.size(), ""); |
|
absl::Cord result(blob); |
|
result.RemoveSuffix(blob.size() - offset); |
|
result.Append(block); |
|
absl::Cord suffix(blob); |
|
suffix.RemovePrefix(offset + block.size()); |
|
result.Append(suffix); |
|
ABSL_RAW_CHECK(blob.size() == result.size(), ""); |
|
return result; |
|
} |
|
|
|
// Taking an empty suffix of a block breaks appending. |
|
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock1) { |
|
absl::Cord zero = CordWithZedBlock(10); |
|
MaybeHarden(zero); |
|
absl::Cord suffix(zero); |
|
suffix.RemovePrefix(10); |
|
absl::Cord result; |
|
result.Append(suffix); |
|
} |
|
|
|
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock2) { |
|
absl::Cord zero = CordWithZedBlock(10); |
|
MaybeHarden(zero); |
|
absl::Cord prefix(zero); |
|
prefix.RemoveSuffix(10); |
|
absl::Cord suffix(zero); |
|
suffix.RemovePrefix(10); |
|
absl::Cord result(prefix); |
|
result.Append(suffix); |
|
} |
|
|
|
TEST_P(CordTest, CordSpliceTestRemoveEntireBlock3) { |
|
absl::Cord blob = CordWithZedBlock(10); |
|
absl::Cord block = BigCord(10, 'b'); |
|
MaybeHarden(blob); |
|
MaybeHarden(block); |
|
blob = SpliceCord(blob, 0, block); |
|
} |
|
|
|
struct CordCompareTestCase { |
|
template <typename LHS, typename RHS> |
|
CordCompareTestCase(const LHS& lhs, const RHS& rhs, bool use_crc) |
|
: lhs_cord(lhs), rhs_cord(rhs) { |
|
if (use_crc) { |
|
lhs_cord.SetExpectedChecksum(1); |
|
} |
|
} |
|
|
|
absl::Cord lhs_cord; |
|
absl::Cord rhs_cord; |
|
}; |
|
|
|
const auto sign = [](int x) { return x == 0 ? 0 : (x > 0 ? 1 : -1); }; |
|
|
|
void VerifyComparison(const CordCompareTestCase& test_case) { |
|
std::string lhs_string(test_case.lhs_cord); |
|
std::string rhs_string(test_case.rhs_cord); |
|
int expected = sign(lhs_string.compare(rhs_string)); |
|
EXPECT_EQ(expected, test_case.lhs_cord.Compare(test_case.rhs_cord)) |
|
<< "LHS=" << lhs_string << "; RHS=" << rhs_string; |
|
EXPECT_EQ(expected, test_case.lhs_cord.Compare(rhs_string)) |
|
<< "LHS=" << lhs_string << "; RHS=" << rhs_string; |
|
EXPECT_EQ(-expected, test_case.rhs_cord.Compare(test_case.lhs_cord)) |
|
<< "LHS=" << rhs_string << "; RHS=" << lhs_string; |
|
EXPECT_EQ(-expected, test_case.rhs_cord.Compare(lhs_string)) |
|
<< "LHS=" << rhs_string << "; RHS=" << lhs_string; |
|
} |
|
|
|
TEST_P(CordTest, Compare) { |
|
absl::Cord subcord("aaaaaBBBBBcccccDDDDD"); |
|
subcord = subcord.Subcord(3, 10); |
|
|
|
absl::Cord tmp("aaaaaaaaaaaaaaaa"); |
|
tmp.Append("BBBBBBBBBBBBBBBB"); |
|
absl::Cord concat = absl::Cord("cccccccccccccccc"); |
|
concat.Append("DDDDDDDDDDDDDDDD"); |
|
concat.Prepend(tmp); |
|
|
|
absl::Cord concat2("aaaaaaaaaaaaa"); |
|
concat2.Append("aaaBBBBBBBBBBBBBBBBccccc"); |
|
concat2.Append("cccccccccccDDDDDDDDDDDDDD"); |
|
concat2.Append("DD"); |
|
|
|
const bool use_crc = UseCrc(); |
|
|
|
std::vector<CordCompareTestCase> test_cases = {{ |
|
// Inline cords |
|
{"abcdef", "abcdef", use_crc}, |
|
{"abcdef", "abcdee", use_crc}, |
|
{"abcdef", "abcdeg", use_crc}, |
|
{"bbcdef", "abcdef", use_crc}, |
|
{"bbcdef", "abcdeg", use_crc}, |
|
{"abcdefa", "abcdef", use_crc}, |
|
{"abcdef", "abcdefa", use_crc}, |
|
|
|
// Small flat cords |
|
{"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc}, |
|
{"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBxccccDDDDD", use_crc}, |
|
{"aaaaaBBBBBcxcccDDDDD", "aaaaaBBBBBcccccDDDDD", use_crc}, |
|
{"aaaaaBBBBBxccccDDDDD", "aaaaaBBBBBcccccDDDDX", use_crc}, |
|
{"aaaaaBBBBBcccccDDDDDa", "aaaaaBBBBBcccccDDDDD", use_crc}, |
|
{"aaaaaBBBBBcccccDDDDD", "aaaaaBBBBBcccccDDDDDa", use_crc}, |
|
|
|
// Subcords |
|
{subcord, subcord, use_crc}, |
|
{subcord, "aaBBBBBccc", use_crc}, |
|
{subcord, "aaBBBBBccd", use_crc}, |
|
{subcord, "aaBBBBBccb", use_crc}, |
|
{subcord, "aaBBBBBxcb", use_crc}, |
|
{subcord, "aaBBBBBccca", use_crc}, |
|
{subcord, "aaBBBBBcc", use_crc}, |
|
|
|
// Concats |
|
{concat, concat, use_crc}, |
|
{concat, |
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDD", |
|
use_crc}, |
|
{concat, |
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBcccccccccccccccxDDDDDDDDDDDDDDDD", |
|
use_crc}, |
|
{concat, |
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBacccccccccccccccDDDDDDDDDDDDDDDD", |
|
use_crc}, |
|
{concat, |
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDD", |
|
use_crc}, |
|
{concat, |
|
"aaaaaaaaaaaaaaaaBBBBBBBBBBBBBBBBccccccccccccccccDDDDDDDDDDDDDDDDe", |
|
use_crc}, |
|
|
|
{concat, concat2, use_crc}, |
|
}}; |
|
|
|
for (const auto& tc : test_cases) { |
|
VerifyComparison(tc); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, CompareAfterAssign) { |
|
absl::Cord a("aaaaaa1111111"); |
|
absl::Cord b("aaaaaa2222222"); |
|
MaybeHarden(a); |
|
a = "cccccc"; |
|
b = "cccccc"; |
|
EXPECT_EQ(a, b); |
|
EXPECT_FALSE(a < b); |
|
|
|
a = "aaaa"; |
|
b = "bbbbb"; |
|
a = ""; |
|
b = ""; |
|
EXPECT_EQ(a, b); |
|
EXPECT_FALSE(a < b); |
|
} |
|
|
|
// Test CompareTo() and ComparePrefix() against string and substring |
|
// comparison methods from basic_string. |
|
static void TestCompare(const absl::Cord& c, const absl::Cord& d, |
|
RandomEngine* rng) { |
|
typedef std::basic_string<uint8_t> ustring; |
|
ustring cs(reinterpret_cast<const uint8_t*>(std::string(c).data()), c.size()); |
|
ustring ds(reinterpret_cast<const uint8_t*>(std::string(d).data()), d.size()); |
|
// ustring comparison is ideal because we expect Cord comparisons to be |
|
// based on unsigned byte comparisons regardless of whether char is signed. |
|
int expected = sign(cs.compare(ds)); |
|
EXPECT_EQ(expected, sign(c.Compare(d))) << c << ", " << d; |
|
} |
|
|
|
TEST_P(CordTest, CompareComparisonIsUnsigned) { |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
std::uniform_int_distribution<uint32_t> uniform_uint8(0, 255); |
|
char x = static_cast<char>(uniform_uint8(rng)); |
|
TestCompare( |
|
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x)), |
|
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), x ^ 0x80)), &rng); |
|
} |
|
|
|
TEST_P(CordTest, CompareRandomComparisons) { |
|
const int kIters = 5000; |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
|
|
int n = GetUniformRandomUpTo(&rng, 5000); |
|
absl::Cord a[] = {MakeExternalCord(n), |
|
absl::Cord("ant"), |
|
absl::Cord("elephant"), |
|
absl::Cord("giraffe"), |
|
absl::Cord(std::string(GetUniformRandomUpTo(&rng, 100), |
|
GetUniformRandomUpTo(&rng, 100))), |
|
absl::Cord(""), |
|
absl::Cord("x"), |
|
absl::Cord("A"), |
|
absl::Cord("B"), |
|
absl::Cord("C")}; |
|
for (int i = 0; i < kIters; i++) { |
|
absl::Cord c, d; |
|
for (int j = 0; j < (i % 7) + 1; j++) { |
|
c.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]); |
|
d.Append(a[GetUniformRandomUpTo(&rng, ABSL_ARRAYSIZE(a))]); |
|
} |
|
std::bernoulli_distribution coin_flip(0.5); |
|
MaybeHarden(c); |
|
MaybeHarden(d); |
|
TestCompare(coin_flip(rng) ? c : absl::Cord(std::string(c)), |
|
coin_flip(rng) ? d : absl::Cord(std::string(d)), &rng); |
|
} |
|
} |
|
|
|
template <typename T1, typename T2> |
|
void CompareOperators() { |
|
const T1 a("a"); |
|
const T2 b("b"); |
|
|
|
EXPECT_TRUE(a == a); |
|
// For pointer type (i.e. `const char*`), operator== compares the address |
|
// instead of the string, so `a == const char*("a")` isn't necessarily true. |
|
EXPECT_TRUE(std::is_pointer<T1>::value || a == T1("a")); |
|
EXPECT_TRUE(std::is_pointer<T2>::value || a == T2("a")); |
|
EXPECT_FALSE(a == b); |
|
|
|
EXPECT_TRUE(a != b); |
|
EXPECT_FALSE(a != a); |
|
|
|
EXPECT_TRUE(a < b); |
|
EXPECT_FALSE(b < a); |
|
|
|
EXPECT_TRUE(b > a); |
|
EXPECT_FALSE(a > b); |
|
|
|
EXPECT_TRUE(a >= a); |
|
