Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
909 lines
30 KiB
909 lines
30 KiB
// Copyright 2019 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_ |
|
#define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_ |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstring> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <utility> |
|
|
|
#include "absl/base/macros.h" |
|
#include "absl/container/internal/compressed_tuple.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/types/span.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace inlined_vector_internal { |
|
|
|
// GCC does not deal very well with the below code |
|
#if !defined(__clang__) && defined(__GNUC__) |
|
#pragma GCC diagnostic push |
|
#pragma GCC diagnostic ignored "-Warray-bounds" |
|
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized" |
|
#endif |
|
|
|
template <typename A> |
|
using AllocatorTraits = std::allocator_traits<A>; |
|
template <typename A> |
|
using ValueType = typename AllocatorTraits<A>::value_type; |
|
template <typename A> |
|
using SizeType = typename AllocatorTraits<A>::size_type; |
|
template <typename A> |
|
using Pointer = typename AllocatorTraits<A>::pointer; |
|
template <typename A> |
|
using ConstPointer = typename AllocatorTraits<A>::const_pointer; |
|
template <typename A> |
|
using SizeType = typename AllocatorTraits<A>::size_type; |
|
template <typename A> |
|
using DifferenceType = typename AllocatorTraits<A>::difference_type; |
|
template <typename A> |
|
using Reference = ValueType<A>&; |
|
template <typename A> |
|
using ConstReference = const ValueType<A>&; |
|
template <typename A> |
|
using Iterator = Pointer<A>; |
|
template <typename A> |
|
using ConstIterator = ConstPointer<A>; |
|
template <typename A> |
|
using ReverseIterator = typename std::reverse_iterator<Iterator<A>>; |
|
template <typename A> |
|
using ConstReverseIterator = typename std::reverse_iterator<ConstIterator<A>>; |
|
template <typename A> |
|
using MoveIterator = typename std::move_iterator<Iterator<A>>; |
|
|
|
template <typename Iterator> |
|
using IsAtLeastForwardIterator = std::is_convertible< |
|
typename std::iterator_traits<Iterator>::iterator_category, |
|
std::forward_iterator_tag>; |
|
|
|
template <typename A> |
|
using IsMemcpyOk = |
|
absl::conjunction<std::is_same<A, std::allocator<ValueType<A>>>, |
|
absl::is_trivially_copy_constructible<ValueType<A>>, |
|
absl::is_trivially_copy_assignable<ValueType<A>>, |
|
absl::is_trivially_destructible<ValueType<A>>>; |
|
|
|
template <typename T> |
|
struct TypeIdentity { |
|
using type = T; |
|
}; |
|
|
|
// Used for function arguments in template functions to prevent ADL by forcing |
|
// callers to explicitly specify the template parameter. |
|
template <typename T> |
|
using NoTypeDeduction = typename TypeIdentity<T>::type; |
|
|
|
template <typename A> |
|
void DestroyElements(NoTypeDeduction<A>& allocator, Pointer<A> destroy_first, |
|
SizeType<A> destroy_size) { |
|
if (destroy_first != nullptr) { |
|
for (auto i = destroy_size; i != 0;) { |
|
--i; |
|
AllocatorTraits<A>::destroy(allocator, destroy_first + i); |
|
} |
|
} |
|
} |
|
|
|
// If kUseMemcpy is true, memcpy(dst, src, n); else do nothing. |
|
// Useful to avoid compiler warnings when memcpy() is used for T values |
|
// that are not trivially copyable in non-reachable code. |
|
template <bool kUseMemcpy> |
|
inline void MemcpyIfAllowed(void* dst, const void* src, size_t n); |
|
|
|
// memcpy when allowed. |
|
template <> |
|
