Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2384 lines
90 KiB
2384 lines
90 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// An open-addressing |
|
// hashtable with quadratic probing. |
|
// |
|
// This is a low level hashtable on top of which different interfaces can be |
|
// implemented, like flat_hash_set, node_hash_set, string_hash_set, etc. |
|
// |
|
// The table interface is similar to that of std::unordered_set. Notable |
|
// differences are that most member functions support heterogeneous keys when |
|
// BOTH the hash and eq functions are marked as transparent. They do so by |
|
// providing a typedef called `is_transparent`. |
|
// |
|
// When heterogeneous lookup is enabled, functions that take key_type act as if |
|
// they have an overload set like: |
|
// |
|
// iterator find(const key_type& key); |
|
// template <class K> |
|
// iterator find(const K& key); |
|
// |
|
// size_type erase(const key_type& key); |
|
// template <class K> |
|
// size_type erase(const K& key); |
|
// |
|
// std::pair<iterator, iterator> equal_range(const key_type& key); |
|
// template <class K> |
|
// std::pair<iterator, iterator> equal_range(const K& key); |
|
// |
|
// When heterogeneous lookup is disabled, only the explicit `key_type` overloads |
|
// exist. |
|
// |
|
// find() also supports passing the hash explicitly: |
|
// |
|
// iterator find(const key_type& key, size_t hash); |
|
// template <class U> |
|
// iterator find(const U& key, size_t hash); |
|
// |
|
// In addition the pointer to element and iterator stability guarantees are |
|
// weaker: all iterators and pointers are invalidated after a new element is |
|
// inserted. |
|
// |
|
// IMPLEMENTATION DETAILS |
|
// |
|
// # Table Layout |
|
// |
|
// A raw_hash_set's backing array consists of control bytes followed by slots |
|
// that may or may not contain objects. |
|
// |
|
// The layout of the backing array, for `capacity` slots, is thus, as a |
|
// pseudo-struct: |
|
// |
|
// struct BackingArray { |
|
// // Control bytes for the "real" slots. |
|
// ctrl_t ctrl[capacity]; |
|
// // Always `ctrl_t::kSentinel`. This is used by iterators to find when to |
|
// // stop and serves no other purpose. |
|
// ctrl_t sentinel; |
|
// // A copy of the first `kWidth - 1` elements of `ctrl`. This is used so |
|
// // that if a probe sequence picks a value near the end of `ctrl`, |
|
// // `Group` will have valid control bytes to look at. |
|
// ctrl_t clones[kWidth - 1]; |
|
// // The actual slot data. |
|
// slot_type slots[capacity]; |
|
// }; |
|
// |
|
// The length of this array is computed by `AllocSize()` below. |
|
// |
|
// Control bytes (`ctrl_t`) are bytes (collected into groups of a |
|
// platform-specific size) that define the state of the corresponding slot in |
|
// the slot array. Group manipulation is tightly optimized to be as efficient |
|
// as possible: SSE and friends on x86, clever bit operations on other arches. |
|
// |
|
// Group 1 Group 2 Group 3 |
|
// +---------------+---------------+---------------+ |
|
// | | | | | | | | | | | | | | | | | | | | | | | | | |
|
// +---------------+---------------+---------------+ |
|
// |
|
// Each control byte is either a special value for empty slots, deleted slots |
|
// (sometimes called *tombstones*), and a special end-of-table marker used by |
|
// iterators, or, if occupied, seven bits (H2) from the hash of the value in the |
|
// corresponding slot. |
|
// |
|
// Storing control bytes in a separate array also has beneficial cache effects, |
|
// since more logical slots will fit into a cache line. |
|
// |
|
// # Hashing |
|
// |
|
// We compute two separate hashes, `H1` and `H2`, from the hash of an object. |
|
// `H1(hash(x))` is an index into `slots`, and essentially the starting point |
|
// for the probe sequence. `H2(hash(x))` is a 7-bit value used to filter out |
|
// objects that cannot possibly be the one we are looking for. |
|
// |
|
// # Table operations. |
|
// |
|
// The key operations are `insert`, `find`, and `erase`. |
|
// |
|
// Since `insert` and `erase` are implemented in terms of `find`, we describe |
|
// `find` first. To `find` a value `x`, we compute `hash(x)`. From |
|
// `H1(hash(x))` and the capacity, we construct a `probe_seq` that visits every |
|
// group of slots in some interesting order. |
|
// |
|
// We now walk through these indices. At each index, we select the entire group |
|
// starting with that index and extract potential candidates: occupied slots |
|
// with a control byte equal to `H2(hash(x))`. If we find an empty slot in the |
|
// group, we stop and return an error. Each candidate slot `y` is compared with |
|
// `x`; if `x == y`, we are done and return `&y`; otherwise we contine to the |
|
// next probe index. Tombstones effectively behave like full slots that never |
|
// match the value we're looking for. |
|
// |
|
// The `H2` bits ensure when we compare a slot to an object with `==`, we are |
|
// likely to have actually found the object. That is, the chance is low that |
|
// `==` is called and returns `false`. Thus, when we search for an object, we |
|
// are unlikely to call `==` many times. This likelyhood can be analyzed as |
|
// follows (assuming that H2 is a random enough hash function). |
|
// |
|
// Let's assume that there are `k` "wrong" objects that must be examined in a |
|
// probe sequence. For example, when doing a `find` on an object that is in the |
|
// table, `k` is the number of objects between the start of the probe sequence |
|
// and the final found object (not including the final found object). The |
|
// expected number of objects with an H2 match is then `k/128`. Measurements |
|
// and analysis indicate that even at high load factors, `k` is less than 32, |
|
// meaning that the number of "false positive" comparisons we must perform is |
|
// less than 1/8 per `find`. |
|
|
|
// `insert` is implemented in terms of `unchecked_insert`, which inserts a |
|
// value presumed to not be in the table (violating this requirement will cause |
|
// the table to behave erratically). Given `x` and its hash `hash(x)`, to insert |
|
// it, we construct a `probe_seq` once again, and use it to find the first |
|
// group with an unoccupied (empty *or* deleted) slot. We place `x` into the |
|
// first such slot in the group and mark it as full with `x`'s H2. |
|
// |
|
// To `insert`, we compose `unchecked_insert` with `find`. We compute `h(x)` and |
|
// perform a `find` to see if it's already present; if it is, we're done. If |
|
// it's not, we may decide the table is getting overcrowded (i.e. the load |
|
// factor is greater than 7/8 for big tables; `is_small()` tables use a max load |
|
// factor of 1); in this case, we allocate a bigger array, `unchecked_insert` |
|
// each element of the table into the new array (we know that no insertion here |
|
// will insert an already-present value), and discard the old backing array. At |
|
// this point, we may `unchecked_insert` the value `x`. |
|
// |
|
// Below, `unchecked_insert` is partly implemented by `prepare_insert`, which |
|
// presents a viable, initialized slot pointee to the caller. |
|
// |
|
// `erase` is implemented in terms of `erase_at`, which takes an index to a |
|
// slot. Given an offset, we simply create a tombstone and destroy its contents. |
|
// If we can prove that the slot would not appear in a probe sequence, we can |
|
// make the slot as empty, instead. We can prove this by observing that if a |
|
// group has any empty slots, it has never been full (assuming we never create |
|
// an empty slot in a group with no empties, which this heuristic guarantees we |
|
// never do) and find would stop at this group anyways (since it does not probe |
|
// beyond groups with empties). |
|
// |
|
// `erase` is `erase_at` composed with `find`: if we |
|
// have a value `x`, we can perform a `find`, and then `erase_at` the resulting |
|
// slot. |
|
// |
|
// To iterate, we simply traverse the array, skipping empty and deleted slots |
|
// and stopping when we hit a `kSentinel`. |
|
|
|
#ifndef ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
|
#define ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_ |
|
|
|
#ifdef __SSE2__ |
|
#include <emmintrin.h> |
|
#endif |
|
|
|
#ifdef __SSSE3__ |
|
#include <tmmintrin.h> |
|
#endif |
|
|
|
#ifdef _MSC_VER |
|
#include <intrin.h> |
|
#endif |
|
|
|
#ifdef __ARM_NEON |
|
#include <arm_neon.h> |
|
#endif |
|
|
|
#ifdef __ARM_ACLE |
|
#include <arm_acle.h> |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <tuple> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/internal/prefetch.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/internal/common.h" |
|
#include "absl/container/internal/compressed_tuple.h" |
|
#include "absl/container/internal/container_memory.h" |
|
#include "absl/container/internal/hash_policy_traits.h" |
|
#include "absl/container/internal/hashtable_debug_hooks.h" |
|
#include "absl/container/internal/hashtablez_sampler.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/numeric/bits.h" |
|
#include "absl/utility/utility.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace container_internal { |
|
|
|
template <typename AllocType> |
|
void SwapAlloc(AllocType& lhs, AllocType& rhs, |
|
std::true_type /* propagate_on_container_swap */) { |
|
using std::swap; |
|
swap(lhs, rhs); |
|
} |
|
template <typename AllocType> |
|
void SwapAlloc(AllocType& /*lhs*/, AllocType& /*rhs*/, |
|
std::false_type /* propagate_on_container_swap */) {} |
|
|
|
// The state for a probe sequence. |
|
// |
|
// Currently, the sequence is a triangular progression of the form |
|
// |
|
// p(i) := Width * (i^2 + i)/2 + hash (mod mask + 1) |
|
// |
|
// The use of `Width` ensures that each probe step does not overlap groups; |
|
// the sequence effectively outputs the addresses of *groups* (although not |
|
// necessarily aligned to any boundary). The `Group` machinery allows us |
|
// to check an entire group with minimal branching. |
|
// |
|
// Wrapping around at `mask + 1` is important, but not for the obvious reason. |
|
// As described above, the first few entries of the control byte array |
|
// are mirrored at the end of the array, which `Group` will find and use |
|
// for selecting candidates. However, when those candidates' slots are |
|
// actually inspected, there are no corresponding slots for the cloned bytes, |
|
// so we need to make sure we've treated those offsets as "wrapping around". |
|
// |
|
// It turns out that this probe sequence visits every group exactly once if the |
|
// number of groups is a power of two, since (i^2+i)/2 is a bijection in |
|
// Z/(2^m). See https://en.wikipedia.org/wiki/Quadratic_probing |
|
template <size_t Width> |
|
class probe_seq { |
|
public: |
|
// Creates a new probe sequence using `hash` as the initial value of the |
|
// sequence and `mask` (usually the capacity of the table) as the mask to |
|
// apply to each value in the progression. |
|
probe_seq(size_t hash, size_t mask) { |
|
assert(((mask + 1) & mask) == 0 && "not a mask"); |
|
mask_ = mask; |
|
offset_ = hash & mask_; |
|
} |
|
|
|
// The offset within the table, i.e., the value `p(i)` above. |
|
size_t offset() const { return offset_; } |
|
size_t offset(size_t i) const { return (offset_ + i) & mask_; } |
|
|
|
void next() { |
|
index_ += Width; |
|
offset_ += index_; |
|
offset_ &= mask_; |
|
} |
|