EXPECT_TRUE(b >= a); |
|
EXPECT_FALSE(a >= b); |
|
|
|
EXPECT_TRUE(a <= a); |
|
EXPECT_TRUE(a <= b); |
|
EXPECT_FALSE(b <= a); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_Cord) { |
|
CompareOperators<absl::Cord, absl::Cord>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_StringPiece) { |
|
CompareOperators<absl::Cord, absl::string_view>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_StringPiece_Cord) { |
|
CompareOperators<absl::string_view, absl::Cord>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_string) { |
|
CompareOperators<absl::Cord, std::string>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_string_Cord) { |
|
CompareOperators<std::string, absl::Cord>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_stdstring_Cord) { |
|
CompareOperators<std::string, absl::Cord>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_stdstring) { |
|
CompareOperators<absl::Cord, std::string>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_charstar_Cord) { |
|
CompareOperators<const char*, absl::Cord>(); |
|
} |
|
|
|
TEST_P(CordTest, ComparisonOperators_Cord_charstar) { |
|
CompareOperators<absl::Cord, const char*>(); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalReleaserInvoked) { |
|
// Empty external memory means the releaser should be called immediately. |
|
{ |
|
bool invoked = false; |
|
auto releaser = [&invoked](absl::string_view) { invoked = true; }; |
|
{ |
|
auto c = absl::MakeCordFromExternal("", releaser); |
|
EXPECT_TRUE(invoked); |
|
} |
|
} |
|
|
|
// If the size of the data is small enough, a future constructor |
|
// implementation may copy the bytes and immediately invoke the releaser |
|
// instead of creating an external node. We make a large dummy std::string to |
|
// make this test independent of such an optimization. |
|
std::string large_dummy(2048, 'c'); |
|
{ |
|
bool invoked = false; |
|
auto releaser = [&invoked](absl::string_view) { invoked = true; }; |
|
{ |
|
auto c = absl::MakeCordFromExternal(large_dummy, releaser); |
|
EXPECT_FALSE(invoked); |
|
} |
|
EXPECT_TRUE(invoked); |
|
} |
|
|
|
{ |
|
bool invoked = false; |
|
auto releaser = [&invoked](absl::string_view) { invoked = true; }; |
|
{ |
|
absl::Cord copy; |
|
{ |
|
auto c = absl::MakeCordFromExternal(large_dummy, releaser); |
|
copy = c; |
|
EXPECT_FALSE(invoked); |
|
} |
|
EXPECT_FALSE(invoked); |
|
} |
|
EXPECT_TRUE(invoked); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalCompareContents) { |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
|
|
for (int length = 1; length <= 2048; length *= 2) { |
|
std::string data = RandomLowercaseString(&rng, length); |
|
auto* external = new std::string(data); |
|
auto cord = |
|
absl::MakeCordFromExternal(*external, [external](absl::string_view sv) { |
|
EXPECT_EQ(external->data(), sv.data()); |
|
EXPECT_EQ(external->size(), sv.size()); |
|
delete external; |
|
}); |
|
MaybeHarden(cord); |
|
EXPECT_EQ(data, cord); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalLargeReleaser) { |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
constexpr size_t kLength = 256; |
|
std::string data = RandomLowercaseString(&rng, kLength); |
|
std::array<char, kLength> data_array; |
|
for (size_t i = 0; i < kLength; ++i) data_array[i] = data[i]; |
|
bool invoked = false; |
|
auto releaser = [data_array, &invoked](absl::string_view data) { |
|
EXPECT_EQ(data, absl::string_view(data_array.data(), data_array.size())); |
|
invoked = true; |
|
}; |
|
(void)MaybeHardened(absl::MakeCordFromExternal(data, releaser)); |
|
EXPECT_TRUE(invoked); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalFunctionPointerReleaser) { |
|
static absl::string_view data("hello world"); |
|
static bool invoked; |
|
auto* releaser = |
|
static_cast<void (*)(absl::string_view)>([](absl::string_view sv) { |
|
EXPECT_EQ(data, sv); |
|
invoked = true; |
|
}); |
|
invoked = false; |
|
(void)MaybeHardened(absl::MakeCordFromExternal(data, releaser)); |
|
EXPECT_TRUE(invoked); |
|
|
|
invoked = false; |
|
(void)MaybeHardened(absl::MakeCordFromExternal(data, *releaser)); |
|
EXPECT_TRUE(invoked); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalMoveOnlyReleaser) { |
|
struct Releaser { |
|
explicit Releaser(bool* invoked) : invoked(invoked) {} |
|
Releaser(Releaser&& other) noexcept : invoked(other.invoked) {} |
|
void operator()(absl::string_view) const { *invoked = true; } |
|
|
|
bool* invoked; |
|
}; |
|
|
|
bool invoked = false; |
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", Releaser(&invoked))); |
|
EXPECT_TRUE(invoked); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalNoArgLambda) { |
|
bool invoked = false; |
|
(void)MaybeHardened( |
|
absl::MakeCordFromExternal("dummy", [&invoked]() { invoked = true; })); |
|
EXPECT_TRUE(invoked); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalStringViewArgLambda) { |
|
bool invoked = false; |
|
(void)MaybeHardened(absl::MakeCordFromExternal( |
|
"dummy", [&invoked](absl::string_view) { invoked = true; })); |
|
EXPECT_TRUE(invoked); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalNonTrivialReleaserDestructor) { |
|
struct Releaser { |
|
explicit Releaser(bool* destroyed) : destroyed(destroyed) {} |
|
~Releaser() { *destroyed = true; } |
|
void operator()(absl::string_view) const {} |
|
|
|
bool* destroyed; |
|
}; |
|
|
|
bool destroyed = false; |
|
Releaser releaser(&destroyed); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser)); |
|
EXPECT_TRUE(destroyed); |
|
} |
|
|
|
TEST_P(CordTest, ConstructFromExternalReferenceQualifierOverloads) { |
|
enum InvokedAs { kMissing, kLValue, kRValue }; |
|
enum CopiedAs { kNone, kMove, kCopy }; |
|
struct Tracker { |
|
CopiedAs copied_as = kNone; |
|
InvokedAs invoked_as = kMissing; |
|
|
|
void Record(InvokedAs rhs) { |
|
ASSERT_EQ(invoked_as, kMissing); |
|
invoked_as = rhs; |
|
} |
|
|
|
void Record(CopiedAs rhs) { |
|
if (copied_as == kNone || rhs == kCopy) copied_as = rhs; |
|
} |
|
} tracker; |
|
|
|
class Releaser { |
|
public: |
|
explicit Releaser(Tracker* tracker) : tr_(tracker) { *tracker = Tracker(); } |
|
Releaser(Releaser&& rhs) : tr_(rhs.tr_) { tr_->Record(kMove); } |
|
Releaser(const Releaser& rhs) : tr_(rhs.tr_) { tr_->Record(kCopy); } |
|
|
|
void operator()(absl::string_view) & { tr_->Record(kLValue); } |
|
void operator()(absl::string_view) && { tr_->Record(kRValue); } |
|
|
|
private: |
|
Tracker* tr_; |
|
}; |
|
|
|
const Releaser releaser1(&tracker); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("", releaser1)); |
|
EXPECT_EQ(tracker.copied_as, kCopy); |
|
EXPECT_EQ(tracker.invoked_as, kRValue); |
|
|
|
const Releaser releaser2(&tracker); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("", releaser2)); |
|
EXPECT_EQ(tracker.copied_as, kCopy); |
|
EXPECT_EQ(tracker.invoked_as, kRValue); |
|
|
|
Releaser releaser3(&tracker); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("", std::move(releaser3))); |
|
EXPECT_EQ(tracker.copied_as, kMove); |
|
EXPECT_EQ(tracker.invoked_as, kRValue); |
|
|
|
Releaser releaser4(&tracker); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser4)); |
|
EXPECT_EQ(tracker.copied_as, kCopy); |
|
EXPECT_EQ(tracker.invoked_as, kRValue); |
|
|
|
const Releaser releaser5(&tracker); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("dummy", releaser5)); |
|
EXPECT_EQ(tracker.copied_as, kCopy); |
|
EXPECT_EQ(tracker.invoked_as, kRValue); |
|
|
|
Releaser releaser6(&tracker); |
|
(void)MaybeHardened(absl::MakeCordFromExternal("foo", std::move(releaser6))); |
|
EXPECT_EQ(tracker.copied_as, kMove); |
|
EXPECT_EQ(tracker.invoked_as, kRValue); |