inline void MemcpyIfAllowed<true>(void* dst, const void* src, size_t n) { |
|
memcpy(dst, src, n); |
|
} |
|
|
|
// Do nothing for types that are not memcpy-able. This function is only |
|
// called from non-reachable branches. |
|
template <> |
|
inline void MemcpyIfAllowed<false>(void*, const void*, size_t) {} |
|
|
|
template <typename A, typename ValueAdapter> |
|
void ConstructElements(NoTypeDeduction<A>& allocator, |
|
Pointer<A> construct_first, ValueAdapter& values, |
|
SizeType<A> construct_size) { |
|
for (SizeType<A> i = 0; i < construct_size; ++i) { |
|
ABSL_INTERNAL_TRY { values.ConstructNext(allocator, construct_first + i); } |
|
ABSL_INTERNAL_CATCH_ANY { |
|
DestroyElements<A>(allocator, construct_first, i); |
|
ABSL_INTERNAL_RETHROW; |
|
} |
|
} |
|
} |
|
|
|
template <typename A, typename ValueAdapter> |
|
void AssignElements(Pointer<A> assign_first, ValueAdapter& values, |
|
SizeType<A> assign_size) { |
|
for (SizeType<A> i = 0; i < assign_size; ++i) { |
|
values.AssignNext(assign_first + i); |
|
} |
|
} |
|
|
|
template <typename A> |
|
struct StorageView { |
|
Pointer<A> data; |
|
SizeType<A> size; |
|
SizeType<A> capacity; |
|
}; |
|
|
|
template <typename A, typename Iterator> |
|
class IteratorValueAdapter { |
|
public: |
|
explicit IteratorValueAdapter(const Iterator& it) : it_(it) {} |
|
|
|
void ConstructNext(A& allocator, Pointer<A> construct_at) { |
|
AllocatorTraits<A>::construct(allocator, construct_at, *it_); |
|
++it_; |
|
} |
|
|
|
void AssignNext(Pointer<A> assign_at) { |
|
*assign_at = *it_; |
|
++it_; |
|
} |
|
|
|
private: |
|
Iterator it_; |
|
}; |
|
|
|
template <typename A> |
|
class CopyValueAdapter { |
|
public: |
|
explicit CopyValueAdapter(ConstPointer<A> p) : ptr_(p) {} |
|
|
|
void ConstructNext(A& allocator, Pointer<A> construct_at) { |
|
AllocatorTraits<A>::construct(allocator, construct_at, *ptr_); |
|
} |
|
|
|
void AssignNext(Pointer<A> assign_at) { *assign_at = *ptr_; } |
|
|
|
private: |
|
ConstPointer<A> ptr_; |
|
}; |
|
|
|
template <typename A> |
|
class DefaultValueAdapter { |
|
public: |
|
explicit DefaultValueAdapter() {} |
|
|
|
void ConstructNext(A& allocator, Pointer<A> construct_at) { |
|
AllocatorTraits<A>::construct(allocator, construct_at); |
|
} |
|
|
|
void AssignNext(Pointer<A> assign_at) { *assign_at = ValueType<A>(); } |
|
}; |
|
|
|
template <typename A> |
|
class AllocationTransaction { |
|
public: |
|
explicit AllocationTransaction(A& allocator) |
|
: allocator_data_(allocator, nullptr), capacity_(0) {} |
|
|
|
~AllocationTransaction() { |
|
if (DidAllocate()) { |
|
AllocatorTraits<A>::deallocate(GetAllocator(), GetData(), GetCapacity()); |
|
} |
|
} |
|
|
|
AllocationTransaction(const AllocationTransaction&) = delete; |
|
void operator=(const AllocationTransaction&) = delete; |
|
|
|
A& GetAllocator() { return allocator_data_.template get<0>(); } |
|
Pointer<A>& GetData() { return allocator_data_.template get<1>(); } |
|
SizeType<A>& GetCapacity() { return capacity_; } |
|
|
|
bool DidAllocate() { return GetData() != nullptr; } |
|
Pointer<A> Allocate(SizeType<A> capacity) { |
|
GetData() = AllocatorTraits<A>::allocate(GetAllocator(), capacity); |
|
GetCapacity() = capacity; |
|
return GetData(); |
|
} |
|
|
|
void Reset() { |
|
GetData() = nullptr; |
|
GetCapacity() = 0; |
|
} |
|
|
|
private: |
|
container_internal::CompressedTuple<A, Pointer<A>> allocator_data_; |
|
SizeType<A> capacity_; |
|
}; |
|
|
|
template <typename A> |
|
class ConstructionTransaction { |
|
public: |
|