// 0-based probe index, a multiple of `Width`. |
|
size_t index() const { return index_; } |
|
|
|
private: |
|
size_t mask_; |
|
size_t offset_; |
|
size_t index_ = 0; |
|
}; |
|
|
|
template <class ContainerKey, class Hash, class Eq> |
|
struct RequireUsableKey { |
|
template <class PassedKey, class... Args> |
|
std::pair< |
|
decltype(std::declval<const Hash&>()(std::declval<const PassedKey&>())), |
|
decltype(std::declval<const Eq&>()(std::declval<const ContainerKey&>(), |
|
std::declval<const PassedKey&>()))>* |
|
operator()(const PassedKey&, const Args&...) const; |
|
}; |
|
|
|
template <class E, class Policy, class Hash, class Eq, class... Ts> |
|
struct IsDecomposable : std::false_type {}; |
|
|
|
template <class Policy, class Hash, class Eq, class... Ts> |
|
struct IsDecomposable< |
|
absl::void_t<decltype(Policy::apply( |
|
RequireUsableKey<typename Policy::key_type, Hash, Eq>(), |
|
std::declval<Ts>()...))>, |
|
Policy, Hash, Eq, Ts...> : std::true_type {}; |
|
|
|
// TODO(alkis): Switch to std::is_nothrow_swappable when gcc/clang supports it. |
|
template <class T> |
|
constexpr bool IsNoThrowSwappable(std::true_type = {} /* is_swappable */) { |
|
using std::swap; |
|
return noexcept(swap(std::declval<T&>(), std::declval<T&>())); |
|
} |
|
template <class T> |
|
constexpr bool IsNoThrowSwappable(std::false_type /* is_swappable */) { |
|
return false; |
|
} |
|
|
|
template <typename T> |
|
uint32_t TrailingZeros(T x) { |
|
ABSL_ASSUME(x != 0); |
|
return static_cast<uint32_t>(countr_zero(x)); |
|
} |
|
|
|
// An abstract bitmask, such as that emitted by a SIMD instruction. |
|
// |
|
// Specifically, this type implements a simple bitset whose representation is |
|
// controlled by `SignificantBits` and `Shift`. `SignificantBits` is the number |
|
// of abstract bits in the bitset, while `Shift` is the log-base-two of the |
|
// width of an abstract bit in the representation. |
|
// This mask provides operations for any number of real bits set in an abstract |
|
// bit. To add iteration on top of that, implementation must guarantee no more |
|
// than one real bit is set in an abstract bit. |
|
template <class T, int SignificantBits, int Shift = 0> |
|
class NonIterableBitMask { |
|
public: |
|
explicit NonIterableBitMask(T mask) : mask_(mask) {} |
|
|
|
explicit operator bool() const { return this->mask_ != 0; } |
|
|
|
// Returns the index of the lowest *abstract* bit set in `self`. |
|
uint32_t LowestBitSet() const { |
|
return container_internal::TrailingZeros(mask_) >> Shift; |
|
} |
|
|
|
// Returns the index of the highest *abstract* bit set in `self`. |
|
uint32_t HighestBitSet() const { |
|
return static_cast<uint32_t>((bit_width(mask_) - 1) >> Shift); |
|
} |
|
|
|
// Return the number of trailing zero *abstract* bits. |
|
uint32_t TrailingZeros() const { |
|
return container_internal::TrailingZeros(mask_) >> Shift; |
|
} |
|
|
|
// Return the number of leading zero *abstract* bits. |
|
uint32_t LeadingZeros() const { |
|
constexpr int total_significant_bits = SignificantBits << Shift; |
|
constexpr int extra_bits = sizeof(T) * 8 - total_significant_bits; |
|
return static_cast<uint32_t>(countl_zero(mask_ << extra_bits)) >> Shift; |
|
} |
|
|
|
T mask_; |
|
}; |
|
|
|
// Mask that can be iterable |
|
// |
|
// For example, when `SignificantBits` is 16 and `Shift` is zero, this is just |
|
// an ordinary 16-bit bitset occupying the low 16 bits of `mask`. When |
|
// `SignificantBits` is 8 and `Shift` is 3, abstract bits are represented as |
|
// the bytes `0x00` and `0x80`, and it occupies all 64 bits of the bitmask. |
|
// |
|
// For example: |
|
// for (int i : BitMask<uint32_t, 16>(0b101)) -> yields 0, 2 |
|
// for (int i : BitMask<uint64_t, 8, 3>(0x0000000080800000)) -> yields 2, 3 |
|
template <class T, int SignificantBits, int Shift = 0> |
|
class BitMask : public NonIterableBitMask<T, SignificantBits, Shift> { |
|
using Base = NonIterableBitMask<T, SignificantBits, Shift>; |
|
static_assert(std::is_unsigned<T>::value, ""); |
|
static_assert(Shift == 0 || Shift == 3, ""); |
|
|
|
public: |
|
explicit BitMask(T mask) : Base(mask) {} |
|
// BitMask is an iterator over the indices of its abstract bits. |
|
using value_type = int; |
|
using iterator = BitMask; |
|
using const_iterator = BitMask; |
|
|
|
BitMask& operator++() { |
|
this->mask_ &= (this->mask_ - 1); |
|
return *this; |
|
} |
|
|
|
uint32_t operator*() const { return Base::LowestBitSet(); } |
|
|
|
BitMask begin() const { return *this; } |
|
BitMask end() const { return BitMask(0); } |
|
|
|
private: |
|
friend bool operator==(const BitMask& a, const BitMask& b) { |
|
return a.mask_ == b.mask_; |
|
} |
|
friend bool operator!=(const BitMask& a, const BitMask& b) { |
|
return a.mask_ != b.mask_; |
|
} |
|
}; |
|
|
|
using h2_t = uint8_t; |
|
|
|
// The values here are selected for maximum performance. See the static asserts |
|
// below for details. |
|
|
|
// A `ctrl_t` is a single control byte, which can have one of four |
|
// states: empty, deleted, full (which has an associated seven-bit h2_t value) |
|
// and the sentinel. They have the following bit patterns: |
|
// |
|
// empty: 1 0 0 0 0 0 0 0 |
|
// deleted: 1 1 1 1 1 1 1 0 |
|
// full: 0 h h h h h h h // h represents the hash bits. |
|
// sentinel: 1 1 1 1 1 1 1 1 |
|
// |
|
// These values are specifically tuned for SSE-flavored SIMD. |
|
// The static_asserts below detail the source of these choices. |
|
// |
|
// We use an enum class so that when strict aliasing is enabled, the compiler |
|
// knows ctrl_t doesn't alias other types. |
|
enum class ctrl_t : int8_t { |
|
kEmpty = -128, // 0b10000000 |
|
kDeleted = -2, // 0b11111110 |
|
kSentinel = -1, // 0b11111111 |
|
}; |
|
static_assert( |
|
(static_cast<int8_t>(ctrl_t::kEmpty) & |
|
static_cast<int8_t>(ctrl_t::kDeleted) & |
|
static_cast<int8_t>(ctrl_t::kSentinel) & 0x80) != 0, |
|
"Special markers need to have the MSB to make checking for them efficient"); |
|
static_assert( |
|
ctrl_t::kEmpty < ctrl_t::kSentinel && ctrl_t::kDeleted < ctrl_t::kSentinel, |
|
"ctrl_t::kEmpty and ctrl_t::kDeleted must be smaller than " |
|
"ctrl_t::kSentinel to make the SIMD test of IsEmptyOrDeleted() efficient"); |
|
static_assert( |
|
ctrl_t::kSentinel == static_cast<ctrl_t>(-1), |
|
"ctrl_t::kSentinel must be -1 to elide loading it from memory into SIMD " |
|
"registers (pcmpeqd xmm, xmm)"); |
|
static_assert(ctrl_t::kEmpty == static_cast<ctrl_t>(-128), |
|
"ctrl_t::kEmpty must be -128 to make the SIMD check for its " |
|
"existence efficient (psignb xmm, xmm)"); |
|
static_assert( |
|
(~static_cast<int8_t>(ctrl_t::kEmpty) & |
|
~static_cast<int8_t>(ctrl_t::kDeleted) & |
|
static_cast<int8_t>(ctrl_t::kSentinel) & 0x7F) != 0, |
|
"ctrl_t::kEmpty and ctrl_t::kDeleted must share an unset bit that is not " |
|
"shared by ctrl_t::kSentinel to make the scalar test for " |
|
"MaskEmptyOrDeleted() efficient"); |
|
static_assert(ctrl_t::kDeleted == static_cast<ctrl_t>(-2), |
|
"ctrl_t::kDeleted must be -2 to make the implementation of " |
|
"ConvertSpecialToEmptyAndFullToDeleted efficient"); |
|
|
|
ABSL_DLL extern const ctrl_t kEmptyGroup[16]; |
|
|
|
// Returns a pointer to a control byte group that can be used by empty tables. |
|
inline ctrl_t* EmptyGroup() { |
|
// Const must be cast away here; no uses of this function will actually write |
|
// to it, because it is only used for empty tables. |
|
return const_cast<ctrl_t*>(kEmptyGroup); |
|
} |
|
|
|
// Mixes a randomly generated per-process seed with `hash` and `ctrl` to |
|
// randomize insertion order within groups. |
|
bool ShouldInsertBackwards(size_t hash, const ctrl_t* ctrl); |
|
|
|
// Returns a per-table, hash salt, which changes on resize. This gets mixed into |
|
// H1 to randomize iteration order per-table. |
|
// |
|
// The seed consists of the ctrl_ pointer, which adds enough entropy to ensure |
|
// non-determinism of iteration order in most cases. |
|
inline size_t PerTableSalt(const ctrl_t* ctrl) { |
|
// The low bits of the pointer have little or no entropy because of |
|
// alignment. We shift the pointer to try to use higher entropy bits. A |
|
// good number seems to be 12 bits, because that aligns with page size. |
|
return reinterpret_cast<uintptr_t>(ctrl) >> 12; |
|
} |
|
// Extracts the H1 portion of a hash: 57 bits mixed with a per-table salt. |
|
inline size_t H1(size_t hash, const ctrl_t* ctrl) { |
|
return (hash >> 7) ^ PerTableSalt(ctrl); |
|
} |
|
|
|
// Extracts the H2 portion of a hash: the 7 bits not used for H1. |
|
// |
|
// These are used as an occupied control byte. |
|
inline h2_t H2(size_t hash) { return hash & 0x7F; } |
|
|
|
// Helpers for checking the state of a control byte. |
|
inline bool IsEmpty(ctrl_t c) { return c == ctrl_t::kEmpty; } |
|
inline bool IsFull(ctrl_t c) { return c >= static_cast<ctrl_t>(0); } |
|
inline bool IsDeleted(ctrl_t c) { return c == ctrl_t::kDeleted; } |
|
inline bool IsEmptyOrDeleted(ctrl_t c) { return c < ctrl_t::kSentinel; } |
|
|
|
#ifdef ABSL_INTERNAL_HAVE_SSE2 |
|
// Quick reference guide for intrinsics used below: |
|
// |
|
// * __m128i: An XMM (128-bit) word. |
|
// |
|
// * _mm_setzero_si128: Returns a zero vector. |
|
// * _mm_set1_epi8: Returns a vector with the same i8 in each lane. |
|
// |
|
// * _mm_subs_epi8: Saturating-subtracts two i8 vectors. |
|
// * _mm_and_si128: Ands two i128s together. |
|
// * _mm_or_si128: Ors two i128s together. |
|
// * _mm_andnot_si128: And-nots two i128s together. |
|
// |
|
// * _mm_cmpeq_epi8: Component-wise compares two i8 vectors for equality, |
|
// filling each lane with 0x00 or 0xff. |
|
// * _mm_cmpgt_epi8: Same as above, but using > rather than ==. |
|
// |
|
// * _mm_loadu_si128: Performs an unaligned load of an i128. |
|
// * _mm_storeu_si128: Performs an unaligned store of an i128. |
|
// |
|
// * _mm_sign_epi8: Retains, negates, or zeroes each i8 lane of the first |
|
// argument if the corresponding lane of the second |
|
// argument is positive, negative, or zero, respectively. |
|
// * _mm_movemask_epi8: Selects the sign bit out of each i8 lane and produces a |
|
// bitmask consisting of those bits. |
|
// * _mm_shuffle_epi8: Selects i8s from the first argument, using the low |
|
// four bits of each i8 lane in the second argument as |
|
// indices. |
|
|
|
// https://github.com/abseil/abseil-cpp/issues/209 |
|
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=87853 |
|
// _mm_cmpgt_epi8 is broken under GCC with -funsigned-char |
|
// Work around this by using the portable implementation of Group |
|
// when using -funsigned-char under GCC. |
|
inline __m128i _mm_cmpgt_epi8_fixed(__m128i a, __m128i b) { |
|
#if defined(__GNUC__) && !defined(__clang__) |
|
if (std::is_unsigned<char>::value) { |
|
const __m128i mask = _mm_set1_epi8(0x80); |
|
const __m128i diff = _mm_subs_epi8(b, a); |
|
return _mm_cmpeq_epi8(_mm_and_si128(diff, mask), mask); |
|
} |
|
#endif |
|
return _mm_cmpgt_epi8(a, b); |
|
} |
|
|
|
struct GroupSse2Impl { |
|
static constexpr size_t kWidth = 16; // the number of slots per group |
|
|
|
explicit GroupSse2Impl(const ctrl_t* pos) { |
|
ctrl = _mm_loadu_si128(reinterpret_cast<const __m128i*>(pos)); |
|
} |
|
|
|
// Returns a bitmask representing the positions of slots that match hash. |
|
BitMask<uint32_t, kWidth> Match(h2_t hash) const { |
|
auto match = _mm_set1_epi8(hash); |
|
return BitMask<uint32_t, kWidth>( |
|
static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); |
|
} |
|