|
} |
|
|
|
TEST_P(CordTest, ExternalMemoryBasicUsage) { |
|
static const char* strings[] = {"", "hello", "there"}; |
|
for (const char* str : strings) { |
|
absl::Cord dst("(prefix)"); |
|
MaybeHarden(dst); |
|
AddExternalMemory(str, &dst); |
|
MaybeHarden(dst); |
|
dst.Append("(suffix)"); |
|
EXPECT_EQ((std::string("(prefix)") + str + std::string("(suffix)")), |
|
std::string(dst)); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, ExternalMemoryRemovePrefixSuffix) { |
|
// Exhaustively try all sub-strings. |
|
absl::Cord cord = MakeComposite(); |
|
std::string s = std::string(cord); |
|
for (int offset = 0; offset <= s.size(); offset++) { |
|
for (int length = 0; length <= s.size() - offset; length++) { |
|
absl::Cord result(cord); |
|
MaybeHarden(result); |
|
result.RemovePrefix(offset); |
|
MaybeHarden(result); |
|
result.RemoveSuffix(result.size() - length); |
|
EXPECT_EQ(s.substr(offset, length), std::string(result)) |
|
<< offset << " " << length; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(CordTest, ExternalMemoryGet) { |
|
absl::Cord cord("hello"); |
|
AddExternalMemory(" world!", &cord); |
|
MaybeHarden(cord); |
|
AddExternalMemory(" how are ", &cord); |
|
cord.Append(" you?"); |
|
MaybeHarden(cord); |
|
std::string s = std::string(cord); |
|
for (int i = 0; i < s.size(); i++) { |
|
EXPECT_EQ(s[i], cord[i]); |
|
} |
|
} |
|
|
|
// CordMemoryUsage tests verify the correctness of the EstimatedMemoryUsage() |
|
// We use whiteboxed expectations based on our knowledge of the layout and size |
|
// of empty and inlined cords, and flat nodes. |
|
|
|
constexpr auto kFairShare = absl::CordMemoryAccounting::kFairShare; |
|
|
|
// Creates a cord of `n` `c` values, making sure no string stealing occurs. |
|
absl::Cord MakeCord(size_t n, char c) { |
|
const std::string s(n, c); |
|
return absl::Cord(s); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageEmpty) { |
|
absl::Cord cord; |
|
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage()); |
|
EXPECT_EQ(sizeof(absl::Cord), cord.EstimatedMemoryUsage(kFairShare)); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageInlined) { |
|
absl::Cord a("hello"); |
|
EXPECT_EQ(a.EstimatedMemoryUsage(), sizeof(absl::Cord)); |
|
EXPECT_EQ(a.EstimatedMemoryUsage(kFairShare), sizeof(absl::Cord)); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageExternalMemory) { |
|
absl::Cord cord; |
|
AddExternalMemory(std::string(1000, 'x'), &cord); |
|
const size_t expected = |
|
sizeof(absl::Cord) + 1000 + sizeof(CordRepExternal) + sizeof(intptr_t); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), expected); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), expected); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageFlat) { |
|
absl::Cord cord = MakeCord(1000, 'a'); |
|
const size_t flat_size = |
|
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize(); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + flat_size); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageSubStringSharedFlat) { |
|
absl::Cord flat = MakeCord(2000, 'a'); |
|
const size_t flat_size = |
|
absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize(); |
|
absl::Cord cord = flat.Subcord(500, 1000); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), |
|
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + sizeof(CordRepSubstring) + flat_size / 2); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageFlatShared) { |
|
absl::Cord shared = MakeCord(1000, 'a'); |
|
absl::Cord cord(shared); |
|
const size_t flat_size = |
|
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize(); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), sizeof(absl::Cord) + flat_size); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + flat_size / 2); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageFlatHardenedAndShared) { |
|
absl::Cord shared = MakeCord(1000, 'a'); |
|
absl::Cord cord(shared); |
|
const size_t flat_size = |
|
absl::CordTestPeer::Tree(cord)->flat()->AllocatedSize(); |
|
cord.SetExpectedChecksum(1); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), |
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size / 2); |
|
|
|
absl::Cord cord2(cord); |
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(), |
|
sizeof(absl::Cord) + sizeof(CordRepCrc) + flat_size); |
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + (sizeof(CordRepCrc) + flat_size / 2) / 2); |
|
} |
|
|
|
TEST(CordTest, CordMemoryUsageBTree) { |
|
absl::Cord cord1; |
|
size_t flats1_size = 0; |
|
absl::Cord flats1[4] = {MakeCord(1000, 'a'), MakeCord(1100, 'a'), |
|
MakeCord(1200, 'a'), MakeCord(1300, 'a')}; |
|
for (absl::Cord flat : flats1) { |
|
flats1_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize(); |
|
cord1.Append(std::move(flat)); |
|
} |
|
|
|
// Make sure the created cord is a BTREE tree. Under some builds such as |
|
// windows DLL, we may have ODR like effects on the flag, meaning the DLL |
|
// code will run with the picked up default. |
|
if (!absl::CordTestPeer::Tree(cord1)->IsBtree()) { |
|
ABSL_RAW_LOG(WARNING, "Cord library code not respecting btree flag"); |
|
return; |
|
} |
|
|
|
size_t rep1_size = sizeof(CordRepBtree) + flats1_size; |
|
size_t rep1_shared_size = sizeof(CordRepBtree) + flats1_size / 2; |
|
|
|
EXPECT_EQ(cord1.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep1_size); |
|
EXPECT_EQ(cord1.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + rep1_shared_size); |
|
|
|
absl::Cord cord2; |
|
size_t flats2_size = 0; |
|
absl::Cord flats2[4] = {MakeCord(600, 'a'), MakeCord(700, 'a'), |
|
MakeCord(800, 'a'), MakeCord(900, 'a')}; |
|
for (absl::Cord& flat : flats2) { |
|
flats2_size += absl::CordTestPeer::Tree(flat)->flat()->AllocatedSize(); |
|
cord2.Append(std::move(flat)); |
|
} |
|
size_t rep2_size = sizeof(CordRepBtree) + flats2_size; |
|
|
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(), sizeof(absl::Cord) + rep2_size); |
|
EXPECT_EQ(cord2.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + rep2_size); |
|
|
|
absl::Cord cord(cord1); |
|
cord.Append(std::move(cord2)); |
|
|
|
EXPECT_EQ(cord.EstimatedMemoryUsage(), |
|
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_size + rep2_size); |
|
EXPECT_EQ(cord.EstimatedMemoryUsage(kFairShare), |
|
sizeof(absl::Cord) + sizeof(CordRepBtree) + rep1_shared_size / 2 + |
|
rep2_size); |
|
} |
|
|
|
// Regtest for a change that had to be rolled back because it expanded out |
|
// of the InlineRep too soon, which was observable through MemoryUsage(). |
|
TEST_P(CordTest, CordMemoryUsageInlineRep) { |
|
constexpr size_t kMaxInline = 15; // Cord::InlineRep::N |
|
const std::string small_string(kMaxInline, 'x'); |
|
absl::Cord c1(small_string); |
|
|
|
absl::Cord c2; |
|
c2.Append(small_string); |
|
EXPECT_EQ(c1, c2); |
|
EXPECT_EQ(c1.EstimatedMemoryUsage(), c2.EstimatedMemoryUsage()); |
|
} |
|
|
|
} // namespace |
|
|
|
// Regtest for 7510292 (fix a bug introduced by 7465150) |
|
TEST_P(CordTest, Concat_Append) { |
|
// Create a rep of type CONCAT |
|
absl::Cord s1("foobarbarbarbarbar"); |
|
MaybeHarden(s1); |
|
s1.Append("abcdefgabcdefgabcdefgabcdefgabcdefgabcdefgabcdefg"); |
|
size_t size = s1.size(); |
|
|
|
// Create a copy of s1 and append to it. |
|
absl::Cord s2 = s1; |
|
MaybeHarden(s2); |
|
s2.Append("x"); |
|
|
|
// 7465150 modifies s1 when it shouldn't. |
|
EXPECT_EQ(s1.size(), size); |
|
EXPECT_EQ(s2.size(), size + 1); |
|
} |
|
|
|
TEST_P(CordTest, DiabolicalGrowth) { |
|
// This test exercises a diabolical Append(<one char>) on a cord, making the |
|