explicit ConstructionTransaction(A& allocator) |
|
: allocator_data_(allocator, nullptr), size_(0) {} |
|
|
|
~ConstructionTransaction() { |
|
if (DidConstruct()) { |
|
DestroyElements<A>(GetAllocator(), GetData(), GetSize()); |
|
} |
|
} |
|
|
|
ConstructionTransaction(const ConstructionTransaction&) = delete; |
|
void operator=(const ConstructionTransaction&) = delete; |
|
|
|
A& GetAllocator() { return allocator_data_.template get<0>(); } |
|
Pointer<A>& GetData() { return allocator_data_.template get<1>(); } |
|
SizeType<A>& GetSize() { return size_; } |
|
|
|
bool DidConstruct() { return GetData() != nullptr; } |
|
template <typename ValueAdapter> |
|
void Construct(Pointer<A> data, ValueAdapter& values, SizeType<A> size) { |
|
ConstructElements<A>(GetAllocator(), data, values, size); |
|
GetData() = data; |
|
GetSize() = size; |
|
} |
|
void Commit() { |
|
GetData() = nullptr; |
|
GetSize() = 0; |
|
} |
|
|
|
private: |
|
container_internal::CompressedTuple<A, Pointer<A>> allocator_data_; |
|
SizeType<A> size_; |
|
}; |
|
|
|
template <typename T, size_t N, typename A> |
|
class Storage { |
|
public: |
|
static SizeType<A> NextCapacity(SizeType<A> current_capacity) { |
|
return current_capacity * 2; |
|
} |
|
|
|
static SizeType<A> ComputeCapacity(SizeType<A> current_capacity, |
|
SizeType<A> requested_capacity) { |
|
return (std::max)(NextCapacity(current_capacity), requested_capacity); |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Storage Constructors and Destructor |
|
// --------------------------------------------------------------------------- |
|
|
|
Storage() : metadata_(A(), /* size and is_allocated */ 0) {} |
|
|
|
explicit Storage(const A& allocator) |
|
: metadata_(allocator, /* size and is_allocated */ 0) {} |
|
|
|
~Storage() { |
|
if (GetSizeAndIsAllocated() == 0) { |
|
// Empty and not allocated; nothing to do. |
|
} else if (IsMemcpyOk<A>::value) { |
|
// No destructors need to be run; just deallocate if necessary. |
|
DeallocateIfAllocated(); |
|
} else { |
|
DestroyContents(); |
|
} |
|
} |
|
|
|
// --------------------------------------------------------------------------- |
|
// Storage Member Accessors |
|
// --------------------------------------------------------------------------- |
|
|
|
SizeType<A>& GetSizeAndIsAllocated() { return metadata_.template get<1>(); } |
|
|
|
const SizeType<A>& GetSizeAndIsAllocated() const { |
|
return metadata_.template get<1>(); |
|
} |
|
|
|
SizeType<A> GetSize() const { return GetSizeAndIsAllocated() >> 1; } |
|
|
|
bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; } |
|
|
|
Pointer<A> GetAllocatedData() { return data_.allocated.allocated_data; } |
|
|
|
ConstPointer<A> GetAllocatedData() const { |
|
return data_.allocated.allocated_data; |
|
} |
|
|
|
Pointer<A> GetInlinedData() { |
|
return reinterpret_cast<Pointer<A>>( |
|
std::addressof(data_.inlined.inlined_data[0])); |
|
} |
|
|
|
ConstPointer<A> GetInlinedData() const { |
|
return reinterpret_cast<ConstPointer<A>>( |
|
std::addressof(data_.inlined.inlined_data[0])); |
|
} |
|
|
|
SizeType<A> GetAllocatedCapacity() const { |
|
return data_.allocated.allocated_capacity; |
|
} |
|
|
|
SizeType<A> GetInlinedCapacity() const { return static_cast<SizeType<A>>(N); } |
|
|
|
StorageView<A> MakeStorageView() { |
|
return GetIsAllocated() ? StorageView<A>{GetAllocatedData(), GetSize(), |
|
GetAllocatedCapacity()} |
|
: StorageView<A>{GetInlinedData(), GetSize(), |
|
GetInlinedCapacity()}; |
|
} |
|
|
|
A& GetAllocator() { return metadata_.template get<0>(); } |