|
|
// Returns a bitmask representing the positions of empty slots. |
|
NonIterableBitMask<uint32_t, kWidth> MaskEmpty() const { |
|
#ifdef ABSL_INTERNAL_HAVE_SSSE3 |
|
// This only works because ctrl_t::kEmpty is -128. |
|
return NonIterableBitMask<uint32_t, kWidth>( |
|
static_cast<uint32_t>(_mm_movemask_epi8(_mm_sign_epi8(ctrl, ctrl)))); |
|
#else |
|
auto match = _mm_set1_epi8(static_cast<h2_t>(ctrl_t::kEmpty)); |
|
return NonIterableBitMask<uint32_t, kWidth>( |
|
static_cast<uint32_t>(_mm_movemask_epi8(_mm_cmpeq_epi8(match, ctrl)))); |
|
#endif |
|
} |
|
|
|
// Returns a bitmask representing the positions of empty or deleted slots. |
|
NonIterableBitMask<uint32_t, kWidth> MaskEmptyOrDeleted() const { |
|
auto special = _mm_set1_epi8(static_cast<uint8_t>(ctrl_t::kSentinel)); |
|
return NonIterableBitMask<uint32_t, kWidth>(static_cast<uint32_t>( |
|
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)))); |
|
} |
|
|
|
// Returns the number of trailing empty or deleted elements in the group. |
|
uint32_t CountLeadingEmptyOrDeleted() const { |
|
auto special = _mm_set1_epi8(static_cast<uint8_t>(ctrl_t::kSentinel)); |
|
return TrailingZeros(static_cast<uint32_t>( |
|
_mm_movemask_epi8(_mm_cmpgt_epi8_fixed(special, ctrl)) + 1)); |
|
} |
|
|
|
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
|
auto msbs = _mm_set1_epi8(static_cast<char>(-128)); |
|
auto x126 = _mm_set1_epi8(126); |
|
#ifdef ABSL_INTERNAL_HAVE_SSSE3 |
|
auto res = _mm_or_si128(_mm_shuffle_epi8(x126, ctrl), msbs); |
|
#else |
|
auto zero = _mm_setzero_si128(); |
|
auto special_mask = _mm_cmpgt_epi8_fixed(zero, ctrl); |
|
auto res = _mm_or_si128(msbs, _mm_andnot_si128(special_mask, x126)); |
|
#endif |
|
_mm_storeu_si128(reinterpret_cast<__m128i*>(dst), res); |
|
} |
|
|
|
__m128i ctrl; |
|
}; |
|
#endif // ABSL_INTERNAL_RAW_HASH_SET_HAVE_SSE2 |
|
|
|
#if defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) |
|
struct GroupAArch64Impl { |
|
static constexpr size_t kWidth = 8; |
|
|
|
explicit GroupAArch64Impl(const ctrl_t* pos) { |
|
ctrl = vld1_u8(reinterpret_cast<const uint8_t*>(pos)); |
|
} |
|
|
|
BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { |
|
uint8x8_t dup = vdup_n_u8(hash); |
|
auto mask = vceq_u8(ctrl, dup); |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
return BitMask<uint64_t, kWidth, 3>( |
|
vget_lane_u64(vreinterpret_u64_u8(mask), 0) & msbs); |
|
} |
|
|
|
NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const { |
|
uint64_t mask = |
|
vget_lane_u64(vreinterpret_u64_u8( |
|
vceq_s8(vdup_n_s8(static_cast<h2_t>(ctrl_t::kEmpty)), |
|
vreinterpret_s8_u8(ctrl))), |
|
0); |
|
return NonIterableBitMask<uint64_t, kWidth, 3>(mask); |
|
} |
|
|
|
NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const { |
|
uint64_t mask = |
|
vget_lane_u64(vreinterpret_u64_u8(vcgt_s8( |
|
vdup_n_s8(static_cast<int8_t>(ctrl_t::kSentinel)), |
|
vreinterpret_s8_u8(ctrl))), |
|
0); |
|
return NonIterableBitMask<uint64_t, kWidth, 3>(mask); |
|
} |
|
|
|
uint32_t CountLeadingEmptyOrDeleted() const { |
|
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0); |
|
assert(IsEmptyOrDeleted(static_cast<ctrl_t>(mask & 0xff))); |
|
constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL; |
|
#if defined(ABSL_INTERNAL_HAVE_ARM_ACLE) |
|
// cls: Count leading sign bits. |
|
// clsll(1ull << 63) -> 0 |
|
// clsll((1ull << 63) | (1ull << 62)) -> 1 |
|
// clsll((1ull << 63) | (1ull << 61)) -> 0 |
|
// clsll(~0ull) -> 63 |
|
// clsll(1) -> 62 |
|
// clsll(3) -> 61 |
|
// clsll(5) -> 60 |
|
// Note that CountLeadingEmptyOrDeleted is called when first control block |
|
// is kDeleted or kEmpty. The implementation is similar to GroupPortableImpl |
|
// but avoids +1 and __clsll returns result not including the high bit. Thus |
|
// saves one cycle. |
|
// kEmpty = -128, // 0b10000000 |
|
// kDeleted = -2, // 0b11111110 |
|
// ~ctrl & (ctrl >> 7) will have the lowest bit set to 1. After rbit, |
|
// it will the highest one. |
|
return (__clsll(__rbitll((~mask & (mask >> 7)) | gaps)) + 8) >> 3; |
|
#else |
|
return (TrailingZeros(((~mask & (mask >> 7)) | gaps) + 1) + 7) >> 3; |
|
#endif // ABSL_INTERNAL_HAVE_ARM_ACLE |
|
} |
|
|
|
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
|
uint64_t mask = vget_lane_u64(vreinterpret_u64_u8(ctrl), 0); |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
constexpr uint64_t lsbs = 0x0101010101010101ULL; |
|
auto x = mask & msbs; |
|
auto res = (~x + (x >> 7)) & ~lsbs; |
|
little_endian::Store64(dst, res); |
|
} |
|
|
|
uint8x8_t ctrl; |
|
}; |
|
#endif // ABSL_INTERNAL_HAVE_ARM_NEON && ABSL_IS_LITTLE_ENDIAN |
|
|
|
struct GroupPortableImpl { |
|
static constexpr size_t kWidth = 8; |
|
|
|
explicit GroupPortableImpl(const ctrl_t* pos) |
|
: ctrl(little_endian::Load64(pos)) {} |
|
|
|
BitMask<uint64_t, kWidth, 3> Match(h2_t hash) const { |
|
// For the technique, see: |
|
// http://graphics.stanford.edu/~seander/bithacks.html##ValueInWord |
|
// (Determine if a word has a byte equal to n). |
|
// |
|
// Caveat: there are false positives but: |
|
// - they only occur if there is a real match |
|
// - they never occur on ctrl_t::kEmpty, ctrl_t::kDeleted, ctrl_t::kSentinel |
|
// - they will be handled gracefully by subsequent checks in code |
|
// |
|
// Example: |
|
// v = 0x1716151413121110 |
|
// hash = 0x12 |
|
// retval = (v - lsbs) & ~v & msbs = 0x0000000080800000 |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
constexpr uint64_t lsbs = 0x0101010101010101ULL; |
|
auto x = ctrl ^ (lsbs * hash); |
|
return BitMask<uint64_t, kWidth, 3>((x - lsbs) & ~x & msbs); |
|
} |
|
|
|
NonIterableBitMask<uint64_t, kWidth, 3> MaskEmpty() const { |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 6)) & |
|
msbs); |
|
} |
|
|
|
NonIterableBitMask<uint64_t, kWidth, 3> MaskEmptyOrDeleted() const { |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
return NonIterableBitMask<uint64_t, kWidth, 3>((ctrl & (~ctrl << 7)) & |
|
msbs); |
|
} |
|
|
|
uint32_t CountLeadingEmptyOrDeleted() const { |
|
constexpr uint64_t gaps = 0x00FEFEFEFEFEFEFEULL; |
|
return (TrailingZeros(((~ctrl & (ctrl >> 7)) | gaps) + 1) + 7) >> 3; |
|
} |
|
|
|
void ConvertSpecialToEmptyAndFullToDeleted(ctrl_t* dst) const { |
|
constexpr uint64_t msbs = 0x8080808080808080ULL; |
|
constexpr uint64_t lsbs = 0x0101010101010101ULL; |
|
auto x = ctrl & msbs; |
|
auto res = (~x + (x >> 7)) & ~lsbs; |
|
little_endian::Store64(dst, res); |
|
} |
|
|
|
uint64_t ctrl; |
|
}; |
|
|
|
#ifdef ABSL_INTERNAL_HAVE_SSE2 |
|
using Group = GroupSse2Impl; |
|
#elif defined(ABSL_INTERNAL_HAVE_ARM_NEON) && defined(ABSL_IS_LITTLE_ENDIAN) |
|
using Group = GroupAArch64Impl; |
|
#else |
|
using Group = GroupPortableImpl; |
|
#endif |
|
|
|
// Returns he number of "cloned control bytes". |
|
// |
|
// This is the number of control bytes that are present both at the beginning |
|
// of the control byte array and at the end, such that we can create a |
|
// `Group::kWidth`-width probe window starting from any control byte. |
|
constexpr size_t NumClonedBytes() { return Group::kWidth - 1; } |
|
|
|
template <class Policy, class Hash, class Eq, class Alloc> |
|
class raw_hash_set; |
|
|
|
// Returns whether `n` is a valid capacity (i.e., number of slots). |
|
// |
|
// A valid capacity is a non-zero integer `2^m - 1`. |
|
inline bool IsValidCapacity(size_t n) { return ((n + 1) & n) == 0 && n > 0; } |
|
|
|
// Applies the following mapping to every byte in the control array: |
|
// * kDeleted -> kEmpty |
|
// * kEmpty -> kEmpty |
|
// * _ -> kDeleted |
|
// PRECONDITION: |
|
// IsValidCapacity(capacity) |
|
// ctrl[capacity] == ctrl_t::kSentinel |
|
// ctrl[i] != ctrl_t::kSentinel for all i < capacity |
|
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity); |
|
|
|
// Converts `n` into the next valid capacity, per `IsValidCapacity`. |
|
inline size_t NormalizeCapacity(size_t n) { |
|
return n ? ~size_t{} >> countl_zero(n) : 1; |
|
} |
|
|
|
// General notes on capacity/growth methods below: |
|
// - We use 7/8th as maximum load factor. For 16-wide groups, that gives an |
|
// average of two empty slots per group. |
|
// - For (capacity+1) >= Group::kWidth, growth is 7/8*capacity. |
|
// - For (capacity+1) < Group::kWidth, growth == capacity. In this case, we |
|
// never need to probe (the whole table fits in one group) so we don't need a |
|
// load factor less than 1. |
|
|
|
// Given `capacity`, applies the load factor; i.e., it returns the maximum |
|
// number of values we should put into the table before a resizing rehash. |
|
inline size_t CapacityToGrowth(size_t capacity) { |
|
assert(IsValidCapacity(capacity)); |
|
// `capacity*7/8` |
|
if (Group::kWidth == 8 && capacity == 7) { |
|
// x-x/8 does not work when x==7. |
|
return 6; |
|
} |
|
return capacity - capacity / 8; |
|
} |
|
|
|
// Given `growth`, "unapplies" the load factor to find how large the capacity |
|
// should be to stay within the load factor. |
|
// |
|
// This might not be a valid capacity and `NormalizeCapacity()` should be |
|
// called on this. |
|
inline size_t GrowthToLowerboundCapacity(size_t growth) { |
|
// `growth*8/7` |
|
if (Group::kWidth == 8 && growth == 7) { |
|
// x+(x-1)/7 does not work when x==7. |
|
return 8; |
|
} |
|
return growth + static_cast<size_t>((static_cast<int64_t>(growth) - 1) / 7); |
|
} |
|
|
|
template <class InputIter> |
|
size_t SelectBucketCountForIterRange(InputIter first, InputIter last, |
|
size_t bucket_count) { |
|
if (bucket_count != 0) { |
|
return bucket_count; |
|
} |
|
using InputIterCategory = |
|
typename std::iterator_traits<InputIter>::iterator_category; |
|
if (std::is_base_of<std::random_access_iterator_tag, |
|
InputIterCategory>::value) { |
|
return GrowthToLowerboundCapacity( |
|
static_cast<size_t>(std::distance(first, last))); |
|
} |
|
return 0; |
|
} |
|
|
|
#define ABSL_INTERNAL_ASSERT_IS_FULL(ctrl, msg) \ |
|
ABSL_HARDENING_ASSERT((ctrl != nullptr && IsFull(*ctrl)) && msg) |
|
|
|
inline void AssertIsValid(ctrl_t* ctrl) { |
|
ABSL_HARDENING_ASSERT( |
|
(ctrl == nullptr || IsFull(*ctrl)) && |
|
"Invalid operation on iterator. The element might have " |
|
"been erased, the table might have rehashed, or this may " |
|
"be an end() iterator."); |
|
} |
|
|
|
struct FindInfo { |
|
size_t offset; |
|
size_t probe_length; |
|
}; |
|
|
|
// Whether a table is "small". A small table fits entirely into a probing |
|
// group, i.e., has a capacity < `Group::kWidth`. |
|
// |
|
// In small mode we are able to use the whole capacity. The extra control |
|
// bytes give us at least one "empty" control byte to stop the iteration. |
|
// This is important to make 1 a valid capacity. |
|
// |
|
// In small mode only the first `capacity` control bytes after the sentinel |
|
// are valid. The rest contain dummy ctrl_t::kEmpty values that do not |
|
// represent a real slot. This is important to take into account on |
|
// `find_first_non_full()`, where we never try |
|
// `ShouldInsertBackwards()` for small tables. |
|
inline bool is_small(size_t capacity) { return capacity < Group::kWidth - 1; } |
|
|
|
// Begins a probing operation on `ctrl`, using `hash`. |
|
inline probe_seq<Group::kWidth> probe(const ctrl_t* ctrl, size_t hash, |
|
size_t capacity) { |
|
return probe_seq<Group::kWidth>(H1(hash, ctrl), capacity); |
|
} |
|
|
|
// Probes an array of control bits using a probe sequence derived from `hash`, |
|
// and returns the offset corresponding to the first deleted or empty slot. |
|