// cord shared before each Append call resulting in a terribly fragmented |
|
// resulting cord. |
|
// TODO(b/183983616): Apply some minimum compaction when copying a shared |
|
// source cord into a mutable copy for updates in CordRepRing. |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
const std::string expected = RandomLowercaseString(&rng, 5000); |
|
absl::Cord cord; |
|
for (char c : expected) { |
|
absl::Cord shared(cord); |
|
cord.Append(absl::string_view(&c, 1)); |
|
MaybeHarden(cord); |
|
} |
|
std::string value; |
|
absl::CopyCordToString(cord, &value); |
|
EXPECT_EQ(value, expected); |
|
ABSL_RAW_LOG(INFO, "Diabolical size allocated = %zu", |
|
cord.EstimatedMemoryUsage()); |
|
} |
|
|
|
// The following tests check support for >4GB cords in 64-bit binaries, and |
|
// 2GB-4GB cords in 32-bit binaries. This function returns the large cord size |
|
// that's appropriate for the binary. |
|
|
|
// Construct a huge cord with the specified valid prefix. |
|
static absl::Cord MakeHuge(absl::string_view prefix) { |
|
absl::Cord cord; |
|
if (sizeof(size_t) > 4) { |
|
// In 64-bit binaries, test 64-bit Cord support. |
|
const size_t size = |
|
static_cast<size_t>(std::numeric_limits<uint32_t>::max()) + 314; |
|
cord.Append(absl::MakeCordFromExternal( |
|
absl::string_view(prefix.data(), size), |
|
[](absl::string_view s) { DoNothing(s, nullptr); })); |
|
} else { |
|
// Cords are limited to 32-bit lengths in 32-bit binaries. The following |
|
// tests check for use of "signed int" to represent Cord length/offset. |
|
// However absl::string_view does not allow lengths >= (1u<<31), so we need |
|
// to append in two parts; |
|
const size_t s1 = (1u << 31) - 1; |
|
// For shorter cord, `Append` copies the data rather than allocating a new |
|
// node. The threshold is currently set to 511, so `s2` needs to be bigger |
|
// to not trigger the copy. |
|
const size_t s2 = 600; |
|
cord.Append(absl::MakeCordFromExternal( |
|
absl::string_view(prefix.data(), s1), |
|
[](absl::string_view s) { DoNothing(s, nullptr); })); |
|
cord.Append(absl::MakeCordFromExternal( |
|
absl::string_view("", s2), |
|
[](absl::string_view s) { DoNothing(s, nullptr); })); |
|
} |
|
return cord; |
|
} |
|
|
|
TEST_P(CordTest, HugeCord) { |
|
absl::Cord cord = MakeHuge("huge cord"); |
|
MaybeHarden(cord); |
|
|
|
const size_t acceptable_delta = |
|
100 + (UseCrc() ? sizeof(absl::cord_internal::CordRepCrc) : 0); |
|
EXPECT_LE(cord.size(), cord.EstimatedMemoryUsage()); |
|
EXPECT_GE(cord.size() + acceptable_delta, cord.EstimatedMemoryUsage()); |
|
} |
|
|
|
// Tests that Append() works ok when handed a self reference |
|
TEST_P(CordTest, AppendSelf) { |
|
// Test the empty case. |
|
absl::Cord empty; |
|
MaybeHarden(empty); |
|
empty.Append(empty); |
|
ASSERT_EQ(empty, ""); |
|
|
|
// We run the test until data is ~16K |
|
// This guarantees it covers small, medium and large data. |
|
std::string control_data = "Abc"; |
|
absl::Cord data(control_data); |
|
while (control_data.length() < 0x4000) { |
|
MaybeHarden(data); |
|
data.Append(data); |
|
control_data.append(control_data); |
|
ASSERT_EQ(control_data, data); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, MakeFragmentedCordFromInitializerList) { |
|
absl::Cord fragmented = |
|
absl::MakeFragmentedCord({"A ", "fragmented ", "Cord"}); |
|
|
|
MaybeHarden(fragmented); |
|
|
|
EXPECT_EQ("A fragmented Cord", fragmented); |
|
|
|
auto chunk_it = fragmented.chunk_begin(); |
|
|
|
ASSERT_TRUE(chunk_it != fragmented.chunk_end()); |
|
EXPECT_EQ("A ", *chunk_it); |
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end()); |
|
EXPECT_EQ("fragmented ", *chunk_it); |
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end()); |
|
EXPECT_EQ("Cord", *chunk_it); |
|
|
|
ASSERT_TRUE(++chunk_it == fragmented.chunk_end()); |
|
} |
|
|
|
TEST_P(CordTest, MakeFragmentedCordFromVector) { |
|
std::vector<absl::string_view> chunks = {"A ", "fragmented ", "Cord"}; |
|
absl::Cord fragmented = absl::MakeFragmentedCord(chunks); |
|
|
|
MaybeHarden(fragmented); |
|
|
|
EXPECT_EQ("A fragmented Cord", fragmented); |
|
|
|
auto chunk_it = fragmented.chunk_begin(); |
|
|
|
ASSERT_TRUE(chunk_it != fragmented.chunk_end()); |
|
EXPECT_EQ("A ", *chunk_it); |
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end()); |
|
EXPECT_EQ("fragmented ", *chunk_it); |
|
|
|
ASSERT_TRUE(++chunk_it != fragmented.chunk_end()); |
|
EXPECT_EQ("Cord", *chunk_it); |
|
|
|
ASSERT_TRUE(++chunk_it == fragmented.chunk_end()); |
|
} |
|
|
|
TEST_P(CordTest, CordChunkIteratorTraits) { |
|
static_assert(std::is_copy_constructible<absl::Cord::ChunkIterator>::value, |
|
""); |
|
static_assert(std::is_copy_assignable<absl::Cord::ChunkIterator>::value, ""); |
|
|
|
// Move semantics to satisfy swappable via std::swap |
|
static_assert(std::is_move_constructible<absl::Cord::ChunkIterator>::value, |
|
""); |
|
static_assert(std::is_move_assignable<absl::Cord::ChunkIterator>::value, ""); |
|
|
|
static_assert( |
|
std::is_same< |
|
std::iterator_traits<absl::Cord::ChunkIterator>::iterator_category, |
|
std::input_iterator_tag>::value, |
|
""); |
|
static_assert( |
|
std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::value_type, |
|
absl::string_view>::value, |
|
""); |
|
static_assert( |
|
std::is_same< |
|
std::iterator_traits<absl::Cord::ChunkIterator>::difference_type, |
|
ptrdiff_t>::value, |
|
""); |
|
static_assert( |
|
std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::pointer, |
|
const absl::string_view*>::value, |
|
""); |
|
static_assert( |
|
std::is_same<std::iterator_traits<absl::Cord::ChunkIterator>::reference, |
|
absl::string_view>::value, |
|
""); |
|
} |
|
|
|
static void VerifyChunkIterator(const absl::Cord& cord, |
|
size_t expected_chunks) { |
|
EXPECT_EQ(cord.chunk_begin() == cord.chunk_end(), cord.empty()) << cord; |
|
EXPECT_EQ(cord.chunk_begin() != cord.chunk_end(), !cord.empty()); |
|
|
|
absl::Cord::ChunkRange range = cord.Chunks(); |
|
EXPECT_EQ(range.begin() == range.end(), cord.empty()); |
|
EXPECT_EQ(range.begin() != range.end(), !cord.empty()); |
|
|
|
std::string content(cord); |
|
size_t pos = 0; |
|
auto pre_iter = cord.chunk_begin(), post_iter = cord.chunk_begin(); |
|
size_t n_chunks = 0; |
|
while (pre_iter != cord.chunk_end() && post_iter != cord.chunk_end()) { |
|
EXPECT_FALSE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test == |
|
EXPECT_FALSE(post_iter == cord.chunk_end()); // NOLINT |
|
|
|
EXPECT_EQ(pre_iter, post_iter); |
|
EXPECT_EQ(*pre_iter, *post_iter); |
|
|
|
EXPECT_EQ(pre_iter->data(), (*pre_iter).data()); |
|
EXPECT_EQ(pre_iter->size(), (*pre_iter).size()); |
|
|
|
absl::string_view chunk = *pre_iter; |
|
EXPECT_FALSE(chunk.empty()); |
|
EXPECT_LE(pos + chunk.size(), content.size()); |
|
EXPECT_EQ(absl::string_view(content.c_str() + pos, chunk.size()), chunk); |
|
|
|
int n_equal_iterators = 0; |
|
for (absl::Cord::ChunkIterator it = range.begin(); it != range.end(); |
|
++it) { |
|
n_equal_iterators += static_cast<int>(it == pre_iter); |
|
} |
|
EXPECT_EQ(n_equal_iterators, 1); |
|
|
|
++pre_iter; |
|
EXPECT_EQ(*post_iter++, chunk); |
|
|
|
pos += chunk.size(); |
|
++n_chunks; |
|
} |
|
EXPECT_EQ(expected_chunks, n_chunks); |
|
EXPECT_EQ(pos, content.size()); |
|
EXPECT_TRUE(pre_iter == cord.chunk_end()); // NOLINT: explicitly test == |
|
EXPECT_TRUE(post_iter == cord.chunk_end()); // NOLINT |
|
} |
|
|
|
TEST_P(CordTest, CordChunkIteratorOperations) { |
|
absl::Cord empty_cord; |
|
VerifyChunkIterator(empty_cord, 0); |
|
|
|
absl::Cord small_buffer_cord("small cord"); |
|
MaybeHarden(small_buffer_cord); |
|