|
|
|
const A& GetAllocator() const { return metadata_.template get<0>(); } |
|
|
|
// --------------------------------------------------------------------------- |
|
// Storage Member Mutators |
|
// --------------------------------------------------------------------------- |
|
|
|
ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other); |
|
|
|
template <typename ValueAdapter> |
|
void Initialize(ValueAdapter values, SizeType<A> new_size); |
|
|
|
template <typename ValueAdapter> |
|
void Assign(ValueAdapter values, SizeType<A> new_size); |
|
|
|
template <typename ValueAdapter> |
|
void Resize(ValueAdapter values, SizeType<A> new_size); |
|
|
|
template <typename ValueAdapter> |
|
Iterator<A> Insert(ConstIterator<A> pos, ValueAdapter values, |
|
SizeType<A> insert_count); |
|
|
|
template <typename... Args> |
|
Reference<A> EmplaceBack(Args&&... args); |
|
|
|
Iterator<A> Erase(ConstIterator<A> from, ConstIterator<A> to); |
|
|
|
void Reserve(SizeType<A> requested_capacity); |
|
|
|
void ShrinkToFit(); |
|
|
|
void Swap(Storage* other_storage_ptr); |
|
|
|
void SetIsAllocated() { |
|
GetSizeAndIsAllocated() |= static_cast<SizeType<A>>(1); |
|
} |
|
|
|
void UnsetIsAllocated() { |
|
GetSizeAndIsAllocated() &= ((std::numeric_limits<SizeType<A>>::max)() - 1); |
|
} |
|
|
|
void SetSize(SizeType<A> size) { |
|
GetSizeAndIsAllocated() = |
|
(size << 1) | static_cast<SizeType<A>>(GetIsAllocated()); |
|
} |
|
|
|
void SetAllocatedSize(SizeType<A> size) { |
|
GetSizeAndIsAllocated() = (size << 1) | static_cast<SizeType<A>>(1); |
|
} |
|
|
|
void SetInlinedSize(SizeType<A> size) { |
|
GetSizeAndIsAllocated() = size << static_cast<SizeType<A>>(1); |
|
} |
|
|
|
void AddSize(SizeType<A> count) { |
|
GetSizeAndIsAllocated() += count << static_cast<SizeType<A>>(1); |
|
} |
|
|
|
void SubtractSize(SizeType<A> count) { |
|
assert(count <= GetSize()); |
|
|
|
GetSizeAndIsAllocated() -= count << static_cast<SizeType<A>>(1); |
|
} |
|
|
|
void SetAllocatedData(Pointer<A> data, SizeType<A> capacity) { |
|
data_.allocated.allocated_data = data; |
|
data_.allocated.allocated_capacity = capacity; |
|
} |
|
|
|
void AcquireAllocatedData(AllocationTransaction<A>& allocation_tx) { |
|
SetAllocatedData(allocation_tx.GetData(), allocation_tx.GetCapacity()); |
|
|
|
allocation_tx.Reset(); |
|
} |
|
|
|
void MemcpyFrom(const Storage& other_storage) { |
|
assert(IsMemcpyOk<A>::value || other_storage.GetIsAllocated()); |
|
|
|
GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated(); |
|
data_ = other_storage.data_; |
|
} |
|
|
|
void DeallocateIfAllocated() { |
|
if (GetIsAllocated()) { |
|
AllocatorTraits<A>::deallocate(GetAllocator(), GetAllocatedData(), |
|
GetAllocatedCapacity()); |
|
} |
|
} |
|
|
|
private: |
|
ABSL_ATTRIBUTE_NOINLINE void DestroyContents(); |
|
|
|
using Metadata = container_internal::CompressedTuple<A, SizeType<A>>; |
|
|
|
struct Allocated { |
|
Pointer<A> allocated_data; |
|
SizeType<A> allocated_capacity; |
|
}; |
|
|
|
struct Inlined { |
|
alignas(ValueType<A>) char inlined_data[sizeof(ValueType<A>[N])]; |
|
}; |
|
|
|
union Data { |
|
Allocated allocated; |
|
Inlined inlined; |
|
}; |
|
|
|
template <typename... Args> |
|
ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args); |
|
|
|
Metadata metadata_; |
|
Data data_; |
|
}; |
|
|
|
template <typename T, size_t N, typename A> |
|
void Storage<T, N, A>::DestroyContents() { |
|
Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData(); |
|
DestroyElements<A>(GetAllocator(), data, GetSize()); |
