Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

652 lines
20 KiB

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Tests for pointer utilities.
#include "absl/memory/memory.h"
#include <sys/types.h>
#include <cstddef>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
namespace {
using ::testing::ElementsAre;
using ::testing::Return;
// This class creates observable behavior to verify that a destructor has
// been called, via the instance_count variable.
class DestructorVerifier {
public:
DestructorVerifier() { ++instance_count_; }
DestructorVerifier(const DestructorVerifier&) = delete;
DestructorVerifier& operator=(const DestructorVerifier&) = delete;
~DestructorVerifier() { --instance_count_; }
// The number of instances of this class currently active.
static int instance_count() { return instance_count_; }
private:
// The number of instances of this class currently active.
static int instance_count_;
};
int DestructorVerifier::instance_count_ = 0;
TEST(WrapUniqueTest, WrapUnique) {
// Test that the unique_ptr is constructed properly by verifying that the
// destructor for its payload gets called at the proper time.
{
auto dv = new DestructorVerifier;
EXPECT_EQ(1, DestructorVerifier::instance_count());
std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv);
EXPECT_EQ(1, DestructorVerifier::instance_count());
}
EXPECT_EQ(0, DestructorVerifier::instance_count());
}
TEST(MakeUniqueTest, Basic) {
std::unique_ptr<std::string> p = absl::make_unique<std::string>();
EXPECT_EQ("", *p);
p = absl::make_unique<std::string>("hi");
EXPECT_EQ("hi", *p);
}
// InitializationVerifier fills in a pattern when allocated so we can
// distinguish between its default and value initialized states (without
// accessing truly uninitialized memory).
struct InitializationVerifier {
static constexpr int kDefaultScalar = 0x43;
static constexpr int kDefaultArray = 0x4B;
static void* operator new(size_t n) {
void* ret = ::operator new(n);
memset(ret, kDefaultScalar, n);
return ret;
}
static void* operator new[](size_t n) {
void* ret = ::operator new[](n);
memset(ret, kDefaultArray, n);
return ret;
}
int a;
int b;
};
TEST(Initialization, MakeUnique) {
auto p = absl::make_unique<InitializationVerifier>();
EXPECT_EQ(0, p->a);
EXPECT_EQ(0, p->b);
}
TEST(Initialization, MakeUniqueArray) {
auto p = absl::make_unique<InitializationVerifier[]>(2);
EXPECT_EQ(0, p[0].a);
EXPECT_EQ(0, p[0].b);
EXPECT_EQ(0, p[1].a);
EXPECT_EQ(0, p[1].b);
}
struct MoveOnly {
MoveOnly() = default;
explicit MoveOnly(int i1) : ip1{new int{i1}} {}
MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {}
std::unique_ptr<int> ip1;
std::unique_ptr<int> ip2;
};
struct AcceptMoveOnly {
explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {}
MoveOnly m_;
};
TEST(MakeUniqueTest, MoveOnlyTypeAndValue) {
using ExpectedType = std::unique_ptr<MoveOnly>;
{
auto p = absl::make_unique<MoveOnly>();
static_assert(std::is_same<decltype(p), ExpectedType>::value,
"unexpected return type");
EXPECT_TRUE(!p->ip1);
EXPECT_TRUE(!p->ip2);
}
{
auto p = absl::make_unique<MoveOnly>(1);
static_assert(std::is_same<decltype(p), ExpectedType>::value,
"unexpected return type");
EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
EXPECT_TRUE(!p->ip2);
}
{
auto p = absl::make_unique<MoveOnly>(1, 2);
static_assert(std::is_same<decltype(p), ExpectedType>::value,
"unexpected return type");
EXPECT_TRUE(p->ip1 && *p->ip1 == 1);
EXPECT_TRUE(p->ip2 && *p->ip2 == 2);
}
}
TEST(MakeUniqueTest, AcceptMoveOnly) {
auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly());
p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly()));
}
struct ArrayWatch {
void* operator new[](size_t n) {
allocs().push_back(n);
return ::operator new[](n);
}
void operator delete[](void* p) {
return ::operator delete[](p);
}
static std::vector<size_t>& allocs() {
static auto& v = *new std::vector<size_t>;
return v;
}
};
TEST(Make_UniqueTest, Array) {
// Ensure state is clean before we start so that these tests
// are order-agnostic.