// |
|
// Behavior when the entire table is full is undefined. |
|
// |
|
// NOTE: this function must work with tables having both empty and deleted |
|
// slots in the same group. Such tables appear during `erase()`. |
|
template <typename = void> |
|
inline FindInfo find_first_non_full(const ctrl_t* ctrl, size_t hash, |
|
size_t capacity) { |
|
auto seq = probe(ctrl, hash, capacity); |
|
while (true) { |
|
Group g{ctrl + seq.offset()}; |
|
auto mask = g.MaskEmptyOrDeleted(); |
|
if (mask) { |
|
#if !defined(NDEBUG) |
|
// We want to add entropy even when ASLR is not enabled. |
|
// In debug build we will randomly insert in either the front or back of |
|
// the group. |
|
// TODO(kfm,sbenza): revisit after we do unconditional mixing |
|
if (!is_small(capacity) && ShouldInsertBackwards(hash, ctrl)) { |
|
return {seq.offset(mask.HighestBitSet()), seq.index()}; |
|
} |
|
#endif |
|
return {seq.offset(mask.LowestBitSet()), seq.index()}; |
|
} |
|
seq.next(); |
|
assert(seq.index() <= capacity && "full table!"); |
|
} |
|
} |
|
|
|
// Extern template for inline function keep possibility of inlining. |
|
// When compiler decided to not inline, no symbols will be added to the |
|
// corresponding translation unit. |
|
extern template FindInfo find_first_non_full(const ctrl_t*, size_t, size_t); |
|
|
|
// Sets `ctrl` to `{kEmpty, kSentinel, ..., kEmpty}`, marking the entire |
|
// array as marked as empty. |
|
inline void ResetCtrl(size_t capacity, ctrl_t* ctrl, const void* slot, |
|
size_t slot_size) { |
|
std::memset(ctrl, static_cast<int8_t>(ctrl_t::kEmpty), |
|
capacity + 1 + NumClonedBytes()); |
|
ctrl[capacity] = ctrl_t::kSentinel; |
|
SanitizerPoisonMemoryRegion(slot, slot_size * capacity); |
|
} |
|
|
|
// Sets `ctrl[i]` to `h`. |
|
// |
|
// Unlike setting it directly, this function will perform bounds checks and |
|
// mirror the value to the cloned tail if necessary. |
|
inline void SetCtrl(size_t i, ctrl_t h, size_t capacity, ctrl_t* ctrl, |
|
const void* slot, size_t slot_size) { |
|
assert(i < capacity); |
|
|
|
auto* slot_i = static_cast<const char*>(slot) + i * slot_size; |
|
if (IsFull(h)) { |
|
SanitizerUnpoisonMemoryRegion(slot_i, slot_size); |
|
} else { |
|
SanitizerPoisonMemoryRegion(slot_i, slot_size); |
|
} |
|
|
|
ctrl[i] = h; |
|
ctrl[((i - NumClonedBytes()) & capacity) + (NumClonedBytes() & capacity)] = h; |
|
} |
|
|
|
// Overload for setting to an occupied `h2_t` rather than a special `ctrl_t`. |
|
inline void SetCtrl(size_t i, h2_t h, size_t capacity, ctrl_t* ctrl, |
|
const void* slot, size_t slot_size) { |
|
SetCtrl(i, static_cast<ctrl_t>(h), capacity, ctrl, slot, slot_size); |
|
} |
|
|
|
// Given the capacity of a table, computes the offset (from the start of the |
|
// backing allocation) at which the slots begin. |
|
inline size_t SlotOffset(size_t capacity, size_t slot_align) { |
|
assert(IsValidCapacity(capacity)); |
|
const size_t num_control_bytes = capacity + 1 + NumClonedBytes(); |
|
return (num_control_bytes + slot_align - 1) & (~slot_align + 1); |
|
} |
|
|
|
// Given the capacity of a table, computes the total size of the backing |
|
// array. |
|
inline size_t AllocSize(size_t capacity, size_t slot_size, size_t slot_align) { |
|
return SlotOffset(capacity, slot_align) + capacity * slot_size; |
|
} |
|
|
|
// A SwissTable. |
|
// |
|
// Policy: a policy defines how to perform different operations on |
|
// the slots of the hashtable (see hash_policy_traits.h for the full interface |
|
// of policy). |
|
// |
|
// Hash: a (possibly polymorphic) functor that hashes keys of the hashtable. The |
|
// functor should accept a key and return size_t as hash. For best performance |
|
// it is important that the hash function provides high entropy across all bits |
|
// of the hash. |
|
// |
|
// Eq: a (possibly polymorphic) functor that compares two keys for equality. It |
|
// should accept two (of possibly different type) keys and return a bool: true |
|
// if they are equal, false if they are not. If two keys compare equal, then |
|
// their hash values as defined by Hash MUST be equal. |
|
// |
|
// Allocator: an Allocator |
|
// [https://en.cppreference.com/w/cpp/named_req/Allocator] with which |
|
// the storage of the hashtable will be allocated and the elements will be |
|
// constructed and destroyed. |
|
template <class Policy, class Hash, class Eq, class Alloc> |
|
class raw_hash_set { |
|
using PolicyTraits = hash_policy_traits<Policy>; |
|
using KeyArgImpl = |
|
KeyArg<IsTransparent<Eq>::value && IsTransparent<Hash>::value>; |
|
|
|
public: |
|
using init_type = typename PolicyTraits::init_type; |
|
using key_type = typename PolicyTraits::key_type; |
|
// TODO(sbenza): Hide slot_type as it is an implementation detail. Needs user |
|
// code fixes! |
|
using slot_type = typename PolicyTraits::slot_type; |
|
using allocator_type = Alloc; |
|
using size_type = size_t; |
|
using difference_type = ptrdiff_t; |
|
using hasher = Hash; |
|
using key_equal = Eq; |
|
using policy_type = Policy; |
|
using value_type = typename PolicyTraits::value_type; |
|
using reference = value_type&; |
|
using const_reference = const value_type&; |
|
using pointer = typename absl::allocator_traits< |
|
allocator_type>::template rebind_traits<value_type>::pointer; |
|
using const_pointer = typename absl::allocator_traits< |
|
allocator_type>::template rebind_traits<value_type>::const_pointer; |
|
|
|
// Alias used for heterogeneous lookup functions. |
|
// `key_arg<K>` evaluates to `K` when the functors are transparent and to |
|
// `key_type` otherwise. It permits template argument deduction on `K` for the |
|
// transparent case. |
|
template <class K> |
|
using key_arg = typename KeyArgImpl::template type<K, key_type>; |
|
|
|
private: |
|
// Give an early error when key_type is not hashable/eq. |
|
auto KeyTypeCanBeHashed(const Hash& h, const key_type& k) -> decltype(h(k)); |
|
auto KeyTypeCanBeEq(const Eq& eq, const key_type& k) -> decltype(eq(k, k)); |
|
|
|
using AllocTraits = absl::allocator_traits<allocator_type>; |
|
using SlotAlloc = typename absl::allocator_traits< |
|
allocator_type>::template rebind_alloc<slot_type>; |
|
using SlotAllocTraits = typename absl::allocator_traits< |
|
allocator_type>::template rebind_traits<slot_type>; |
|
|
|
static_assert(std::is_lvalue_reference<reference>::value, |
|
"Policy::element() must return a reference"); |
|
|
|
template <typename T> |
|
struct SameAsElementReference |
|
: std::is_same<typename std::remove_cv< |
|
typename std::remove_reference<reference>::type>::type, |
|
typename std::remove_cv< |
|
typename std::remove_reference<T>::type>::type> {}; |
|
|
|
// An enabler for insert(T&&): T must be convertible to init_type or be the |
|
// same as [cv] value_type [ref]. |
|
// Note: we separate SameAsElementReference into its own type to avoid using |
|
// reference unless we need to. MSVC doesn't seem to like it in some |
|
// cases. |
|
template <class T> |
|
using RequiresInsertable = typename std::enable_if< |
|
absl::disjunction<std::is_convertible<T, init_type>, |
|
SameAsElementReference<T>>::value, |
|
int>::type; |
|
|
|
// RequiresNotInit is a workaround for gcc prior to 7.1. |
|
// See https://godbolt.org/g/Y4xsUh. |
|
template <class T> |
|
using RequiresNotInit = |
|
typename std::enable_if<!std::is_same<T, init_type>::value, int>::type; |
|
|
|
template <class... Ts> |
|
using IsDecomposable = IsDecomposable<void, PolicyTraits, Hash, Eq, Ts...>; |
|
|
|
public: |
|
static_assert(std::is_same<pointer, value_type*>::value, |
|
"Allocators with custom pointer types are not supported"); |
|
static_assert(std::is_same<const_pointer, const value_type*>::value, |
|
"Allocators with custom pointer types are not supported"); |
|
|
|
class iterator { |
|
friend class raw_hash_set; |
|
|
|
public: |
|
using iterator_category = std::forward_iterator_tag; |
|
using value_type = typename raw_hash_set::value_type; |
|
using reference = |
|
absl::conditional_t<PolicyTraits::constant_iterators::value, |
|
const value_type&, value_type&>; |
|
using pointer = absl::remove_reference_t<reference>*; |
|
using difference_type = typename raw_hash_set::difference_type; |
|
|
|
iterator() {} |
|
|
|
// PRECONDITION: not an end() iterator. |
|
reference operator*() const { |
|
ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_, |
|
"operator*() called on invalid iterator."); |
|
return PolicyTraits::element(slot_); |
|
} |
|
|
|
// PRECONDITION: not an end() iterator. |
|
pointer operator->() const { |
|
ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_, |
|
"operator-> called on invalid iterator."); |
|
return &operator*(); |
|
} |
|
|
|
// PRECONDITION: not an end() iterator. |
|
iterator& operator++() { |
|
ABSL_INTERNAL_ASSERT_IS_FULL(ctrl_, |
|
"operator++ called on invalid iterator."); |
|
++ctrl_; |
|
++slot_; |
|
skip_empty_or_deleted(); |
|
return *this; |
|
} |
|
// PRECONDITION: not an end() iterator. |
|
iterator operator++(int) { |
|
auto tmp = *this; |
|
++*this; |
|
return tmp; |
|
} |
|
|
|
friend bool operator==(const iterator& a, const iterator& b) { |
|
AssertIsValid(a.ctrl_); |
|
AssertIsValid(b.ctrl_); |
|
return a.ctrl_ == b.ctrl_; |
|
} |
|
friend bool operator!=(const iterator& a, const iterator& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
iterator(ctrl_t* ctrl, slot_type* slot) : ctrl_(ctrl), slot_(slot) { |
|
// This assumption helps the compiler know that any non-end iterator is |
|
// not equal to any end iterator. |
|
ABSL_ASSUME(ctrl != nullptr); |
|
} |
|
|
|
// Fixes up `ctrl_` to point to a full by advancing it and `slot_` until |
|
// they reach one. |
|
// |
|
// If a sentinel is reached, we null both of them out instead. |
|
void skip_empty_or_deleted() { |
|
while (IsEmptyOrDeleted(*ctrl_)) { |
|
uint32_t shift = Group{ctrl_}.CountLeadingEmptyOrDeleted(); |
|
ctrl_ += shift; |
|
slot_ += shift; |
|
} |
|
if (ABSL_PREDICT_FALSE(*ctrl_ == ctrl_t::kSentinel)) ctrl_ = nullptr; |
|
} |
|
|
|
ctrl_t* ctrl_ = nullptr; |
|
// To avoid uninitialized member warnings, put slot_ in an anonymous union. |
|
// The member is not initialized on singleton and end iterators. |
|
union { |
|
slot_type* slot_; |
|
}; |
|
}; |
|
|
|
class const_iterator { |
|
friend class raw_hash_set; |
|
|
|
public: |
|
using iterator_category = typename iterator::iterator_category; |
|
using value_type = typename raw_hash_set::value_type; |
|
using reference = typename raw_hash_set::const_reference; |
|
using pointer = typename raw_hash_set::const_pointer; |
|
using difference_type = typename raw_hash_set::difference_type; |
|
|
|
const_iterator() {} |
|
// Implicit construction from iterator. |
|
const_iterator(iterator i) : inner_(std::move(i)) {} |
|
|
|
reference operator*() const { return *inner_; } |
|
pointer operator->() const { return inner_.operator->(); } |
|
|
|
const_iterator& operator++() { |
|
++inner_; |
|
return *this; |
|
} |
|
const_iterator operator++(int) { return inner_++; } |
|
|
|
friend bool operator==(const const_iterator& a, const const_iterator& b) { |
|
return a.inner_ == b.inner_; |
|
} |
|
friend bool operator!=(const const_iterator& a, const const_iterator& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
const_iterator(const ctrl_t* ctrl, const slot_type* slot) |
|
: inner_(const_cast<ctrl_t*>(ctrl), const_cast<slot_type*>(slot)) {} |
|
|
|
iterator inner_; |
|
}; |
|
|
|
using node_type = node_handle<Policy, hash_policy_traits<Policy>, Alloc>; |