|
DeallocateIfAllocated(); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
void Storage<T, N, A>::InitFrom(const Storage& other) { |
|
const auto n = other.GetSize(); |
|
assert(n > 0); // Empty sources handled handled in caller. |
|
ConstPointer<A> src; |
|
Pointer<A> dst; |
|
if (!other.GetIsAllocated()) { |
|
dst = GetInlinedData(); |
|
src = other.GetInlinedData(); |
|
} else { |
|
// Because this is only called from the `InlinedVector` constructors, it's |
|
// safe to take on the allocation with size `0`. If `ConstructElements(...)` |
|
// throws, deallocation will be automatically handled by `~Storage()`. |
|
SizeType<A> new_capacity = ComputeCapacity(GetInlinedCapacity(), n); |
|
dst = AllocatorTraits<A>::allocate(GetAllocator(), new_capacity); |
|
SetAllocatedData(dst, new_capacity); |
|
src = other.GetAllocatedData(); |
|
} |
|
if (IsMemcpyOk<A>::value) { |
|
MemcpyIfAllowed<IsMemcpyOk<A>::value>(dst, src, sizeof(dst[0]) * n); |
|
} else { |
|
auto values = IteratorValueAdapter<A, ConstPointer<A>>(src); |
|
ConstructElements<A>(GetAllocator(), dst, values, n); |
|
} |
|
GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated(); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename ValueAdapter> |
|
auto Storage<T, N, A>::Initialize(ValueAdapter values, SizeType<A> new_size) |
|
-> void { |
|
// Only callable from constructors! |
|
assert(!GetIsAllocated()); |
|
assert(GetSize() == 0); |
|
|
|
Pointer<A> construct_data; |
|
if (new_size > GetInlinedCapacity()) { |
|
// Because this is only called from the `InlinedVector` constructors, it's |
|
// safe to take on the allocation with size `0`. If `ConstructElements(...)` |
|
// throws, deallocation will be automatically handled by `~Storage()`. |
|
SizeType<A> new_capacity = ComputeCapacity(GetInlinedCapacity(), new_size); |
|
construct_data = AllocatorTraits<A>::allocate(GetAllocator(), new_capacity); |
|
SetAllocatedData(construct_data, new_capacity); |
|
SetIsAllocated(); |
|
} else { |
|
construct_data = GetInlinedData(); |
|
} |
|
|
|
ConstructElements<A>(GetAllocator(), construct_data, values, new_size); |
|
|
|
// Since the initial size was guaranteed to be `0` and the allocated bit is |
|
// already correct for either case, *adding* `new_size` gives us the correct |
|
// result faster than setting it directly. |
|
AddSize(new_size); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename ValueAdapter> |
|
auto Storage<T, N, A>::Assign(ValueAdapter values, SizeType<A> new_size) |
|
-> void { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
|
|
AllocationTransaction<A> allocation_tx(GetAllocator()); |
|
|
|
absl::Span<ValueType<A>> assign_loop; |
|
absl::Span<ValueType<A>> construct_loop; |
|
absl::Span<ValueType<A>> destroy_loop; |
|
|
|
if (new_size > storage_view.capacity) { |
|
SizeType<A> new_capacity = ComputeCapacity(storage_view.capacity, new_size); |
|
construct_loop = {allocation_tx.Allocate(new_capacity), new_size}; |
|
destroy_loop = {storage_view.data, storage_view.size}; |
|
} else if (new_size > storage_view.size) { |
|
assign_loop = {storage_view.data, storage_view.size}; |
|
construct_loop = {storage_view.data + storage_view.size, |
|
new_size - storage_view.size}; |
|
} else { |
|
assign_loop = {storage_view.data, new_size}; |
|
destroy_loop = {storage_view.data + new_size, storage_view.size - new_size}; |
|
} |
|
|
|
AssignElements<A>(assign_loop.data(), values, assign_loop.size()); |
|
|
|
ConstructElements<A>(GetAllocator(), construct_loop.data(), values, |