ArrayWatch::allocs().clear();
auto p = absl::make_unique<ArrayWatch[]>(5);
static_assert(std::is_same<decltype(p),
std::unique_ptr<ArrayWatch[]>>::value,
"unexpected return type");
EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch)));
}
TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) {
// Ensure that absl::make_unique is not ambiguous with std::make_unique.
// In C++14 mode, the below call to make_unique has both types as candidates.
struct TakesStdType {
explicit TakesStdType(const std::vector<int> &vec) {}
};
using absl::make_unique;
(void)make_unique<TakesStdType>(std::vector<int>());
}
#if 0
// These tests shouldn't compile.
TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) {
auto m = MoveOnly();
auto p = absl::make_unique<AcceptMoveOnly>(m);
}
TEST(MakeUniqueTestNC, KnownBoundArray) {
auto p = absl::make_unique<ArrayWatch[5]>();
}
#endif
TEST(RawPtrTest, RawPointer) {
int i = 5;
EXPECT_EQ(&i, absl::RawPtr(&i));
}
TEST(RawPtrTest, SmartPointer) {
int* o = new int(5);
std::unique_ptr<int> p(o);
EXPECT_EQ(o, absl::RawPtr(p));
}
class IntPointerNonConstDeref {
public:
explicit IntPointerNonConstDeref(int* p) : p_(p) {}
friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) {
return a.p_ != nullptr;
}
int& operator*() { return *p_; }
private:
std::unique_ptr<int> p_;
};
TEST(RawPtrTest, SmartPointerNonConstDereference) {
int* o = new int(5);
IntPointerNonConstDeref p(o);
EXPECT_EQ(o, absl::RawPtr(p));
}
TEST(RawPtrTest, NullValuedRawPointer) {
int* p = nullptr;
EXPECT_EQ(nullptr, absl::RawPtr(p));
}
TEST(RawPtrTest, NullValuedSmartPointer) {
std::unique_ptr<int> p;
EXPECT_EQ(nullptr, absl::RawPtr(p));
}
TEST(RawPtrTest, Nullptr) {
auto p = absl::RawPtr(nullptr);
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
EXPECT_EQ(nullptr, p);
}
TEST(RawPtrTest, Null) {
auto p = absl::RawPtr(nullptr);
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
EXPECT_EQ(nullptr, p);
}
TEST(RawPtrTest, Zero) {
auto p = absl::RawPtr(nullptr);
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value));
EXPECT_EQ(nullptr, p);
}
TEST(ShareUniquePtrTest, Share) {
auto up = absl::make_unique<int>();
int* rp = up.get();
auto sp = absl::ShareUniquePtr(std::move(up));
EXPECT_EQ(sp.get(), rp);
}
TEST(ShareUniquePtrTest, ShareNull) {
struct NeverDie {
using pointer = void*;
void operator()(pointer) {
ASSERT_TRUE(false) << "Deleter should not have been called.";
}
};
std::unique_ptr<void, NeverDie> up;
auto sp = absl::ShareUniquePtr(std::move(up));
}
TEST(WeakenPtrTest, Weak) {
auto sp = std::make_shared<int>();
auto wp = absl::WeakenPtr(sp);
EXPECT_EQ(sp.get(), wp.lock().get());
sp.reset();
EXPECT_TRUE(wp.expired());
}
// Should not compile.