|
using insert_return_type = InsertReturnType<iterator, node_type>; |
|
|
|
raw_hash_set() noexcept( |
|
std::is_nothrow_default_constructible<hasher>::value&& |
|
std::is_nothrow_default_constructible<key_equal>::value&& |
|
std::is_nothrow_default_constructible<allocator_type>::value) {} |
|
|
|
explicit raw_hash_set(size_t bucket_count, const hasher& hash = hasher(), |
|
const key_equal& eq = key_equal(), |
|
const allocator_type& alloc = allocator_type()) |
|
: ctrl_(EmptyGroup()), |
|
settings_(0, HashtablezInfoHandle(), hash, eq, alloc) { |
|
if (bucket_count) { |
|
capacity_ = NormalizeCapacity(bucket_count); |
|
initialize_slots(); |
|
} |
|
} |
|
|
|
raw_hash_set(size_t bucket_count, const hasher& hash, |
|
const allocator_type& alloc) |
|
: raw_hash_set(bucket_count, hash, key_equal(), alloc) {} |
|
|
|
raw_hash_set(size_t bucket_count, const allocator_type& alloc) |
|
: raw_hash_set(bucket_count, hasher(), key_equal(), alloc) {} |
|
|
|
explicit raw_hash_set(const allocator_type& alloc) |
|
: raw_hash_set(0, hasher(), key_equal(), alloc) {} |
|
|
|
template <class InputIter> |
|
raw_hash_set(InputIter first, InputIter last, size_t bucket_count = 0, |
|
const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
|
const allocator_type& alloc = allocator_type()) |
|
: raw_hash_set(SelectBucketCountForIterRange(first, last, bucket_count), |
|
hash, eq, alloc) { |
|
insert(first, last); |
|
} |
|
|
|
template <class InputIter> |
|
raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
|
const hasher& hash, const allocator_type& alloc) |
|
: raw_hash_set(first, last, bucket_count, hash, key_equal(), alloc) {} |
|
|
|
template <class InputIter> |
|
raw_hash_set(InputIter first, InputIter last, size_t bucket_count, |
|
const allocator_type& alloc) |
|
: raw_hash_set(first, last, bucket_count, hasher(), key_equal(), alloc) {} |
|
|
|
template <class InputIter> |
|
raw_hash_set(InputIter first, InputIter last, const allocator_type& alloc) |
|
: raw_hash_set(first, last, 0, hasher(), key_equal(), alloc) {} |
|
|
|
// Instead of accepting std::initializer_list<value_type> as the first |
|
// argument like std::unordered_set<value_type> does, we have two overloads |
|
// that accept std::initializer_list<T> and std::initializer_list<init_type>. |
|
// This is advantageous for performance. |
|
// |
|
// // Turns {"abc", "def"} into std::initializer_list<std::string>, then |
|
// // copies the strings into the set. |
|
// std::unordered_set<std::string> s = {"abc", "def"}; |
|
// |
|
// // Turns {"abc", "def"} into std::initializer_list<const char*>, then |
|
// // copies the strings into the set. |
|
// absl::flat_hash_set<std::string> s = {"abc", "def"}; |
|
// |
|
// The same trick is used in insert(). |
|
// |
|
// The enabler is necessary to prevent this constructor from triggering where |
|
// the copy constructor is meant to be called. |
|
// |
|
// absl::flat_hash_set<int> a, b{a}; |
|
// |
|
// RequiresNotInit<T> is a workaround for gcc prior to 7.1. |
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
|
raw_hash_set(std::initializer_list<T> init, size_t bucket_count = 0, |
|
const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
|
const allocator_type& alloc = allocator_type()) |
|
: raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
|
|
|
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count = 0, |
|
const hasher& hash = hasher(), const key_equal& eq = key_equal(), |
|
const allocator_type& alloc = allocator_type()) |
|
: raw_hash_set(init.begin(), init.end(), bucket_count, hash, eq, alloc) {} |
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
|
raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
|
const hasher& hash, const allocator_type& alloc) |
|
: raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
|
|
|
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
|
const hasher& hash, const allocator_type& alloc) |
|
: raw_hash_set(init, bucket_count, hash, key_equal(), alloc) {} |
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
|
raw_hash_set(std::initializer_list<T> init, size_t bucket_count, |
|
const allocator_type& alloc) |
|
: raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
|
|
|
raw_hash_set(std::initializer_list<init_type> init, size_t bucket_count, |
|
const allocator_type& alloc) |
|
: raw_hash_set(init, bucket_count, hasher(), key_equal(), alloc) {} |
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<T> = 0> |
|
raw_hash_set(std::initializer_list<T> init, const allocator_type& alloc) |
|
: raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
|
|
|
raw_hash_set(std::initializer_list<init_type> init, |
|
const allocator_type& alloc) |
|
: raw_hash_set(init, 0, hasher(), key_equal(), alloc) {} |
|
|
|
raw_hash_set(const raw_hash_set& that) |
|
: raw_hash_set(that, AllocTraits::select_on_container_copy_construction( |
|
that.alloc_ref())) {} |
|
|
|
raw_hash_set(const raw_hash_set& that, const allocator_type& a) |
|
: raw_hash_set(0, that.hash_ref(), that.eq_ref(), a) { |
|
reserve(that.size()); |
|
// Because the table is guaranteed to be empty, we can do something faster |
|
// than a full `insert`. |
|
for (const auto& v : that) { |
|
const size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, v); |
|
auto target = find_first_non_full(ctrl_, hash, capacity_); |
|
SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_, |
|
sizeof(slot_type)); |
|
emplace_at(target.offset, v); |
|
infoz().RecordInsert(hash, target.probe_length); |
|
} |
|
size_ = that.size(); |
|
growth_left() -= that.size(); |
|
} |
|
|
|
raw_hash_set(raw_hash_set&& that) noexcept( |
|
std::is_nothrow_copy_constructible<hasher>::value&& |
|
std::is_nothrow_copy_constructible<key_equal>::value&& |
|
std::is_nothrow_copy_constructible<allocator_type>::value) |
|
: ctrl_(absl::exchange(that.ctrl_, EmptyGroup())), |
|
slots_(absl::exchange(that.slots_, nullptr)), |
|
size_(absl::exchange(that.size_, 0)), |
|
capacity_(absl::exchange(that.capacity_, 0)), |
|
// Hash, equality and allocator are copied instead of moved because |
|
// `that` must be left valid. If Hash is std::function<Key>, moving it |
|
// would create a nullptr functor that cannot be called. |
|
settings_(absl::exchange(that.growth_left(), 0), |
|
absl::exchange(that.infoz(), HashtablezInfoHandle()), |
|
that.hash_ref(), that.eq_ref(), that.alloc_ref()) {} |
|
|
|
raw_hash_set(raw_hash_set&& that, const allocator_type& a) |
|
: ctrl_(EmptyGroup()), |
|
slots_(nullptr), |
|
size_(0), |
|
capacity_(0), |
|
settings_(0, HashtablezInfoHandle(), that.hash_ref(), that.eq_ref(), |
|
a) { |
|
if (a == that.alloc_ref()) { |
|
std::swap(ctrl_, that.ctrl_); |
|
std::swap(slots_, that.slots_); |
|
std::swap(size_, that.size_); |
|
std::swap(capacity_, that.capacity_); |
|
std::swap(growth_left(), that.growth_left()); |
|
std::swap(infoz(), that.infoz()); |
|
} else { |
|
reserve(that.size()); |
|
// Note: this will copy elements of dense_set and unordered_set instead of |
|
// moving them. This can be fixed if it ever becomes an issue. |
|
for (auto& elem : that) insert(std::move(elem)); |
|
} |
|
} |
|
|
|
raw_hash_set& operator=(const raw_hash_set& that) { |
|
raw_hash_set tmp(that, |
|
AllocTraits::propagate_on_container_copy_assignment::value |
|
? that.alloc_ref() |
|
: alloc_ref()); |
|
swap(tmp); |
|
return *this; |
|
} |
|
|
|
raw_hash_set& operator=(raw_hash_set&& that) noexcept( |
|
absl::allocator_traits<allocator_type>::is_always_equal::value&& |
|
std::is_nothrow_move_assignable<hasher>::value&& |
|
std::is_nothrow_move_assignable<key_equal>::value) { |
|
// TODO(sbenza): We should only use the operations from the noexcept clause |
|
// to make sure we actually adhere to that contract. |
|
return move_assign( |
|
std::move(that), |
|
typename AllocTraits::propagate_on_container_move_assignment()); |
|
} |
|
|
|
~raw_hash_set() { destroy_slots(); } |
|
|
|
iterator begin() { |
|
auto it = iterator_at(0); |
|
it.skip_empty_or_deleted(); |
|
return it; |
|
} |
|
iterator end() { return {}; } |
|
|
|
const_iterator begin() const { |
|
return const_cast<raw_hash_set*>(this)->begin(); |
|
} |
|
const_iterator end() const { return {}; } |
|
const_iterator cbegin() const { return begin(); } |
|
const_iterator cend() const { return end(); } |
|
|
|
bool empty() const { return !size(); } |
|
size_t size() const { return size_; } |
|
size_t capacity() const { return capacity_; } |
|
size_t max_size() const { return (std::numeric_limits<size_t>::max)(); } |
|
|
|
ABSL_ATTRIBUTE_REINITIALIZES void clear() { |
|
// Iterating over this container is O(bucket_count()). When bucket_count() |
|
// is much greater than size(), iteration becomes prohibitively expensive. |
|
// For clear() it is more important to reuse the allocated array when the |
|
// container is small because allocation takes comparatively long time |
|
// compared to destruction of the elements of the container. So we pick the |
|
// largest bucket_count() threshold for which iteration is still fast and |
|
// past that we simply deallocate the array. |
|
if (capacity_ > 127) { |
|
destroy_slots(); |
|
|
|
infoz().RecordClearedReservation(); |
|
} else if (capacity_) { |
|
for (size_t i = 0; i != capacity_; ++i) { |
|
if (IsFull(ctrl_[i])) { |
|
PolicyTraits::destroy(&alloc_ref(), slots_ + i); |
|
} |
|
} |
|
size_ = 0; |
|
ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
reset_growth_left(); |
|
} |
|
assert(empty()); |
|
infoz().RecordStorageChanged(0, capacity_); |
|
} |
|
|
|
// This overload kicks in when the argument is an rvalue of insertable and |
|
// decomposable type other than init_type. |
|
// |
|
// flat_hash_map<std::string, int> m; |
|
// m.insert(std::make_pair("abc", 42)); |
|
// TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
|
// bug. |
|
template <class T, RequiresInsertable<T> = 0, class T2 = T, |
|
typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
|
T* = nullptr> |
|
std::pair<iterator, bool> insert(T&& value) { |
|
return emplace(std::forward<T>(value)); |
|
} |
|
|
|
// This overload kicks in when the argument is a bitfield or an lvalue of |
|
// insertable and decomposable type. |
|
// |
|
// union { int n : 1; }; |
|
// flat_hash_set<int> s; |
|
// s.insert(n); |
|
// |
|
// flat_hash_set<std::string> s; |
|
// const char* p = "hello"; |
|
// s.insert(p); |
|
// |
|
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace |
|
// RequiresInsertable<T> with RequiresInsertable<const T&>. |
|
// We are hitting this bug: https://godbolt.org/g/1Vht4f. |
|
template < |
|
class T, RequiresInsertable<T> = 0, |
|
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> |
|
std::pair<iterator, bool> insert(const T& value) { |
|
return emplace(value); |
|
} |
|
|
|
// This overload kicks in when the argument is an rvalue of init_type. Its |
|
// purpose is to handle brace-init-list arguments. |
|
// |
|
// flat_hash_map<std::string, int> s; |
|
// s.insert({"abc", 42}); |
|
std::pair<iterator, bool> insert(init_type&& value) { |
|
return emplace(std::move(value)); |
|
} |
|
|
|
// TODO(cheshire): A type alias T2 is introduced as a workaround for the nvcc |
|
// bug. |
|
template <class T, RequiresInsertable<T> = 0, class T2 = T, |
|
typename std::enable_if<IsDecomposable<T2>::value, int>::type = 0, |
|
T* = nullptr> |
|
iterator insert(const_iterator, T&& value) { |
|
return insert(std::forward<T>(value)).first; |
|
} |
|
|
|
// TODO(romanp): Once we stop supporting gcc 5.1 and below, replace |