|
construct_loop.size()); |
|
|
|
DestroyElements<A>(GetAllocator(), destroy_loop.data(), destroy_loop.size()); |
|
|
|
if (allocation_tx.DidAllocate()) { |
|
DeallocateIfAllocated(); |
|
AcquireAllocatedData(allocation_tx); |
|
SetIsAllocated(); |
|
} |
|
|
|
SetSize(new_size); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename ValueAdapter> |
|
auto Storage<T, N, A>::Resize(ValueAdapter values, SizeType<A> new_size) |
|
-> void { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
auto* const base = storage_view.data; |
|
const SizeType<A> size = storage_view.size; |
|
auto& alloc = GetAllocator(); |
|
if (new_size <= size) { |
|
// Destroy extra old elements. |
|
DestroyElements<A>(alloc, base + new_size, size - new_size); |
|
} else if (new_size <= storage_view.capacity) { |
|
// Construct new elements in place. |
|
ConstructElements<A>(alloc, base + size, values, new_size - size); |
|
} else { |
|
// Steps: |
|
// a. Allocate new backing store. |
|
// b. Construct new elements in new backing store. |
|
// c. Move existing elements from old backing store to now. |
|
// d. Destroy all elements in old backing store. |
|
// Use transactional wrappers for the first two steps so we can roll |
|
// back if necessary due to exceptions. |
|
AllocationTransaction<A> allocation_tx(alloc); |
|
SizeType<A> new_capacity = ComputeCapacity(storage_view.capacity, new_size); |
|
Pointer<A> new_data = allocation_tx.Allocate(new_capacity); |
|
|
|
ConstructionTransaction<A> construction_tx(alloc); |
|
construction_tx.Construct(new_data + size, values, new_size - size); |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
(MoveIterator<A>(base))); |
|
ConstructElements<A>(alloc, new_data, move_values, size); |
|
|
|
DestroyElements<A>(alloc, base, size); |
|
construction_tx.Commit(); |
|
DeallocateIfAllocated(); |
|
AcquireAllocatedData(allocation_tx); |
|
SetIsAllocated(); |
|
} |
|
SetSize(new_size); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename ValueAdapter> |
|
auto Storage<T, N, A>::Insert(ConstIterator<A> pos, ValueAdapter values, |
|
SizeType<A> insert_count) -> Iterator<A> { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
|
|
SizeType<A> insert_index = |
|
std::distance(ConstIterator<A>(storage_view.data), pos); |
|
SizeType<A> insert_end_index = insert_index + insert_count; |
|
SizeType<A> new_size = storage_view.size + insert_count; |
|
|
|
if (new_size > storage_view.capacity) { |
|
AllocationTransaction<A> allocation_tx(GetAllocator()); |
|
ConstructionTransaction<A> construction_tx(GetAllocator()); |
|
ConstructionTransaction<A> move_construction_tx(GetAllocator()); |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(storage_view.data)); |
|
|
|
SizeType<A> new_capacity = ComputeCapacity(storage_view.capacity, new_size); |
|
Pointer<A> new_data = allocation_tx.Allocate(new_capacity); |
|
|
|
construction_tx.Construct(new_data + insert_index, values, insert_count); |
|
|
|
move_construction_tx.Construct(new_data, move_values, insert_index); |
|
|
|
ConstructElements<A>(GetAllocator(), new_data + insert_end_index, |
|
move_values, storage_view.size - insert_index); |
|
|
|
DestroyElements<A>(GetAllocator(), storage_view.data, storage_view.size); |
|
|
|
construction_tx.Commit(); |
|
move_construction_tx.Commit(); |
|
DeallocateIfAllocated(); |
|
AcquireAllocatedData(allocation_tx); |
|
|
|
SetAllocatedSize(new_size); |
|
return Iterator<A>(new_data + insert_index); |
|
} else { |
|
SizeType<A> move_construction_destination_index = |