/*
TEST(RawPtrTest, NotAPointer) {
absl::RawPtr(1.5);
}
*/
template <typename T>
struct SmartPointer {
using difference_type = char;
};
struct PointerWith {
using element_type = int32_t;
using difference_type = int16_t;
template <typename U>
using rebind = SmartPointer<U>;
static PointerWith pointer_to(
element_type& r) { // NOLINT(runtime/references)
return PointerWith{&r};
}
element_type* ptr;
};
template <typename... Args>
struct PointerWithout {};
TEST(PointerTraits, Types) {
using TraitsWith = absl::pointer_traits<PointerWith>;
EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value));
EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value));
EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value));
EXPECT_TRUE((
std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value));
using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>;
EXPECT_TRUE((std::is_same<TraitsWithout::pointer,
PointerWithout<double, int>>::value));
EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value));
EXPECT_TRUE(
(std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value));
EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>,
PointerWithout<int64_t, int>>::value));
using TraitsRawPtr = absl::pointer_traits<char*>;
EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value));
EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value));
EXPECT_TRUE(
(std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value));
EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value));
}
TEST(PointerTraits, Functions) {
int i;
EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr);
EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i));
}
TEST(AllocatorTraits, Typedefs) {
struct A {
struct value_type {};
};
EXPECT_TRUE((
std::is_same<A,
typename absl::allocator_traits<A>::allocator_type>::value));
EXPECT_TRUE(
(std::is_same<A::value_type,
typename absl::allocator_traits<A>::value_type>::value));
struct X {};
struct HasPointer {
using value_type = X;
using pointer = SmartPointer<X>;
};
EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits<
HasPointer>::pointer>::value));
EXPECT_TRUE(
(std::is_same<A::value_type*,
typename absl::allocator_traits<A>::pointer>::value));
EXPECT_TRUE(
(std::is_same<
SmartPointer<const X>,
typename absl::allocator_traits<HasPointer>::const_pointer>::value));
EXPECT_TRUE(
(std::is_same<const A::value_type*,
typename absl::allocator_traits<A>::const_pointer>::value));
struct HasVoidPointer {
using value_type = X;
struct void_pointer {};
};
EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer,
typename absl::allocator_traits<
HasVoidPointer>::void_pointer>::value));
EXPECT_TRUE(
(std::is_same<SmartPointer<void>, typename absl::allocator_traits<
HasPointer>::void_pointer>::value));
struct HasConstVoidPointer {
using value_type = X;
struct const_void_pointer {};
};
EXPECT_TRUE(
(std::is_same<HasConstVoidPointer::const_void_pointer,
typename absl::allocator_traits<
HasConstVoidPointer>::const_void_pointer>::value));
EXPECT_TRUE((std::is_same<SmartPointer<const void>,
typename absl::allocator_traits<
HasPointer>::const_void_pointer>::value));
struct HasDifferenceType {
using value_type = X;
using difference_type = int;
};
EXPECT_TRUE(
(std::is_same<int, typename absl::allocator_traits<
HasDifferenceType>::difference_type>::value));
EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits<
HasPointer>::difference_type>::value));
struct HasSizeType {
using value_type = X;
using size_type = unsigned int;
};
EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits<
HasSizeType>::size_type>::value));
EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits<
HasPointer>::size_type>::value));
struct HasPropagateOnCopy {
using value_type = X;
struct propagate_on_container_copy_assignment {};
};
EXPECT_TRUE(
(std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment,
typename absl::allocator_traits<HasPropagateOnCopy>::
propagate_on_container_copy_assignment>::value));
EXPECT_TRUE(
(std::is_same<std::false_type,
typename absl::allocator_traits<
A>::propagate_on_container_copy_assignment>::value));
struct HasPropagateOnMove {
using value_type = X;
struct propagate_on_container_move_assignment {};
};
EXPECT_TRUE(
(std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment,
typename absl::allocator_traits<HasPropagateOnMove>::
propagate_on_container_move_assignment>::value));
EXPECT_TRUE(
(std::is_same<std::false_type,
typename absl::allocator_traits<
A>::propagate_on_container_move_assignment>::value));
struct HasPropagateOnSwap {
using value_type = X;
struct propagate_on_container_swap {};
};
EXPECT_TRUE(
(std::is_same<HasPropagateOnSwap::propagate_on_container_swap,
typename absl::allocator_traits<HasPropagateOnSwap>::
propagate_on_container_swap>::value));
EXPECT_TRUE(
(std::is_same<std::false_type, typename absl::allocator_traits<A>::
propagate_on_container_swap>::value));
struct HasIsAlwaysEqual {
using value_type = X;
struct is_always_equal {};
};
EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal,
typename absl::allocator_traits<
HasIsAlwaysEqual>::is_always_equal>::value));
EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits<
A>::is_always_equal>::value));
struct NonEmpty {
using value_type = X;
int i;
};
EXPECT_TRUE(
(std::is_same<std::false_type,
absl::allocator_traits<NonEmpty>::is_always_equal>::value));
}
template <typename T>
struct AllocWithPrivateInheritance : private std::allocator<T> {
using value_type = T;
};
TEST(AllocatorTraits, RebindWithPrivateInheritance) {
// Regression test for some versions of gcc that do not like the sfinae we
// used in combination with private inheritance.