|
// RequiresInsertable<T> with RequiresInsertable<const T&>. |
|
// We are hitting this bug: https://godbolt.org/g/1Vht4f. |
|
template < |
|
class T, RequiresInsertable<T> = 0, |
|
typename std::enable_if<IsDecomposable<const T&>::value, int>::type = 0> |
|
iterator insert(const_iterator, const T& value) { |
|
return insert(value).first; |
|
} |
|
|
|
iterator insert(const_iterator, init_type&& value) { |
|
return insert(std::move(value)).first; |
|
} |
|
|
|
template <class InputIt> |
|
void insert(InputIt first, InputIt last) { |
|
for (; first != last; ++first) emplace(*first); |
|
} |
|
|
|
template <class T, RequiresNotInit<T> = 0, RequiresInsertable<const T&> = 0> |
|
void insert(std::initializer_list<T> ilist) { |
|
insert(ilist.begin(), ilist.end()); |
|
} |
|
|
|
void insert(std::initializer_list<init_type> ilist) { |
|
insert(ilist.begin(), ilist.end()); |
|
} |
|
|
|
insert_return_type insert(node_type&& node) { |
|
if (!node) return {end(), false, node_type()}; |
|
const auto& elem = PolicyTraits::element(CommonAccess::GetSlot(node)); |
|
auto res = PolicyTraits::apply( |
|
InsertSlot<false>{*this, std::move(*CommonAccess::GetSlot(node))}, |
|
elem); |
|
if (res.second) { |
|
CommonAccess::Reset(&node); |
|
return {res.first, true, node_type()}; |
|
} else { |
|
return {res.first, false, std::move(node)}; |
|
} |
|
} |
|
|
|
iterator insert(const_iterator, node_type&& node) { |
|
auto res = insert(std::move(node)); |
|
node = std::move(res.node); |
|
return res.position; |
|
} |
|
|
|
// This overload kicks in if we can deduce the key from args. This enables us |
|
// to avoid constructing value_type if an entry with the same key already |
|
// exists. |
|
// |
|
// For example: |
|
// |
|
// flat_hash_map<std::string, std::string> m = {{"abc", "def"}}; |
|
// // Creates no std::string copies and makes no heap allocations. |
|
// m.emplace("abc", "xyz"); |
|
template <class... Args, typename std::enable_if< |
|
IsDecomposable<Args...>::value, int>::type = 0> |
|
std::pair<iterator, bool> emplace(Args&&... args) { |
|
return PolicyTraits::apply(EmplaceDecomposable{*this}, |
|
std::forward<Args>(args)...); |
|
} |
|
|
|
// This overload kicks in if we cannot deduce the key from args. It constructs |
|
// value_type unconditionally and then either moves it into the table or |
|
// destroys. |
|
template <class... Args, typename std::enable_if< |
|
!IsDecomposable<Args...>::value, int>::type = 0> |
|
std::pair<iterator, bool> emplace(Args&&... args) { |
|
alignas(slot_type) unsigned char raw[sizeof(slot_type)]; |
|
slot_type* slot = reinterpret_cast<slot_type*>(&raw); |
|
|
|
PolicyTraits::construct(&alloc_ref(), slot, std::forward<Args>(args)...); |
|
const auto& elem = PolicyTraits::element(slot); |
|
return PolicyTraits::apply(InsertSlot<true>{*this, std::move(*slot)}, elem); |
|
} |
|
|
|
template <class... Args> |
|
iterator emplace_hint(const_iterator, Args&&... args) { |
|
return emplace(std::forward<Args>(args)...).first; |
|
} |
|
|
|
// Extension API: support for lazy emplace. |
|
// |
|
// Looks up key in the table. If found, returns the iterator to the element. |
|
// Otherwise calls `f` with one argument of type `raw_hash_set::constructor`. |
|
// |
|
// `f` must abide by several restrictions: |
|
// - it MUST call `raw_hash_set::constructor` with arguments as if a |
|
// `raw_hash_set::value_type` is constructed, |
|
// - it MUST NOT access the container before the call to |
|
// `raw_hash_set::constructor`, and |
|
// - it MUST NOT erase the lazily emplaced element. |
|
// Doing any of these is undefined behavior. |
|
// |
|
// For example: |
|
// |
|
// std::unordered_set<ArenaString> s; |
|
// // Makes ArenaStr even if "abc" is in the map. |
|
// s.insert(ArenaString(&arena, "abc")); |
|
// |
|
// flat_hash_set<ArenaStr> s; |
|
// // Makes ArenaStr only if "abc" is not in the map. |
|
// s.lazy_emplace("abc", [&](const constructor& ctor) { |
|
// ctor(&arena, "abc"); |
|
// }); |
|
// |
|
// WARNING: This API is currently experimental. If there is a way to implement |
|
// the same thing with the rest of the API, prefer that. |
|
class constructor { |
|
friend class raw_hash_set; |
|
|
|
public: |
|
template <class... Args> |
|
void operator()(Args&&... args) const { |
|
assert(*slot_); |
|
PolicyTraits::construct(alloc_, *slot_, std::forward<Args>(args)...); |
|
*slot_ = nullptr; |
|
} |
|
|
|
private: |
|
constructor(allocator_type* a, slot_type** slot) : alloc_(a), slot_(slot) {} |
|
|
|
allocator_type* alloc_; |
|
slot_type** slot_; |
|
}; |
|
|
|
template <class K = key_type, class F> |
|
iterator lazy_emplace(const key_arg<K>& key, F&& f) { |
|
auto res = find_or_prepare_insert(key); |
|
if (res.second) { |
|
slot_type* slot = slots_ + res.first; |
|
std::forward<F>(f)(constructor(&alloc_ref(), &slot)); |
|
assert(!slot); |
|
} |
|
return iterator_at(res.first); |
|
} |
|
|
|
// Extension API: support for heterogeneous keys. |
|
// |
|
// std::unordered_set<std::string> s; |
|
// // Turns "abc" into std::string. |
|
// s.erase("abc"); |
|
// |
|
// flat_hash_set<std::string> s; |
|
// // Uses "abc" directly without copying it into std::string. |
|
// s.erase("abc"); |
|
template <class K = key_type> |
|
size_type erase(const key_arg<K>& key) { |
|
auto it = find(key); |
|
if (it == end()) return 0; |
|
erase(it); |
|
return 1; |
|
} |
|
|
|
// Erases the element pointed to by `it`. Unlike `std::unordered_set::erase`, |
|
// this method returns void to reduce algorithmic complexity to O(1). The |
|
// iterator is invalidated, so any increment should be done before calling |
|
// erase. In order to erase while iterating across a map, use the following |
|
// idiom (which also works for standard containers): |
|
// |
|
// for (auto it = m.begin(), end = m.end(); it != end;) { |
|
// // `erase()` will invalidate `it`, so advance `it` first. |
|
// auto copy_it = it++; |
|
// if (<pred>) { |
|
// m.erase(copy_it); |
|
// } |
|
// } |
|
void erase(const_iterator cit) { erase(cit.inner_); } |
|
|
|
// This overload is necessary because otherwise erase<K>(const K&) would be |
|
// a better match if non-const iterator is passed as an argument. |
|
void erase(iterator it) { |
|
ABSL_INTERNAL_ASSERT_IS_FULL(it.ctrl_, |
|
"erase() called on invalid iterator."); |
|
PolicyTraits::destroy(&alloc_ref(), it.slot_); |
|
erase_meta_only(it); |
|
} |
|
|
|
iterator erase(const_iterator first, const_iterator last) { |
|
while (first != last) { |
|
erase(first++); |
|
} |
|
return last.inner_; |
|
} |
|
|
|
// Moves elements from `src` into `this`. |
|
// If the element already exists in `this`, it is left unmodified in `src`. |
|
template <typename H, typename E> |
|
void merge(raw_hash_set<Policy, H, E, Alloc>& src) { // NOLINT |
|
assert(this != &src); |
|
for (auto it = src.begin(), e = src.end(); it != e;) { |
|
auto next = std::next(it); |
|
if (PolicyTraits::apply(InsertSlot<false>{*this, std::move(*it.slot_)}, |
|
PolicyTraits::element(it.slot_)) |
|
.second) { |
|
src.erase_meta_only(it); |
|
} |
|
it = next; |
|
} |
|
} |
|
|
|
template <typename H, typename E> |
|
void merge(raw_hash_set<Policy, H, E, Alloc>&& src) { |
|
merge(src); |
|
} |
|
|
|
node_type extract(const_iterator position) { |
|
ABSL_INTERNAL_ASSERT_IS_FULL(position.inner_.ctrl_, |
|
"extract() called on invalid iterator."); |
|
auto node = |
|
CommonAccess::Transfer<node_type>(alloc_ref(), position.inner_.slot_); |
|
erase_meta_only(position); |
|
return node; |
|
} |
|
|
|
template < |
|
class K = key_type, |
|
typename std::enable_if<!std::is_same<K, iterator>::value, int>::type = 0> |
|
node_type extract(const key_arg<K>& key) { |
|
auto it = find(key); |
|
return it == end() ? node_type() : extract(const_iterator{it}); |
|
} |
|
|
|
void swap(raw_hash_set& that) noexcept( |
|
IsNoThrowSwappable<hasher>() && IsNoThrowSwappable<key_equal>() && |
|
IsNoThrowSwappable<allocator_type>( |
|
typename AllocTraits::propagate_on_container_swap{})) { |
|
using std::swap; |
|
swap(ctrl_, that.ctrl_); |
|
swap(slots_, that.slots_); |
|
swap(size_, that.size_); |
|
swap(capacity_, that.capacity_); |
|
swap(growth_left(), that.growth_left()); |
|
swap(hash_ref(), that.hash_ref()); |
|
swap(eq_ref(), that.eq_ref()); |
|
swap(infoz(), that.infoz()); |
|
SwapAlloc(alloc_ref(), that.alloc_ref(), |
|
typename AllocTraits::propagate_on_container_swap{}); |
|
} |
|
|
|
void rehash(size_t n) { |
|
if (n == 0 && capacity_ == 0) return; |
|
if (n == 0 && size_ == 0) { |
|
destroy_slots(); |
|
infoz().RecordStorageChanged(0, 0); |
|
infoz().RecordClearedReservation(); |
|
return; |
|
} |
|
|
|
// bitor is a faster way of doing `max` here. We will round up to the next |
|
// power-of-2-minus-1, so bitor is good enough. |
|
auto m = NormalizeCapacity(n | GrowthToLowerboundCapacity(size())); |
|
// n == 0 unconditionally rehashes as per the standard. |
|
if (n == 0 || m > capacity_) { |
|
resize(m); |
|
|
|
// This is after resize, to ensure that we have completed the allocation |
|
// and have potentially sampled the hashtable. |
|
infoz().RecordReservation(n); |
|
} |
|
} |
|
|
|
void reserve(size_t n) { |
|
if (n > size() + growth_left()) { |
|
size_t m = GrowthToLowerboundCapacity(n); |
|
resize(NormalizeCapacity(m)); |
|
|
|
// This is after resize, to ensure that we have completed the allocation |
|
// and have potentially sampled the hashtable. |
|
infoz().RecordReservation(n); |
|
} |
|
} |
|
|
|
// Extension API: support for heterogeneous keys. |
|
// |
|
// std::unordered_set<std::string> s; |
|
// // Turns "abc" into std::string. |
|
// s.count("abc"); |
|
// |
|
// ch_set<std::string> s; |
|
// // Uses "abc" directly without copying it into std::string. |
|
// s.count("abc"); |
|
template <class K = key_type> |
|
size_t count(const key_arg<K>& key) const { |
|
return find(key) == end() ? 0 : 1; |
|
} |
|
|
|
// Issues CPU prefetch instructions for the memory needed to find or insert |
|
// a key. Like all lookup functions, this support heterogeneous keys. |
|
// |
|
// NOTE: This is a very low level operation and should not be used without |
|
// specific benchmarks indicating its importance. |
|
template <class K = key_type> |
|
void prefetch(const key_arg<K>& key) const { |
|
(void)key; |
|
// Avoid probing if we won't be able to prefetch the addresses received. |
|
#ifdef ABSL_INTERNAL_HAVE_PREFETCH |
|
prefetch_heap_block(); |
|
auto seq = probe(ctrl_, hash_ref()(key), capacity_); |
|
base_internal::PrefetchT0(ctrl_ + seq.offset()); |
|
base_internal::PrefetchT0(slots_ + seq.offset()); |
|
#endif // ABSL_INTERNAL_HAVE_PREFETCH |
|
} |
|
|
|
// The API of find() has two extensions. |
|
// |
|
// 1. The hash can be passed by the user. It must be equal to the hash of the |
|
// key. |
|
// |
|
// 2. The type of the key argument doesn't have to be key_type. This is so |
|
// called heterogeneous key support. |
|
template <class K = key_type> |
|
iterator find(const key_arg<K>& key, size_t hash) { |
|
auto seq = probe(ctrl_, hash, capacity_); |
|
while (true) { |
|
Group g{ctrl_ + seq.offset()}; |
|
for (uint32_t i : g.Match(H2(hash))) { |
|
if (ABSL_PREDICT_TRUE(PolicyTraits::apply( |
|
EqualElement<K>{key, eq_ref()}, |
|
PolicyTraits::element(slots_ + seq.offset(i))))) |
|
return iterator_at(seq.offset(i)); |
|
} |
|
if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return end(); |
|
seq.next(); |
|
assert(seq.index() <= capacity_ && "full table!"); |
|
} |