|
(std::max)(insert_end_index, storage_view.size); |
|
|
|
ConstructionTransaction<A> move_construction_tx(GetAllocator()); |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_construction_values( |
|
MoveIterator<A>(storage_view.data + |
|
(move_construction_destination_index - insert_count))); |
|
absl::Span<ValueType<A>> move_construction = { |
|
storage_view.data + move_construction_destination_index, |
|
new_size - move_construction_destination_index}; |
|
|
|
Pointer<A> move_assignment_values = storage_view.data + insert_index; |
|
absl::Span<ValueType<A>> move_assignment = { |
|
storage_view.data + insert_end_index, |
|
move_construction_destination_index - insert_end_index}; |
|
|
|
absl::Span<ValueType<A>> insert_assignment = {move_assignment_values, |
|
move_construction.size()}; |
|
|
|
absl::Span<ValueType<A>> insert_construction = { |
|
insert_assignment.data() + insert_assignment.size(), |
|
insert_count - insert_assignment.size()}; |
|
|
|
move_construction_tx.Construct(move_construction.data(), |
|
move_construction_values, |
|
move_construction.size()); |
|
|
|
for (Pointer<A> |
|
destination = move_assignment.data() + move_assignment.size(), |
|
last_destination = move_assignment.data(), |
|
source = move_assignment_values + move_assignment.size(); |
|
;) { |
|
--destination; |
|
--source; |
|
if (destination < last_destination) break; |
|
*destination = std::move(*source); |
|
} |
|
|
|
AssignElements<A>(insert_assignment.data(), values, |
|
insert_assignment.size()); |
|
|
|
ConstructElements<A>(GetAllocator(), insert_construction.data(), values, |
|
insert_construction.size()); |
|
|
|
move_construction_tx.Commit(); |
|
|
|
AddSize(insert_count); |
|
return Iterator<A>(storage_view.data + insert_index); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename... Args> |
|
auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
const auto n = storage_view.size; |
|
if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) { |
|
// Fast path; new element fits. |
|
Pointer<A> last_ptr = storage_view.data + n; |
|
AllocatorTraits<A>::construct(GetAllocator(), last_ptr, |
|
std::forward<Args>(args)...); |
|
AddSize(1); |
|
return *last_ptr; |
|
} |
|
// TODO(b/173712035): Annotate with musttail attribute to prevent regression. |
|
return EmplaceBackSlow(std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
template <typename... Args> |
|
auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
AllocationTransaction<A> allocation_tx(GetAllocator()); |
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(storage_view.data)); |
|
SizeType<A> new_capacity = NextCapacity(storage_view.capacity); |
|
Pointer<A> construct_data = allocation_tx.Allocate(new_capacity); |
|
Pointer<A> last_ptr = construct_data + storage_view.size; |
|
|
|
// Construct new element. |
|
AllocatorTraits<A>::construct(GetAllocator(), last_ptr, |
|
std::forward<Args>(args)...); |
|
// Move elements from old backing store to new backing store. |
|
ABSL_INTERNAL_TRY { |
|
ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values, |
|
storage_view.size); |
|
} |
|
ABSL_INTERNAL_CATCH_ANY { |
|
AllocatorTraits<A>::destroy(GetAllocator(), last_ptr); |
|
ABSL_INTERNAL_RETHROW; |
|
} |
|
// Destroy elements in old backing store. |
|
DestroyElements<A>(GetAllocator(), storage_view.data, storage_view.size); |
|
|
|
DeallocateIfAllocated(); |
|
AcquireAllocatedData(allocation_tx); |
|
SetIsAllocated(); |
|
AddSize(1); |
|
return *last_ptr; |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