VerifyChunkIterator(small_buffer_cord, 1); |
|
|
|
absl::Cord flat_node_cord("larger than small buffer optimization"); |
|
MaybeHarden(flat_node_cord); |
|
VerifyChunkIterator(flat_node_cord, 1); |
|
|
|
VerifyChunkIterator(MaybeHardened(absl::MakeFragmentedCord( |
|
{"a ", "small ", "fragmented ", "cord ", "for ", |
|
"testing ", "chunk ", "iterations."})), |
|
8); |
|
|
|
absl::Cord reused_nodes_cord(std::string(40, 'c')); |
|
reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'b'))); |
|
MaybeHarden(reused_nodes_cord); |
|
reused_nodes_cord.Prepend(absl::Cord(std::string(40, 'a'))); |
|
size_t expected_chunks = 3; |
|
for (int i = 0; i < 8; ++i) { |
|
reused_nodes_cord.Prepend(reused_nodes_cord); |
|
MaybeHarden(reused_nodes_cord); |
|
expected_chunks *= 2; |
|
VerifyChunkIterator(reused_nodes_cord, expected_chunks); |
|
} |
|
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
absl::Cord flat_cord(RandomLowercaseString(&rng, 256)); |
|
absl::Cord subcords; |
|
for (int i = 0; i < 128; ++i) subcords.Prepend(flat_cord.Subcord(i, 128)); |
|
VerifyChunkIterator(subcords, 128); |
|
} |
|
|
|
|
|
TEST_P(CordTest, AdvanceAndReadOnDataEdge) { |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
const std::string data = RandomLowercaseString(&rng, 2000); |
|
for (bool as_flat : {true, false}) { |
|
SCOPED_TRACE(as_flat ? "Flat" : "External"); |
|
|
|
absl::Cord cord = |
|
as_flat ? absl::Cord(data) |
|
: absl::MakeCordFromExternal(data, [](absl::string_view) {}); |
|
auto it = cord.Chars().begin(); |
|
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED |
|
EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*"); |
|
#endif |
|
|
|
it = cord.Chars().begin(); |
|
absl::Cord frag = cord.AdvanceAndRead(&it, 2000); |
|
EXPECT_EQ(frag, data); |
|
EXPECT_TRUE(it == cord.Chars().end()); |
|
|
|
it = cord.Chars().begin(); |
|
frag = cord.AdvanceAndRead(&it, 200); |
|
EXPECT_EQ(frag, data.substr(0, 200)); |
|
EXPECT_FALSE(it == cord.Chars().end()); |
|
|
|
frag = cord.AdvanceAndRead(&it, 1500); |
|
EXPECT_EQ(frag, data.substr(200, 1500)); |
|
EXPECT_FALSE(it == cord.Chars().end()); |
|
|
|
frag = cord.AdvanceAndRead(&it, 300); |
|
EXPECT_EQ(frag, data.substr(1700, 300)); |
|
EXPECT_TRUE(it == cord.Chars().end()); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, AdvanceAndReadOnSubstringDataEdge) { |
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
const std::string data = RandomLowercaseString(&rng, 2500); |
|
for (bool as_flat : {true, false}) { |
|
SCOPED_TRACE(as_flat ? "Flat" : "External"); |
|
|
|
absl::Cord cord = |
|
as_flat ? absl::Cord(data) |
|
: absl::MakeCordFromExternal(data, [](absl::string_view) {}); |
|
cord = cord.Subcord(200, 2000); |
|
const std::string substr = data.substr(200, 2000); |
|
|
|
auto it = cord.Chars().begin(); |
|
#if !defined(NDEBUG) || ABSL_OPTION_HARDENED |
|
EXPECT_DEATH_IF_SUPPORTED(cord.AdvanceAndRead(&it, 2001), ".*"); |
|
#endif |
|
|
|
it = cord.Chars().begin(); |
|
absl::Cord frag = cord.AdvanceAndRead(&it, 2000); |
|
EXPECT_EQ(frag, substr); |
|
EXPECT_TRUE(it == cord.Chars().end()); |
|
|
|
it = cord.Chars().begin(); |
|
frag = cord.AdvanceAndRead(&it, 200); |
|
EXPECT_EQ(frag, substr.substr(0, 200)); |
|
EXPECT_FALSE(it == cord.Chars().end()); |
|
|
|
frag = cord.AdvanceAndRead(&it, 1500); |
|
EXPECT_EQ(frag, substr.substr(200, 1500)); |
|
EXPECT_FALSE(it == cord.Chars().end()); |
|
|
|
frag = cord.AdvanceAndRead(&it, 300); |
|
EXPECT_EQ(frag, substr.substr(1700, 300)); |
|
EXPECT_TRUE(it == cord.Chars().end()); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, CharIteratorTraits) { |
|
static_assert(std::is_copy_constructible<absl::Cord::CharIterator>::value, |
|
""); |
|
static_assert(std::is_copy_assignable<absl::Cord::CharIterator>::value, ""); |
|
|
|
// Move semantics to satisfy swappable via std::swap |
|
static_assert(std::is_move_constructible<absl::Cord::CharIterator>::value, |
|
""); |
|
static_assert(std::is_move_assignable<absl::Cord::CharIterator>::value, ""); |
|
|
|
static_assert( |
|
std::is_same< |
|
std::iterator_traits<absl::Cord::CharIterator>::iterator_category, |
|
std::input_iterator_tag>::value, |
|
""); |
|
static_assert( |
|
std::is_same<std::iterator_traits<absl::Cord::CharIterator>::value_type, |
|
char>::value, |
|
""); |
|
static_assert( |
|
std::is_same< |
|
std::iterator_traits<absl::Cord::CharIterator>::difference_type, |
|
ptrdiff_t>::value, |
|
""); |
|
static_assert( |
|
std::is_same<std::iterator_traits<absl::Cord::CharIterator>::pointer, |
|
const char*>::value, |
|
""); |
|
static_assert( |
|
std::is_same<std::iterator_traits<absl::Cord::CharIterator>::reference, |
|
const char&>::value, |
|
""); |
|
} |
|
|
|
static void VerifyCharIterator(const absl::Cord& cord) { |
|
EXPECT_EQ(cord.char_begin() == cord.char_end(), cord.empty()); |
|
EXPECT_EQ(cord.char_begin() != cord.char_end(), !cord.empty()); |
|
|
|
absl::Cord::CharRange range = cord.Chars(); |
|
EXPECT_EQ(range.begin() == range.end(), cord.empty()); |
|
EXPECT_EQ(range.begin() != range.end(), !cord.empty()); |
|
|
|
size_t i = 0; |
|
absl::Cord::CharIterator pre_iter = cord.char_begin(); |
|
absl::Cord::CharIterator post_iter = cord.char_begin(); |
|
std::string content(cord); |
|
while (pre_iter != cord.char_end() && post_iter != cord.char_end()) { |
|
EXPECT_FALSE(pre_iter == cord.char_end()); // NOLINT: explicitly test == |
|
EXPECT_FALSE(post_iter == cord.char_end()); // NOLINT |
|
|
|
EXPECT_LT(i, cord.size()); |
|
EXPECT_EQ(content[i], *pre_iter); |
|
|
|
EXPECT_EQ(pre_iter, post_iter); |
|
EXPECT_EQ(*pre_iter, *post_iter); |
|
EXPECT_EQ(&*pre_iter, &*post_iter); |
|
|
|
EXPECT_EQ(&*pre_iter, pre_iter.operator->()); |
|
|
|
const char* character_address = &*pre_iter; |
|
absl::Cord::CharIterator copy = pre_iter; |
|
++copy; |
|
EXPECT_EQ(character_address, &*pre_iter); |
|
|
|
int n_equal_iterators = 0; |
|
for (absl::Cord::CharIterator it = range.begin(); it != range.end(); ++it) { |
|
n_equal_iterators += static_cast<int>(it == pre_iter); |
|
} |
|
EXPECT_EQ(n_equal_iterators, 1); |
|
|
|
absl::Cord::CharIterator advance_iter = range.begin(); |
|
absl::Cord::Advance(&advance_iter, i); |
|
EXPECT_EQ(pre_iter, advance_iter); |
|
|
|
advance_iter = range.begin(); |
|
EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, i), cord.Subcord(0, i)); |
|
EXPECT_EQ(pre_iter, advance_iter); |
|
|
|
advance_iter = pre_iter; |
|
absl::Cord::Advance(&advance_iter, cord.size() - i); |
|
EXPECT_EQ(range.end(), advance_iter); |
|
|
|
advance_iter = pre_iter; |
|
EXPECT_EQ(absl::Cord::AdvanceAndRead(&advance_iter, cord.size() - i), |
|
cord.Subcord(i, cord.size() - i)); |
|
EXPECT_EQ(range.end(), advance_iter); |
|
|
|
++i; |
|
++pre_iter; |
|
post_iter++; |
|
} |
|
EXPECT_EQ(i, cord.size()); |
|
EXPECT_TRUE(pre_iter == cord.char_end()); // NOLINT: explicitly test == |
|
EXPECT_TRUE(post_iter == cord.char_end()); // NOLINT |
|
|
|
absl::Cord::CharIterator zero_advanced_end = cord.char_end(); |
|
absl::Cord::Advance(&zero_advanced_end, 0); |
|
EXPECT_EQ(zero_advanced_end, cord.char_end()); |
|
|
|
absl::Cord::CharIterator it = cord.char_begin(); |
|
for (absl::string_view chunk : cord.Chunks()) { |
|
while (!chunk.empty()) { |
|
EXPECT_EQ(absl::Cord::ChunkRemaining(it), chunk); |
|
chunk.remove_prefix(1); |
|
++it; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(CordTest, CharIteratorOperations) { |
|
absl::Cord empty_cord; |
|
VerifyCharIterator(empty_cord); |
|
|
|
absl::Cord small_buffer_cord("small cord"); |
|
MaybeHarden(small_buffer_cord); |
|
VerifyCharIterator(small_buffer_cord); |
|
|
|