|
} |
|
template <class K = key_type> |
|
iterator find(const key_arg<K>& key) { |
|
prefetch_heap_block(); |
|
return find(key, hash_ref()(key)); |
|
} |
|
|
|
template <class K = key_type> |
|
const_iterator find(const key_arg<K>& key, size_t hash) const { |
|
return const_cast<raw_hash_set*>(this)->find(key, hash); |
|
} |
|
template <class K = key_type> |
|
const_iterator find(const key_arg<K>& key) const { |
|
prefetch_heap_block(); |
|
return find(key, hash_ref()(key)); |
|
} |
|
|
|
template <class K = key_type> |
|
bool contains(const key_arg<K>& key) const { |
|
return find(key) != end(); |
|
} |
|
|
|
template <class K = key_type> |
|
std::pair<iterator, iterator> equal_range(const key_arg<K>& key) { |
|
auto it = find(key); |
|
if (it != end()) return {it, std::next(it)}; |
|
return {it, it}; |
|
} |
|
template <class K = key_type> |
|
std::pair<const_iterator, const_iterator> equal_range( |
|
const key_arg<K>& key) const { |
|
auto it = find(key); |
|
if (it != end()) return {it, std::next(it)}; |
|
return {it, it}; |
|
} |
|
|
|
size_t bucket_count() const { return capacity_; } |
|
float load_factor() const { |
|
return capacity_ ? static_cast<double>(size()) / capacity_ : 0.0; |
|
} |
|
float max_load_factor() const { return 1.0f; } |
|
void max_load_factor(float) { |
|
// Does nothing. |
|
} |
|
|
|
hasher hash_function() const { return hash_ref(); } |
|
key_equal key_eq() const { return eq_ref(); } |
|
allocator_type get_allocator() const { return alloc_ref(); } |
|
|
|
friend bool operator==(const raw_hash_set& a, const raw_hash_set& b) { |
|
if (a.size() != b.size()) return false; |
|
const raw_hash_set* outer = &a; |
|
const raw_hash_set* inner = &b; |
|
if (outer->capacity() > inner->capacity()) std::swap(outer, inner); |
|
for (const value_type& elem : *outer) |
|
if (!inner->has_element(elem)) return false; |
|
return true; |
|
} |
|
|
|
friend bool operator!=(const raw_hash_set& a, const raw_hash_set& b) { |
|
return !(a == b); |
|
} |
|
|
|
template <typename H> |
|
friend typename std::enable_if<H::template is_hashable<value_type>::value, |
|
H>::type |
|
AbslHashValue(H h, const raw_hash_set& s) { |
|
return H::combine(H::combine_unordered(std::move(h), s.begin(), s.end()), |
|
s.size()); |
|
} |
|
|
|
friend void swap(raw_hash_set& a, |
|
raw_hash_set& b) noexcept(noexcept(a.swap(b))) { |
|
a.swap(b); |
|
} |
|
|
|
private: |
|
template <class Container, typename Enabler> |
|
friend struct absl::container_internal::hashtable_debug_internal:: |
|
HashtableDebugAccess; |
|
|
|
struct FindElement { |
|
template <class K, class... Args> |
|
const_iterator operator()(const K& key, Args&&...) const { |
|
return s.find(key); |
|
} |
|
const raw_hash_set& s; |
|
}; |
|
|
|
struct HashElement { |
|
template <class K, class... Args> |
|
size_t operator()(const K& key, Args&&...) const { |
|
return h(key); |
|
} |
|
const hasher& h; |
|
}; |
|
|
|
template <class K1> |
|
struct EqualElement { |
|
template <class K2, class... Args> |
|
bool operator()(const K2& lhs, Args&&...) const { |
|
return eq(lhs, rhs); |
|
} |
|
const K1& rhs; |
|
const key_equal& eq; |
|
}; |
|
|
|
struct EmplaceDecomposable { |
|
template <class K, class... Args> |
|
std::pair<iterator, bool> operator()(const K& key, Args&&... args) const { |
|
auto res = s.find_or_prepare_insert(key); |
|
if (res.second) { |
|
s.emplace_at(res.first, std::forward<Args>(args)...); |
|
} |
|
return {s.iterator_at(res.first), res.second}; |
|
} |
|
raw_hash_set& s; |
|
}; |
|
|
|
template <bool do_destroy> |
|
struct InsertSlot { |
|
template <class K, class... Args> |
|
std::pair<iterator, bool> operator()(const K& key, Args&&...) && { |
|
auto res = s.find_or_prepare_insert(key); |
|
if (res.second) { |
|
PolicyTraits::transfer(&s.alloc_ref(), s.slots_ + res.first, &slot); |
|
} else if (do_destroy) { |
|
PolicyTraits::destroy(&s.alloc_ref(), &slot); |
|
} |
|
return {s.iterator_at(res.first), res.second}; |
|
} |
|
raw_hash_set& s; |
|
// Constructed slot. Either moved into place or destroyed. |
|
slot_type&& slot; |
|
}; |
|
|
|
// Erases, but does not destroy, the value pointed to by `it`. |
|
// |
|
// This merely updates the pertinent control byte. This can be used in |
|
// conjunction with Policy::transfer to move the object to another place. |
|
void erase_meta_only(const_iterator it) { |
|
assert(IsFull(*it.inner_.ctrl_) && "erasing a dangling iterator"); |
|
--size_; |
|
const size_t index = static_cast<size_t>(it.inner_.ctrl_ - ctrl_); |
|
const size_t index_before = (index - Group::kWidth) & capacity_; |
|
const auto empty_after = Group(it.inner_.ctrl_).MaskEmpty(); |
|
const auto empty_before = Group(ctrl_ + index_before).MaskEmpty(); |
|
|
|
// We count how many consecutive non empties we have to the right and to the |
|
// left of `it`. If the sum is >= kWidth then there is at least one probe |
|
// window that might have seen a full group. |
|
bool was_never_full = |
|
empty_before && empty_after && |
|
static_cast<size_t>(empty_after.TrailingZeros() + |
|
empty_before.LeadingZeros()) < Group::kWidth; |
|
|
|
SetCtrl(index, was_never_full ? ctrl_t::kEmpty : ctrl_t::kDeleted, |
|
capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
growth_left() += was_never_full; |
|
infoz().RecordErase(); |
|
} |
|
|
|
// Allocates a backing array for `self` and initializes its control bytes. |
|
// This reads `capacity_` and updates all other fields based on the result of |
|
// the allocation. |
|
// |
|
// This does not free the currently held array; `capacity_` must be nonzero. |
|
void initialize_slots() { |
|
assert(capacity_); |
|
// Folks with custom allocators often make unwarranted assumptions about the |
|
// behavior of their classes vis-a-vis trivial destructability and what |
|
// calls they will or wont make. Avoid sampling for people with custom |
|
// allocators to get us out of this mess. This is not a hard guarantee but |
|
// a workaround while we plan the exact guarantee we want to provide. |
|
// |
|
// People are often sloppy with the exact type of their allocator (sometimes |
|
// it has an extra const or is missing the pair, but rebinds made it work |
|
// anyway). To avoid the ambiguity, we work off SlotAlloc which we have |
|
// bound more carefully. |
|
if (std::is_same<SlotAlloc, std::allocator<slot_type>>::value && |
|
slots_ == nullptr) { |
|
infoz() = Sample(sizeof(slot_type)); |
|
} |
|
|
|
char* mem = static_cast<char*>(Allocate<alignof(slot_type)>( |
|
&alloc_ref(), |
|
AllocSize(capacity_, sizeof(slot_type), alignof(slot_type)))); |
|
ctrl_ = reinterpret_cast<ctrl_t*>(mem); |
|
slots_ = reinterpret_cast<slot_type*>( |
|
mem + SlotOffset(capacity_, alignof(slot_type))); |
|
ResetCtrl(capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
reset_growth_left(); |
|
infoz().RecordStorageChanged(size_, capacity_); |
|
} |
|
|
|
// Destroys all slots in the backing array, frees the backing array, and |
|
// clears all top-level book-keeping data. |
|
// |
|
// This essentially implements `map = raw_hash_set();`. |
|
void destroy_slots() { |
|
if (!capacity_) return; |
|
for (size_t i = 0; i != capacity_; ++i) { |
|
if (IsFull(ctrl_[i])) { |
|
PolicyTraits::destroy(&alloc_ref(), slots_ + i); |
|
} |
|
} |
|
|
|
// Unpoison before returning the memory to the allocator. |
|
SanitizerUnpoisonMemoryRegion(slots_, sizeof(slot_type) * capacity_); |
|
Deallocate<alignof(slot_type)>( |
|
&alloc_ref(), ctrl_, |
|
AllocSize(capacity_, sizeof(slot_type), alignof(slot_type))); |
|
ctrl_ = EmptyGroup(); |
|
slots_ = nullptr; |
|
size_ = 0; |
|
capacity_ = 0; |
|
growth_left() = 0; |
|
} |
|
|
|
void resize(size_t new_capacity) { |
|
assert(IsValidCapacity(new_capacity)); |
|
auto* old_ctrl = ctrl_; |
|
auto* old_slots = slots_; |
|
const size_t old_capacity = capacity_; |
|
capacity_ = new_capacity; |
|
initialize_slots(); |
|
|
|
size_t total_probe_length = 0; |
|
for (size_t i = 0; i != old_capacity; ++i) { |
|
if (IsFull(old_ctrl[i])) { |
|
size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, |
|
PolicyTraits::element(old_slots + i)); |
|
auto target = find_first_non_full(ctrl_, hash, capacity_); |
|
size_t new_i = target.offset; |
|
total_probe_length += target.probe_length; |
|
SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, old_slots + i); |
|
} |
|
} |
|
if (old_capacity) { |
|
SanitizerUnpoisonMemoryRegion(old_slots, |
|
sizeof(slot_type) * old_capacity); |
|
Deallocate<alignof(slot_type)>( |
|
&alloc_ref(), old_ctrl, |
|
AllocSize(old_capacity, sizeof(slot_type), alignof(slot_type))); |
|
} |
|
infoz().RecordRehash(total_probe_length); |
|
} |
|
|
|
// Prunes control bytes to remove as many tombstones as possible. |
|
// |
|
// See the comment on `rehash_and_grow_if_necessary()`. |
|
void drop_deletes_without_resize() ABSL_ATTRIBUTE_NOINLINE { |
|
assert(IsValidCapacity(capacity_)); |
|
assert(!is_small(capacity_)); |
|
// Algorithm: |
|
// - mark all DELETED slots as EMPTY |
|
// - mark all FULL slots as DELETED |
|
// - for each slot marked as DELETED |
|
// hash = Hash(element) |
|
// target = find_first_non_full(hash) |
|
// if target is in the same group |
|
// mark slot as FULL |
|
// else if target is EMPTY |
|
// transfer element to target |
|
// mark slot as EMPTY |
|
// mark target as FULL |
|
// else if target is DELETED |
|
// swap current element with target element |
|
// mark target as FULL |
|
// repeat procedure for current slot with moved from element (target) |
|
ConvertDeletedToEmptyAndFullToDeleted(ctrl_, capacity_); |
|
alignas(slot_type) unsigned char raw[sizeof(slot_type)]; |
|
size_t total_probe_length = 0; |
|
slot_type* slot = reinterpret_cast<slot_type*>(&raw); |
|
for (size_t i = 0; i != capacity_; ++i) { |
|
if (!IsDeleted(ctrl_[i])) continue; |
|
const size_t hash = PolicyTraits::apply( |
|
HashElement{hash_ref()}, PolicyTraits::element(slots_ + i)); |
|
const FindInfo target = find_first_non_full(ctrl_, hash, capacity_); |
|
const size_t new_i = target.offset; |
|
total_probe_length += target.probe_length; |
|
|
|
// Verify if the old and new i fall within the same group wrt the hash. |
|
// If they do, we don't need to move the object as it falls already in the |
|
// best probe we can. |
|
const size_t probe_offset = probe(ctrl_, hash, capacity_).offset(); |
|
const auto probe_index = [probe_offset, this](size_t pos) { |
|
return ((pos - probe_offset) & capacity_) / Group::kWidth; |
|
}; |
|
|
|
// Element doesn't move. |
|
if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) { |
|
SetCtrl(i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
continue; |
|
} |
|
if (IsEmpty(ctrl_[new_i])) { |
|
// Transfer element to the empty spot. |
|
// SetCtrl poisons/unpoisons the slots so we have to call it at the |
|
// right time. |
|
SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slots_ + i); |
|
SetCtrl(i, ctrl_t::kEmpty, capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
} else { |
|
assert(IsDeleted(ctrl_[new_i])); |
|
SetCtrl(new_i, H2(hash), capacity_, ctrl_, slots_, sizeof(slot_type)); |
|
// Until we are done rehashing, DELETED marks previously FULL slots. |
|
// Swap i and new_i elements. |
|
PolicyTraits::transfer(&alloc_ref(), slot, slots_ + i); |
|
PolicyTraits::transfer(&alloc_ref(), slots_ + i, slots_ + new_i); |
|
PolicyTraits::transfer(&alloc_ref(), slots_ + new_i, slot); |
|
--i; // repeat |
|
} |
|
} |
|
reset_growth_left(); |
|
infoz().RecordRehash(total_probe_length); |
|
} |
|
|
|