EXPECT_TRUE(
(std::is_same<AllocWithPrivateInheritance<int>,
absl::allocator_traits<AllocWithPrivateInheritance<char>>::
rebind_alloc<int>>::value));
}
template <typename T>
struct Rebound {};
struct AllocWithRebind {
using value_type = int;
template <typename T>
struct rebind {
using other = Rebound<T>;
};
};
template <typename T, typename U>
struct AllocWithoutRebind {
using value_type = int;
};
TEST(AllocatorTraits, Rebind) {
EXPECT_TRUE(
(std::is_same<Rebound<int>,
typename absl::allocator_traits<
AllocWithRebind>::template rebind_alloc<int>>::value));
EXPECT_TRUE(
(std::is_same<absl::allocator_traits<Rebound<int>>,
typename absl::allocator_traits<
AllocWithRebind>::template rebind_traits<int>>::value));
EXPECT_TRUE(
(std::is_same<AllocWithoutRebind<double, char>,
typename absl::allocator_traits<AllocWithoutRebind<
int, char>>::template rebind_alloc<double>>::value));
EXPECT_TRUE(
(std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>,
typename absl::allocator_traits<AllocWithoutRebind<
int, char>>::template rebind_traits<double>>::value));
}
struct TestValue {
TestValue() {}
explicit TestValue(int* trace) : trace(trace) { ++*trace; }
~TestValue() {
if (trace) --*trace;
}
int* trace = nullptr;
};
struct MinimalMockAllocator {
MinimalMockAllocator() : value(0) {}
explicit MinimalMockAllocator(int value) : value(value) {}
MinimalMockAllocator(const MinimalMockAllocator& other)
: value(other.value) {}
using value_type = TestValue;
MOCK_METHOD1(allocate, value_type*(size_t));
MOCK_METHOD2(deallocate, void(value_type*, size_t));
int value;
};
TEST(AllocatorTraits, FunctionsMinimal) {
int trace = 0;
int hint;
TestValue x(&trace);
MinimalMockAllocator mock;
using Traits = absl::allocator_traits<MinimalMockAllocator>;
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
EXPECT_CALL(mock, deallocate(&x, 7));
EXPECT_EQ(&x, Traits::allocate(mock, 7));
Traits::allocate(mock, 7, static_cast<const void*>(&hint));
EXPECT_EQ(&x, Traits::allocate(mock, 7, static_cast<const void*>(&hint)));
Traits::deallocate(mock, &x, 7);
EXPECT_EQ(1, trace);
Traits::construct(mock, &x, &trace);
EXPECT_EQ(2, trace);
Traits::destroy(mock, &x);
EXPECT_EQ(1, trace);
EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue),
Traits::max_size(mock));
EXPECT_EQ(0, mock.value);
EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value);
}
struct FullMockAllocator {
FullMockAllocator() : value(0) {}
explicit FullMockAllocator(int value) : value(value) {}
FullMockAllocator(const FullMockAllocator& other) : value(other.value) {}
using value_type = TestValue;
MOCK_METHOD1(allocate, value_type*(size_t));
MOCK_METHOD2(allocate, value_type*(size_t, const void*));
MOCK_METHOD2(construct, void(value_type*, int*));
MOCK_METHOD1(destroy, void(value_type*));
MOCK_CONST_METHOD0(max_size, size_t());
MOCK_CONST_METHOD0(select_on_container_copy_construction,
FullMockAllocator());
int value;
};
TEST(AllocatorTraits, FunctionsFull) {
int trace = 0;
int hint;
TestValue x(&trace), y;
FullMockAllocator mock;
using Traits = absl::allocator_traits<FullMockAllocator>;
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x));
EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y));
EXPECT_CALL(mock, construct(&x, &trace));
EXPECT_CALL(mock, destroy(&x));
EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17));
EXPECT_CALL(mock, select_on_container_copy_construction())
.WillRepeatedly(Return(FullMockAllocator(23)));
EXPECT_EQ(&x, Traits::allocate(mock, 7));
EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint)));
EXPECT_EQ(1, trace);
Traits::construct(mock, &x, &trace);
EXPECT_EQ(1, trace);
Traits::destroy(mock, &x);
EXPECT_EQ(1, trace);
EXPECT_EQ(17, Traits::max_size(mock));
EXPECT_EQ(0, mock.value);
EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value);
}
TEST(AllocatorNoThrowTest, DefaultAllocator) {
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
EXPECT_TRUE(absl::default_allocator_is_nothrow::value);
#else
EXPECT_FALSE(absl::default_allocator_is_nothrow::value);
#endif
}
TEST(AllocatorNoThrowTest, StdAllocator) {
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW
EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value);
#else
EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value);
#endif
}
TEST(AllocatorNoThrowTest, CustomAllocator) {
struct NoThrowAllocator {
using is_nothrow = std::true_type;
};
struct CanThrowAllocator {
using is_nothrow = std::false_type;
};
struct UnspecifiedAllocator {
};
EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value);
EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value);
EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value);
}
} // namespace