absl::Cord flat_node_cord("larger than small buffer optimization"); |
|
MaybeHarden(flat_node_cord); |
|
VerifyCharIterator(flat_node_cord); |
|
|
|
VerifyCharIterator(MaybeHardened( |
|
absl::MakeFragmentedCord({"a ", "small ", "fragmented ", "cord ", "for ", |
|
"testing ", "character ", "iteration."}))); |
|
|
|
absl::Cord reused_nodes_cord("ghi"); |
|
reused_nodes_cord.Prepend(absl::Cord("def")); |
|
reused_nodes_cord.Prepend(absl::Cord("abc")); |
|
for (int i = 0; i < 4; ++i) { |
|
reused_nodes_cord.Prepend(reused_nodes_cord); |
|
MaybeHarden(reused_nodes_cord); |
|
VerifyCharIterator(reused_nodes_cord); |
|
} |
|
|
|
RandomEngine rng(GTEST_FLAG_GET(random_seed)); |
|
absl::Cord flat_cord(RandomLowercaseString(&rng, 256)); |
|
absl::Cord subcords; |
|
for (int i = 0; i < 4; ++i) { |
|
subcords.Prepend(flat_cord.Subcord(16 * i, 128)); |
|
MaybeHarden(subcords); |
|
} |
|
VerifyCharIterator(subcords); |
|
} |
|
|
|
TEST_P(CordTest, CharIteratorAdvanceAndRead) { |
|
// Create a Cord holding 6 flats of 2500 bytes each, and then iterate over it |
|
// reading 150, 1500, 2500 and 3000 bytes. This will result in all possible |
|
// partial, full and straddled read combinations including reads below |
|
// kMaxBytesToCopy. b/197776822 surfaced a bug for a specific partial, small |
|
// read 'at end' on Cord which caused a failure on attempting to read past the |
|
// end in CordRepBtreeReader which was not covered by any existing test. |
|
constexpr int kBlocks = 6; |
|
constexpr size_t kBlockSize = 2500; |
|
constexpr size_t kChunkSize1 = 1500; |
|
constexpr size_t kChunkSize2 = 2500; |
|
constexpr size_t kChunkSize3 = 3000; |
|
constexpr size_t kChunkSize4 = 150; |
|
RandomEngine rng; |
|
std::string data = RandomLowercaseString(&rng, kBlocks * kBlockSize); |
|
absl::Cord cord; |
|
for (int i = 0; i < kBlocks; ++i) { |
|
const std::string block = data.substr(i * kBlockSize, kBlockSize); |
|
cord.Append(absl::Cord(block)); |
|
} |
|
|
|
MaybeHarden(cord); |
|
|
|
for (size_t chunk_size : |
|
{kChunkSize1, kChunkSize2, kChunkSize3, kChunkSize4}) { |
|
absl::Cord::CharIterator it = cord.char_begin(); |
|
size_t offset = 0; |
|
while (offset < data.length()) { |
|
const size_t n = std::min<size_t>(data.length() - offset, chunk_size); |
|
absl::Cord chunk = cord.AdvanceAndRead(&it, n); |
|
ASSERT_EQ(chunk.size(), n); |
|
ASSERT_EQ(chunk.Compare(data.substr(offset, n)), 0); |
|
offset += n; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(CordTest, StreamingOutput) { |
|
absl::Cord c = |
|
absl::MakeFragmentedCord({"A ", "small ", "fragmented ", "Cord", "."}); |
|
MaybeHarden(c); |
|
std::stringstream output; |
|
output << c; |
|
EXPECT_EQ("A small fragmented Cord.", output.str()); |
|
} |
|
|
|
TEST_P(CordTest, ForEachChunk) { |
|
for (int num_elements : {1, 10, 200}) { |
|
SCOPED_TRACE(num_elements); |
|
std::vector<std::string> cord_chunks; |
|
for (int i = 0; i < num_elements; ++i) { |
|
cord_chunks.push_back(absl::StrCat("[", i, "]")); |
|
} |
|
absl::Cord c = absl::MakeFragmentedCord(cord_chunks); |
|
MaybeHarden(c); |
|
|
|
std::vector<std::string> iterated_chunks; |
|
absl::CordTestPeer::ForEachChunk(c, |
|
[&iterated_chunks](absl::string_view sv) { |
|
iterated_chunks.emplace_back(sv); |
|
}); |
|
EXPECT_EQ(iterated_chunks, cord_chunks); |
|
} |
|
} |
|
|
|
TEST_P(CordTest, SmallBufferAssignFromOwnData) { |
|
constexpr size_t kMaxInline = 15; |
|
std::string contents = "small buff cord"; |
|
EXPECT_EQ(contents.size(), kMaxInline); |
|
for (size_t pos = 0; pos < contents.size(); ++pos) { |
|
for (size_t count = contents.size() - pos; count > 0; --count) { |
|
absl::Cord c(contents); |
|
MaybeHarden(c); |
|
absl::string_view flat = c.Flatten(); |
|
c = flat.substr(pos, count); |
|
EXPECT_EQ(c, contents.substr(pos, count)) |
|
<< "pos = " << pos << "; count = " << count; |
|
} |
|
} |
|
} |
|
|
|
TEST_P(CordTest, Format) { |
|
absl::Cord c; |
|
absl::Format(&c, "There were %04d little %s.", 3, "pigs"); |
|
EXPECT_EQ(c, "There were 0003 little pigs."); |
|
MaybeHarden(c); |
|
absl::Format(&c, "And %-3llx bad wolf!", 1); |
|
MaybeHarden(c); |
|
EXPECT_EQ(c, "There were 0003 little pigs.And 1 bad wolf!"); |
|
} |
|
|
|
TEST_P(CordTest, Hardening) { |
|
absl::Cord cord("hello"); |
|
MaybeHarden(cord); |
|
|
|
// These statement should abort the program in all builds modes. |
|
EXPECT_DEATH_IF_SUPPORTED(cord.RemovePrefix(6), ""); |
|
EXPECT_DEATH_IF_SUPPORTED(cord.RemoveSuffix(6), ""); |
|
|
|
bool test_hardening = false; |
|
ABSL_HARDENING_ASSERT([&]() { |
|
// This only runs when ABSL_HARDENING_ASSERT is active. |
|
test_hardening = true; |
|
return true; |
|
}()); |
|
if (!test_hardening) return; |
|
|
|
EXPECT_DEATH_IF_SUPPORTED(cord[5], ""); |
|
EXPECT_DEATH_IF_SUPPORTED(*cord.chunk_end(), ""); |
|
EXPECT_DEATH_IF_SUPPORTED(static_cast<void>(cord.chunk_end()->empty()), ""); |
|
EXPECT_DEATH_IF_SUPPORTED(++cord.chunk_end(), ""); |
|
} |
|
|
|
// This test mimics a specific (and rare) application repeatedly splitting a |
|
// cord, inserting (overwriting) a string value, and composing a new cord from |
|
// the three pieces. This is hostile towards a Btree implementation: A split of |
|
// a node at any level is likely to have the right-most edge of the left split, |
|
// and the left-most edge of the right split shared. For example, splitting a |
|
// leaf node with 6 edges will result likely in a 1-6, 2-5, 3-4, etc. split, |
|
// sharing the 'split node'. When recomposing such nodes, we 'injected' an edge |
|
// in that node. As this happens with some probability on each level of the |
|
// tree, this will quickly grow the tree until it reaches maximum height. |
|
TEST_P(CordTest, BtreeHostileSplitInsertJoin) { |
|
absl::BitGen bitgen; |
|
|
|
// Start with about 1GB of data |
|
std::string data(1 << 10, 'x'); |
|
absl::Cord buffer(data); |
|
absl::Cord cord; |
|
for (int i = 0; i < 1000000; ++i) { |
|
cord.Append(buffer); |
|
} |
|
|
|
for (int j = 0; j < 1000; ++j) { |
|
MaybeHarden(cord); |
|
size_t offset = absl::Uniform(bitgen, 0u, cord.size()); |
|
size_t length = absl::Uniform(bitgen, 100u, data.size()); |
|
if (cord.size() == offset) { |
|
cord.Append(absl::string_view(data.data(), length)); |
|
} else { |
|
absl::Cord suffix; |
|
if (offset + length < cord.size()) { |
|
suffix = cord; |
|
suffix.RemovePrefix(offset + length); |
|
} |
|
if (cord.size() > offset) { |
|
cord.RemoveSuffix(cord.size() - offset); |
|
} |
|
cord.Append(absl::string_view(data.data(), length)); |
|
if (!suffix.empty()) { |
|
cord.Append(suffix); |
|
} |
|
} |
|
} |
|
} |
|
|
|
class AfterExitCordTester { |
|
public: |
|
bool Set(absl::Cord* cord, absl::string_view expected) { |
|
cord_ = cord; |
|
expected_ = expected; |
|
return true; |
|
} |
|
|
|
~AfterExitCordTester() { |
|
EXPECT_EQ(*cord_, expected_); |
|
} |
|
private: |
|
absl::Cord* cord_; |
|
absl::string_view expected_; |
|
}; |
|
|
|
// Deliberately prevents the destructor for an absl::Cord from running. The cord |
|
// is accessible via the cord member during the lifetime of the CordLeaker. |
|
// After the CordLeaker is destroyed, pointers to the cord will remain valid |
|
// until the CordLeaker's memory is deallocated. |
|
struct CordLeaker { |
|
union { |
|
absl::Cord cord; |
|
}; |
|
|
|
template <typename Str> |
|
constexpr explicit CordLeaker(const Str& str) : cord(str) {} |
|
|
|
~CordLeaker() { |
|
// Don't do anything, including running cord's destructor. (cord's |
|
// destructor won't run automatically because cord is hidden inside a |
|
// union.) |
|
} |
|
}; |
|
|
|
template <typename Str> |