// Called whenever the table *might* need to conditionally grow. |
|
// |
|
// This function is an optimization opportunity to perform a rehash even when |
|
// growth is unnecessary, because vacating tombstones is beneficial for |
|
// performance in the long-run. |
|
void rehash_and_grow_if_necessary() { |
|
if (capacity_ == 0) { |
|
resize(1); |
|
} else if (capacity_ > Group::kWidth && |
|
// Do these calcuations in 64-bit to avoid overflow. |
|
size() * uint64_t{32} <= capacity_ * uint64_t{25}) { |
|
// Squash DELETED without growing if there is enough capacity. |
|
// |
|
// Rehash in place if the current size is <= 25/32 of capacity_. |
|
// Rationale for such a high factor: 1) drop_deletes_without_resize() is |
|
// faster than resize, and 2) it takes quite a bit of work to add |
|
// tombstones. In the worst case, seems to take approximately 4 |
|
// insert/erase pairs to create a single tombstone and so if we are |
|
// rehashing because of tombstones, we can afford to rehash-in-place as |
|
// long as we are reclaiming at least 1/8 the capacity without doing more |
|
// than 2X the work. (Where "work" is defined to be size() for rehashing |
|
// or rehashing in place, and 1 for an insert or erase.) But rehashing in |
|
// place is faster per operation than inserting or even doubling the size |
|
// of the table, so we actually afford to reclaim even less space from a |
|
// resize-in-place. The decision is to rehash in place if we can reclaim |
|
// at about 1/8th of the usable capacity (specifically 3/28 of the |
|
// capacity) which means that the total cost of rehashing will be a small |
|
// fraction of the total work. |
|
// |
|
// Here is output of an experiment using the BM_CacheInSteadyState |
|
// benchmark running the old case (where we rehash-in-place only if we can |
|
// reclaim at least 7/16*capacity_) vs. this code (which rehashes in place |
|
// if we can recover 3/32*capacity_). |
|
// |
|
// Note that although in the worst-case number of rehashes jumped up from |
|
// 15 to 190, but the number of operations per second is almost the same. |
|
// |
|
// Abridged output of running BM_CacheInSteadyState benchmark from |
|
// raw_hash_set_benchmark. N is the number of insert/erase operations. |
|
// |
|
// | OLD (recover >= 7/16 | NEW (recover >= 3/32) |
|
// size | N/s LoadFactor NRehashes | N/s LoadFactor NRehashes |
|
// 448 | 145284 0.44 18 | 140118 0.44 19 |
|
// 493 | 152546 0.24 11 | 151417 0.48 28 |
|
// 538 | 151439 0.26 11 | 151152 0.53 38 |
|
// 583 | 151765 0.28 11 | 150572 0.57 50 |
|
// 628 | 150241 0.31 11 | 150853 0.61 66 |
|
// 672 | 149602 0.33 12 | 150110 0.66 90 |
|
// 717 | 149998 0.35 12 | 149531 0.70 129 |
|
// 762 | 149836 0.37 13 | 148559 0.74 190 |
|
// 807 | 149736 0.39 14 | 151107 0.39 14 |
|
// 852 | 150204 0.42 15 | 151019 0.42 15 |
|
drop_deletes_without_resize(); |
|
} else { |
|
// Otherwise grow the container. |
|
resize(capacity_ * 2 + 1); |
|
} |
|
} |
|
|
|
bool has_element(const value_type& elem) const { |
|
size_t hash = PolicyTraits::apply(HashElement{hash_ref()}, elem); |
|
auto seq = probe(ctrl_, hash, capacity_); |
|
while (true) { |
|
Group g{ctrl_ + seq.offset()}; |
|
for (uint32_t i : g.Match(H2(hash))) { |
|
if (ABSL_PREDICT_TRUE(PolicyTraits::element(slots_ + seq.offset(i)) == |
|
elem)) |
|
return true; |
|
} |
|
if (ABSL_PREDICT_TRUE(g.MaskEmpty())) return false; |
|
seq.next(); |
|
assert(seq.index() <= capacity_ && "full table!"); |
|
} |
|
return false; |
|
} |
|
|
|
// TODO(alkis): Optimize this assuming *this and that don't overlap. |
|
raw_hash_set& move_assign(raw_hash_set&& that, std::true_type) { |
|
raw_hash_set tmp(std::move(that)); |
|
swap(tmp); |
|
return *this; |
|
} |
|
raw_hash_set& move_assign(raw_hash_set&& that, std::false_type) { |
|
raw_hash_set tmp(std::move(that), alloc_ref()); |
|
swap(tmp); |
|
return *this; |
|
} |
|
|
|
protected: |
|
// Attempts to find `key` in the table; if it isn't found, returns a slot that |
|
// the value can be inserted into, with the control byte already set to |
|
// `key`'s H2. |
|
template <class K> |
|
std::pair<size_t, bool> find_or_prepare_insert(const K& key) { |
|
prefetch_heap_block(); |
|
auto hash = hash_ref()(key); |
|
auto seq = probe(ctrl_, hash, capacity_); |
|
while (true) { |
|
Group g{ctrl_ + seq.offset()}; |
|
for (uint32_t i : g.Match(H2(hash))) { |
|
if (ABSL_PREDICT_TRUE(PolicyTraits::apply( |
|
EqualElement<K>{key, eq_ref()}, |
|
PolicyTraits::element(slots_ + seq.offset(i))))) |
|
return {seq.offset(i), false}; |
|
} |
|
if (ABSL_PREDICT_TRUE(g.MaskEmpty())) break; |
|
seq.next(); |
|
assert(seq.index() <= capacity_ && "full table!"); |
|
} |
|
return {prepare_insert(hash), true}; |
|
} |
|
|
|
// Given the hash of a value not currently in the table, finds the next |
|
// viable slot index to insert it at. |
|
// |
|
// REQUIRES: At least one non-full slot available. |
|
size_t prepare_insert(size_t hash) ABSL_ATTRIBUTE_NOINLINE { |
|
auto target = find_first_non_full(ctrl_, hash, capacity_); |
|
if (ABSL_PREDICT_FALSE(growth_left() == 0 && |
|
!IsDeleted(ctrl_[target.offset]))) { |
|
rehash_and_grow_if_necessary(); |
|
target = find_first_non_full(ctrl_, hash, capacity_); |
|
} |
|
++size_; |
|
growth_left() -= IsEmpty(ctrl_[target.offset]); |
|
SetCtrl(target.offset, H2(hash), capacity_, ctrl_, slots_, |
|
sizeof(slot_type)); |
|
infoz().RecordInsert(hash, target.probe_length); |
|
return target.offset; |
|
} |
|
|
|
// Constructs the value in the space pointed by the iterator. This only works |
|
// after an unsuccessful find_or_prepare_insert() and before any other |
|
// modifications happen in the raw_hash_set. |
|
// |
|
// PRECONDITION: i is an index returned from find_or_prepare_insert(k), where |
|
// k is the key decomposed from `forward<Args>(args)...`, and the bool |
|
// returned by find_or_prepare_insert(k) was true. |
|
// POSTCONDITION: *m.iterator_at(i) == value_type(forward<Args>(args)...). |
|
template <class... Args> |
|
void emplace_at(size_t i, Args&&... args) { |
|
PolicyTraits::construct(&alloc_ref(), slots_ + i, |
|
std::forward<Args>(args)...); |
|
|
|
assert(PolicyTraits::apply(FindElement{*this}, *iterator_at(i)) == |
|
iterator_at(i) && |
|
"constructed value does not match the lookup key"); |
|
} |
|
|
|
iterator iterator_at(size_t i) { return {ctrl_ + i, slots_ + i}; } |
|
const_iterator iterator_at(size_t i) const { return {ctrl_ + i, slots_ + i}; } |
|
|
|
private: |
|
friend struct RawHashSetTestOnlyAccess; |
|
|
|
void reset_growth_left() { |
|
growth_left() = CapacityToGrowth(capacity()) - size_; |
|
} |
|
|
|
// The number of slots we can still fill without needing to rehash. |
|
// |
|
// This is stored separately due to tombstones: we do not include tombstones |
|
// in the growth capacity, because we'd like to rehash when the table is |
|
// otherwise filled with tombstones: otherwise, probe sequences might get |
|
// unacceptably long without triggering a rehash. Callers can also force a |
|
// rehash via the standard `rehash(0)`, which will recompute this value as a |
|
// side-effect. |
|
// |
|
// See `CapacityToGrowth()`. |
|
size_t& growth_left() { return settings_.template get<0>(); } |
|
|
|
// Prefetch the heap-allocated memory region to resolve potential TLB misses. |
|
// This is intended to overlap with execution of calculating the hash for a |
|
// key. |
|
void prefetch_heap_block() const { |
|
base_internal::PrefetchT2(ctrl_); |
|
} |
|
|
|
HashtablezInfoHandle& infoz() { return settings_.template get<1>(); } |
|
|
|
hasher& hash_ref() { return settings_.template get<2>(); } |
|
const hasher& hash_ref() const { return settings_.template get<2>(); } |
|
key_equal& eq_ref() { return settings_.template get<3>(); } |
|
const key_equal& eq_ref() const { return settings_.template get<3>(); } |
|
allocator_type& alloc_ref() { return settings_.template get<4>(); } |
|
const allocator_type& alloc_ref() const { |
|
return settings_.template get<4>(); |
|
} |
|
|
|
// TODO(alkis): Investigate removing some of these fields: |
|
// - ctrl/slots can be derived from each other |
|
// - size can be moved into the slot array |
|
|
|
// The control bytes (and, also, a pointer to the base of the backing array). |
|
// |
|
// This contains `capacity_ + 1 + NumClonedBytes()` entries, even |
|
// when the table is empty (hence EmptyGroup). |
|
ctrl_t* ctrl_ = EmptyGroup(); |
|
// The beginning of the slots, located at `SlotOffset()` bytes after |
|
// `ctrl_`. May be null for empty tables. |
|
slot_type* slots_ = nullptr; |
|
|
|
// The number of filled slots. |
|
size_t size_ = 0; |
|
|
|
// The total number of available slots. |
|
size_t capacity_ = 0; |
|
absl::container_internal::CompressedTuple<size_t /* growth_left */, |
|
HashtablezInfoHandle, hasher, |
|
key_equal, allocator_type> |
|
settings_{0u, HashtablezInfoHandle{}, hasher{}, key_equal{}, |
|
allocator_type{}}; |
|
}; |
|
|
|
// Erases all elements that satisfy the predicate `pred` from the container `c`. |
|
template <typename P, typename H, typename E, typename A, typename Predicate> |
|
typename raw_hash_set<P, H, E, A>::size_type EraseIf( |
|
Predicate& pred, raw_hash_set<P, H, E, A>* c) { |
|
const auto initial_size = c->size(); |
|
for (auto it = c->begin(), last = c->end(); it != last;) { |
|
if (pred(*it)) { |
|
c->erase(it++); |
|
} else { |
|
++it; |
|
} |
|
} |
|
return initial_size - c->size(); |
|
} |
|
|
|
namespace hashtable_debug_internal { |
|
template <typename Set> |
|
struct HashtableDebugAccess<Set, absl::void_t<typename Set::raw_hash_set>> { |
|
using Traits = typename Set::PolicyTraits; |
|
using Slot = typename Traits::slot_type; |
|
|
|
static size_t GetNumProbes(const Set& set, |
|
const typename Set::key_type& key) { |
|
size_t num_probes = 0; |
|
size_t hash = set.hash_ref()(key); |
|
auto seq = probe(set.ctrl_, hash, set.capacity_); |
|
while (true) { |
|
container_internal::Group g{set.ctrl_ + seq.offset()}; |
|
for (uint32_t i : g.Match(container_internal::H2(hash))) { |
|
if (Traits::apply( |
|
typename Set::template EqualElement<typename Set::key_type>{ |
|
key, set.eq_ref()}, |
|
Traits::element(set.slots_ + seq.offset(i)))) |
|
return num_probes; |
|
++num_probes; |
|
} |
|
if (g.MaskEmpty()) return num_probes; |
|
seq.next(); |
|
++num_probes; |
|
} |
|
} |
|
|
|
static size_t AllocatedByteSize(const Set& c) { |
|
size_t capacity = c.capacity_; |
|
if (capacity == 0) return 0; |
|
size_t m = AllocSize(capacity, sizeof(Slot), alignof(Slot)); |
|
|
|
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); |
|
if (per_slot != ~size_t{}) { |
|
m += per_slot * c.size(); |
|
} else { |
|
for (size_t i = 0; i != capacity; ++i) { |
|
if (container_internal::IsFull(c.ctrl_[i])) { |
|
m += Traits::space_used(c.slots_ + i); |
|
} |
|
} |
|
} |
|
return m; |
|
} |
|
|
|
static size_t LowerBoundAllocatedByteSize(size_t size) { |
|
size_t capacity = GrowthToLowerboundCapacity(size); |
|
if (capacity == 0) return 0; |
|
size_t m = |
|
AllocSize(NormalizeCapacity(capacity), sizeof(Slot), alignof(Slot)); |
|
size_t per_slot = Traits::space_used(static_cast<const Slot*>(nullptr)); |
|
if (per_slot != ~size_t{}) { |
|
m += per_slot * size; |
|
} |
|
return m; |
|
} |
|
}; |
|
|
|
} // namespace hashtable_debug_internal |
|
} // namespace container_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#undef ABSL_INTERNAL_ASSERT_IS_FULL |
|
|
|
#endif // ABSL_CONTAINER_INTERNAL_RAW_HASH_SET_H_
|
|
|