|
void TestConstinitConstructor(Str) { |
|
const auto expected = Str::value; |
|
// Defined before `cord` to be destroyed after it. |
|
static AfterExitCordTester exit_tester; // NOLINT |
|
ABSL_CONST_INIT static CordLeaker cord_leaker(Str{}); // NOLINT |
|
// cord_leaker is static, so this reference will remain valid through the end |
|
// of program execution. |
|
static absl::Cord& cord = cord_leaker.cord; |
|
static bool init_exit_tester = exit_tester.Set(&cord, expected); |
|
(void)init_exit_tester; |
|
|
|
EXPECT_EQ(cord, expected); |
|
// Copy the object and test the copy, and the original. |
|
{ |
|
absl::Cord copy = cord; |
|
EXPECT_EQ(copy, expected); |
|
} |
|
// The original still works |
|
EXPECT_EQ(cord, expected); |
|
|
|
// Try making adding more structure to the tree. |
|
{ |
|
absl::Cord copy = cord; |
|
std::string expected_copy(expected); |
|
for (int i = 0; i < 10; ++i) { |
|
copy.Append(cord); |
|
absl::StrAppend(&expected_copy, expected); |
|
EXPECT_EQ(copy, expected_copy); |
|
} |
|
} |
|
|
|
// Make sure we are using the right branch during constant evaluation. |
|
EXPECT_EQ(absl::CordTestPeer::IsTree(cord), cord.size() >= 16); |
|
|
|
for (int i = 0; i < 10; ++i) { |
|
// Make a few more Cords from the same global rep. |
|
// This tests what happens when the refcount for it gets below 1. |
|
EXPECT_EQ(expected, absl::Cord(Str{})); |
|
} |
|
} |
|
|
|
constexpr int SimpleStrlen(const char* p) { |
|
return *p ? 1 + SimpleStrlen(p + 1) : 0; |
|
} |
|
|
|
struct ShortView { |
|
constexpr absl::string_view operator()() const { |
|
return absl::string_view("SSO string", SimpleStrlen("SSO string")); |
|
} |
|
}; |
|
|
|
struct LongView { |
|
constexpr absl::string_view operator()() const { |
|
return absl::string_view("String that does not fit SSO.", |
|
SimpleStrlen("String that does not fit SSO.")); |
|
} |
|
}; |
|
|
|
|
|
TEST_P(CordTest, ConstinitConstructor) { |
|
TestConstinitConstructor( |
|
absl::strings_internal::MakeStringConstant(ShortView{})); |
|
TestConstinitConstructor( |
|
absl::strings_internal::MakeStringConstant(LongView{})); |
|
} |
|
|
|
namespace { |
|
|
|
// Test helper that generates a populated cord for future manipulation. |
|
// |
|
// By test convention, all generated cords begin with the characters "abcde" at |
|
// the start of the first chunk. |
|
class PopulatedCordFactory { |
|
public: |
|
constexpr PopulatedCordFactory(absl::string_view name, |
|
absl::Cord (*generator)()) |
|
: name_(name), generator_(generator) {} |
|
|
|
absl::string_view Name() const { return name_; } |
|
absl::Cord Generate() const { return generator_(); } |
|
|
|
private: |
|
absl::string_view name_; |
|
absl::Cord (*generator_)(); |
|
}; |
|
|
|
// clang-format off |
|
// This array is constant-initialized in conformant compilers. |
|
PopulatedCordFactory cord_factories[] = { |
|
{"sso", [] { return absl::Cord("abcde"); }}, |
|
{"flat", [] { |
|
// Too large to live in SSO space, but small enough to be a simple FLAT. |
|
absl::Cord flat(absl::StrCat("abcde", std::string(1000, 'x'))); |
|
flat.Flatten(); |
|
return flat; |
|
}}, |
|
{"external", [] { |
|
// A cheat: we are using a string literal as the external storage, so a |
|
// no-op releaser is correct here. |
|
return absl::MakeCordFromExternal("abcde External!", []{}); |
|
}}, |
|
{"external substring", [] { |
|
// A cheat: we are using a string literal as the external storage, so a |
|
// no-op releaser is correct here. |
|
absl::Cord ext = absl::MakeCordFromExternal("-abcde External!", []{}); |
|
return absl::CordTestPeer::MakeSubstring(ext, 1, ext.size() - 1); |
|
}}, |
|
{"substring", [] { |
|
absl::Cord flat(absl::StrCat("-abcde", std::string(1000, 'x'))); |
|
flat.Flatten(); |
|
return flat.Subcord(1, 998); |
|
}}, |
|
{"fragmented", [] { |
|
std::string fragment = absl::StrCat("abcde", std::string(195, 'x')); |
|
std::vector<std::string> fragments(200, fragment); |
|
absl::Cord cord = absl::MakeFragmentedCord(fragments); |
|
assert(cord.size() == 40000); |
|
return cord; |
|
}}, |
|
}; |
|
// clang-format on |
|
|
|
// Test helper that can mutate a cord, and possibly undo the mutation, for |
|
// testing. |
|
class CordMutator { |
|
public: |
|
constexpr CordMutator(absl::string_view name, void (*mutate)(absl::Cord&), |
|
void (*undo)(absl::Cord&) = nullptr) |
|
: name_(name), mutate_(mutate), undo_(undo) {} |
|
|
|
absl::string_view Name() const { return name_; } |
|
void Mutate(absl::Cord& cord) const { mutate_(cord); } |
|
bool CanUndo() const { return undo_ != nullptr; } |
|
void Undo(absl::Cord& cord) const { undo_(cord); } |
|
|
|
private: |
|
absl::string_view name_; |
|
void (*mutate_)(absl::Cord&); |
|
void (*undo_)(absl::Cord&); |
|
}; |
|
|
|
// clang-format off |
|
// This array is constant-initialized in conformant compilers. |
|
CordMutator cord_mutators[] = { |
|
{"clear", [](absl::Cord& c) { c.Clear(); }}, |
|
{"overwrite", [](absl::Cord& c) { c = "overwritten"; }}, |
|
{ |
|
"append string", |
|
[](absl::Cord& c) { c.Append("0123456789"); }, |
|
[](absl::Cord& c) { c.RemoveSuffix(10); } |
|
}, |
|
{ |
|
"append cord", |
|
[](absl::Cord& c) { |
|
c.Append(absl::MakeFragmentedCord({"12345", "67890"})); |
|
}, |
|
[](absl::Cord& c) { c.RemoveSuffix(10); } |
|
}, |
|
{ |
|
"append checksummed cord", |
|
[](absl::Cord& c) { |
|
absl::Cord to_append = absl::MakeFragmentedCord({"12345", "67890"}); |
|
to_append.SetExpectedChecksum(999); |
|
c.Append(to_append); |
|
}, |
|
[](absl::Cord& c) { c.RemoveSuffix(10); } |
|
}, |
|
{ |
|
"append self", |
|
[](absl::Cord& c) { c.Append(c); }, |
|
[](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); } |
|
}, |
|
{ |
|
"append empty string", |
|
[](absl::Cord& c) { c.Append(""); }, |
|
[](absl::Cord& c) { } |
|
}, |
|
{ |
|
"append empty cord", |
|
[](absl::Cord& c) { c.Append(absl::Cord()); }, |
|
[](absl::Cord& c) { } |
|
}, |
|
{ |
|
"append empty checksummed cord", |
|
[](absl::Cord& c) { |
|
absl::Cord to_append; |
|
to_append.SetExpectedChecksum(999); |
|
c.Append(to_append); |
|
}, |
|
[](absl::Cord& c) { } |
|
}, |
|
{ |
|
"prepend string", |
|
[](absl::Cord& c) { c.Prepend("9876543210"); }, |
|
[](absl::Cord& c) { c.RemovePrefix(10); } |
|
}, |
|
{ |
|
"prepend cord", |
|
[](absl::Cord& c) { |
|
c.Prepend(absl::MakeFragmentedCord({"98765", "43210"})); |
|
}, |
|
[](absl::Cord& c) { c.RemovePrefix(10); } |
|
}, |
|
{ |
|
"prepend checksummed cord", |
|
[](absl::Cord& c) { |
|
absl::Cord to_prepend = absl::MakeFragmentedCord({"98765", "43210"}); |
|
to_prepend.SetExpectedChecksum(999); |
|
c.Prepend(to_prepend); |
|
}, |
|
[](absl::Cord& c) { c.RemovePrefix(10); } |
|
}, |
|
{ |
|
"prepend empty string", |
|
[](absl::Cord& c) { c.Prepend(""); }, |
|
[](absl::Cord& c) { } |
|
}, |
|
{ |
|
"prepend empty cord", |
|
[](absl::Cord& c) { c.Prepend(absl::Cord()); }, |
|
[](absl::Cord& c) { } |
|
}, |
|
{ |
|
"prepend empty checksummed cord", |
|
[](absl::Cord& c) { |
|
absl::Cord to_prepend; |
|
to_prepend.SetExpectedChecksum(999); |
|
c.Prepend(to_prepend); |
|
}, |
|
[](absl::Cord& c) { } |
|
}, |
|
{ |
|
"prepend self", |
|
[](absl::Cord& c) { c.Prepend(c); }, |
|
[](absl::Cord& c) { c.RemovePrefix(c.size() / 2); } |
|
}, |
|
{"remove prefix", [](absl::Cord& c) { c.RemovePrefix(c.size() / 2); }}, |
|
{"remove suffix", [](absl::Cord& c) { c.RemoveSuffix(c.size() / 2); }}, |
|
{"remove 0-prefix", [](absl::Cord& c) { c.RemovePrefix(0); }}, |
|
{"remove 0-suffix", [](absl::Cord& c) { c.RemoveSuffix(0); }}, |
|
{"subcord", [](absl::Cord& c) { c = c.Subcord(1, c.size() - 2); }}, |
|
{ |
|
"swap inline", |
|
[](absl::Cord& c) { |
|
absl::Cord other("swap"); |
|
c.swap(other); |
|
} |
|
}, |
|
{ |
|
"swap tree", |
|
[](absl::Cord& c) { |
|
absl::Cord other(std::string(10000, 'x')); |
|
c.swap(other); |
|
} |
|
}, |
|
}; |
|
// clang-format on |
|
} // namespace |
|
|
|
TEST_P(CordTest, ExpectedChecksum) { |
|
for (const PopulatedCordFactory& factory : cord_factories) { |
|
SCOPED_TRACE(factory.Name()); |
|
for (bool shared : {false, true}) { |
|
SCOPED_TRACE(shared); |
|
|
|
absl::Cord shared_cord_source = factory.Generate(); |
|
auto make_instance = [=] { |
|
return shared ? shared_cord_source : factory.Generate(); |
|
}; |
|
|
|
const absl::Cord base_value = factory.Generate(); |
|
const std::string base_value_as_string(factory.Generate().Flatten()); |
|
|
|
absl::Cord c1 = make_instance(); |
|
EXPECT_FALSE(c1.ExpectedChecksum().has_value()); |
|
|
|
// Setting an expected checksum works, and retains the cord's bytes |
|
c1.SetExpectedChecksum(12345); |
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345); |
|
EXPECT_EQ(c1, base_value); |
|
|
|
// Test that setting an expected checksum again doesn't crash or leak |
|
// memory. |
|
c1.SetExpectedChecksum(12345); |
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345); |
|
EXPECT_EQ(c1, base_value); |
|
|
|
// CRC persists through copies, assignments, and moves: |
|
absl::Cord c1_copy_construct = c1; |
|
EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345); |
|
|
|
absl::Cord c1_copy_assign; |
|
c1_copy_assign = c1; |
|
EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345); |
|
|
|
absl::Cord c1_move(std::move(c1_copy_assign)); |
|
EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345); |
|
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345); |
|
|
|
// A CRC Cord compares equal to its non-CRC value. |
|
EXPECT_EQ(c1, make_instance()); |
|
|
|
for (const CordMutator& mutator : cord_mutators) { |
|
SCOPED_TRACE(mutator.Name()); |
|
|
|
// Test that mutating a cord removes its stored checksum |
|
absl::Cord c2 = make_instance(); |
|
c2.SetExpectedChecksum(24680); |
|
|
|
mutator.Mutate(c2); |
|
|
|
if (c1 == c2) { |
|
// Not a mutation (for example, appending the empty string). |
|
// Whether the checksum is removed is not defined. |
|
continue; |
|
} |
|
|
|
EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt); |
|
|
|
if (mutator.CanUndo()) { |
|
// Undoing an operation should not restore the checksum |
|
mutator.Undo(c2); |
|
EXPECT_EQ(c2, base_value); |
|
EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt); |
|
} |
|
} |
|
|
|
absl::Cord c3 = make_instance(); |
|
c3.SetExpectedChecksum(999); |
|
const absl::Cord& cc3 = c3; |
|
|
|
// Test that all cord reading operations function in the face of an |
|
// expected checksum. |
|
|
|
// Test data precondition |
|
ASSERT_TRUE(cc3.StartsWith("abcde")); |
|
|
|
EXPECT_EQ(cc3.size(), base_value_as_string.size()); |
|
EXPECT_FALSE(cc3.empty()); |
|
EXPECT_EQ(cc3.Compare(base_value), 0); |
|
EXPECT_EQ(cc3.Compare(base_value_as_string), 0); |
|
EXPECT_EQ(cc3.Compare("wxyz"), -1); |
|
EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1); |
|
EXPECT_EQ(cc3.Compare("aaaa"), 1); |
|
EXPECT_EQ(cc3.Compare(absl::Cord("aaaa")), 1); |
|
EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1); |
|
EXPECT_EQ(absl::Cord("aaaa").Compare(cc3), -1); |
|
EXPECT_TRUE(cc3.StartsWith("abcd")); |
|
EXPECT_EQ(std::string(cc3), base_value_as_string); |
|
|
|
std::string dest; |
|
absl::CopyCordToString(cc3, &dest); |
|
EXPECT_EQ(dest, base_value_as_string); |
|
|
|
bool first_pass = true; |
|
for (absl::string_view chunk : cc3.Chunks()) { |
|
if (first_pass) { |
|
EXPECT_TRUE(absl::StartsWith(chunk, "abcde")); |
|
} |
|
first_pass = false; |
|
} |
|
first_pass = true; |
|
for (char ch : cc3.Chars()) { |
|
if (first_pass) { |
|
EXPECT_EQ(ch, 'a'); |
|
} |
|
first_pass = false; |
|
} |
|
EXPECT_TRUE(absl::StartsWith(*cc3.chunk_begin(), "abcde")); |
|
EXPECT_EQ(*cc3.char_begin(), 'a'); |
|
|
|
auto char_it = cc3.char_begin(); |
|
absl::Cord::Advance(&char_it, 2); |
|
EXPECT_EQ(absl::Cord::AdvanceAndRead(&char_it, 2), "cd"); |
|
EXPECT_EQ(*char_it, 'e'); |
|
char_it = cc3.char_begin(); |
|
absl::Cord::Advance(&char_it, 2); |
|
EXPECT_TRUE(absl::StartsWith(absl::Cord::ChunkRemaining(char_it), "cde")); |
|
|
|
EXPECT_EQ(cc3[0], 'a'); |
|
EXPECT_EQ(cc3[4], 'e'); |
|
EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value)); |
|
EXPECT_EQ(absl::HashOf(cc3), absl::HashOf(base_value_as_string)); |
|
} |
|
} |
|
} |
|
|
|
// Test the special cases encountered with an empty checksummed cord. |
|
TEST_P(CordTest, ChecksummedEmptyCord) { |
|
absl::Cord c1; |
|
EXPECT_FALSE(c1.ExpectedChecksum().has_value()); |
|
|
|
// Setting an expected checksum works. |
|
c1.SetExpectedChecksum(12345); |
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345); |
|
EXPECT_EQ(c1, ""); |
|
EXPECT_TRUE(c1.empty()); |
|
|
|
// Test that setting an expected checksum again doesn't crash or leak memory. |
|
c1.SetExpectedChecksum(12345); |
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345); |
|
EXPECT_EQ(c1, ""); |
|
EXPECT_TRUE(c1.empty()); |
|
|
|
// CRC persists through copies, assignments, and moves: |
|
absl::Cord c1_copy_construct = c1; |
|
EXPECT_EQ(c1_copy_construct.ExpectedChecksum().value_or(0), 12345); |
|
|
|
absl::Cord c1_copy_assign; |
|
c1_copy_assign = c1; |
|
EXPECT_EQ(c1_copy_assign.ExpectedChecksum().value_or(0), 12345); |
|
|
|
absl::Cord c1_move(std::move(c1_copy_assign)); |
|
EXPECT_EQ(c1_move.ExpectedChecksum().value_or(0), 12345); |
|
|
|
EXPECT_EQ(c1.ExpectedChecksum().value_or(0), 12345); |
|
|
|
// A CRC Cord compares equal to its non-CRC value. |
|
EXPECT_EQ(c1, absl::Cord()); |
|
|
|
for (const CordMutator& mutator : cord_mutators) { |
|
SCOPED_TRACE(mutator.Name()); |
|
|
|
// Exercise mutating an empty checksummed cord to catch crashes and exercise |
|
// memory sanitizers. |
|
absl::Cord c2; |
|
c2.SetExpectedChecksum(24680); |
|
mutator.Mutate(c2); |
|
|
|
if (c2.empty()) { |
|
// Not a mutation |
|
continue; |
|
} |
|
EXPECT_EQ(c2.ExpectedChecksum(), absl::nullopt); |
|
|
|
if (mutator.CanUndo()) { |
|
mutator.Undo(c2); |
|
} |
|
} |
|
|
|
absl::Cord c3; |
|
c3.SetExpectedChecksum(999); |
|
const absl::Cord& cc3 = c3; |
|
|
|
// Test that all cord reading operations function in the face of an |
|
// expected checksum. |
|
EXPECT_TRUE(cc3.StartsWith("")); |
|
EXPECT_TRUE(cc3.EndsWith("")); |
|
EXPECT_TRUE(cc3.empty()); |
|
EXPECT_EQ(cc3, ""); |
|
EXPECT_EQ(cc3, absl::Cord()); |
|
EXPECT_EQ(cc3.size(), 0); |
|
EXPECT_EQ(cc3.Compare(absl::Cord()), 0); |
|
EXPECT_EQ(cc3.Compare(c1), 0); |
|
EXPECT_EQ(cc3.Compare(cc3), 0); |
|
EXPECT_EQ(cc3.Compare(""), 0); |
|
EXPECT_EQ(cc3.Compare("wxyz"), -1); |
|
EXPECT_EQ(cc3.Compare(absl::Cord("wxyz")), -1); |
|
EXPECT_EQ(absl::Cord("wxyz").Compare(cc3), 1); |
|
EXPECT_EQ(std::string(cc3), ""); |
|
|
|
std::string dest; |
|
absl::CopyCordToString(cc3, &dest); |
|
EXPECT_EQ(dest, ""); |
|
|
|
for (absl::string_view chunk : cc3.Chunks()) { // NOLINT(unreachable loop) |
|
static_cast<void>(chunk); |
|
GTEST_FAIL() << "no chunks expected"; |
|
} |
|
EXPECT_TRUE(cc3.chunk_begin() == cc3.chunk_end()); |
|
|
|
for (char ch : cc3.Chars()) { // NOLINT(unreachable loop) |
|
static_cast<void>(ch); |
|
GTEST_FAIL() << "no chars expected"; |
|
} |
|
EXPECT_TRUE(cc3.char_begin() == cc3.char_end()); |
|
|
|
EXPECT_EQ(cc3.TryFlat(), ""); |
|
EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::Cord())); |
|
EXPECT_EQ(absl::HashOf(c3), absl::HashOf(absl::string_view())); |
|
}
|
|
|