auto Storage<T, N, A>::Erase(ConstIterator<A> from, ConstIterator<A> to) |
|
-> Iterator<A> { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
|
|
SizeType<A> erase_size = std::distance(from, to); |
|
SizeType<A> erase_index = |
|
std::distance(ConstIterator<A>(storage_view.data), from); |
|
SizeType<A> erase_end_index = erase_index + erase_size; |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(storage_view.data + erase_end_index)); |
|
|
|
AssignElements<A>(storage_view.data + erase_index, move_values, |
|
storage_view.size - erase_end_index); |
|
|
|
DestroyElements<A>(GetAllocator(), |
|
storage_view.data + (storage_view.size - erase_size), |
|
erase_size); |
|
|
|
SubtractSize(erase_size); |
|
return Iterator<A>(storage_view.data + erase_index); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
auto Storage<T, N, A>::Reserve(SizeType<A> requested_capacity) -> void { |
|
StorageView<A> storage_view = MakeStorageView(); |
|
|
|
if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return; |
|
|
|
AllocationTransaction<A> allocation_tx(GetAllocator()); |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(storage_view.data)); |
|
|
|
SizeType<A> new_capacity = |
|
ComputeCapacity(storage_view.capacity, requested_capacity); |
|
Pointer<A> new_data = allocation_tx.Allocate(new_capacity); |
|
|
|
ConstructElements<A>(GetAllocator(), new_data, move_values, |
|
storage_view.size); |
|
|
|
DestroyElements<A>(GetAllocator(), storage_view.data, storage_view.size); |
|
|
|
DeallocateIfAllocated(); |
|
AcquireAllocatedData(allocation_tx); |
|
SetIsAllocated(); |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
auto Storage<T, N, A>::ShrinkToFit() -> void { |
|
// May only be called on allocated instances! |
|
assert(GetIsAllocated()); |
|
|
|
StorageView<A> storage_view{GetAllocatedData(), GetSize(), |
|
GetAllocatedCapacity()}; |
|
|
|
if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return; |
|
|
|
AllocationTransaction<A> allocation_tx(GetAllocator()); |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(storage_view.data)); |
|
|
|
Pointer<A> construct_data; |
|
if (storage_view.size > GetInlinedCapacity()) { |
|
SizeType<A> new_capacity = storage_view.size; |
|
construct_data = allocation_tx.Allocate(new_capacity); |
|
} else { |
|
construct_data = GetInlinedData(); |
|
} |
|
|
|
ABSL_INTERNAL_TRY { |
|
ConstructElements<A>(GetAllocator(), construct_data, move_values, |
|
storage_view.size); |
|
} |
|
ABSL_INTERNAL_CATCH_ANY { |
|
SetAllocatedData(storage_view.data, storage_view.capacity); |
|
ABSL_INTERNAL_RETHROW; |
|
} |
|
|
|
DestroyElements<A>(GetAllocator(), storage_view.data, storage_view.size); |
|
|
|
AllocatorTraits<A>::deallocate(GetAllocator(), storage_view.data, |
|
storage_view.capacity); |
|
|
|
if (allocation_tx.DidAllocate()) { |
|
AcquireAllocatedData(allocation_tx); |
|
} else { |
|
UnsetIsAllocated(); |
|
} |
|
} |
|
|
|
template <typename T, size_t N, typename A> |
|
auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void { |
|
using std::swap; |
|
assert(this != other_storage_ptr); |
|
|
|
if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) { |
|
swap(data_.allocated, other_storage_ptr->data_.allocated); |
|
} else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) { |
|
Storage* small_ptr = this; |
|
Storage* large_ptr = other_storage_ptr; |
|
if (small_ptr->GetSize() > large_ptr->GetSize()) swap(small_ptr, large_ptr); |
|
|
|
for (SizeType<A> i = 0; i < small_ptr->GetSize(); ++i) { |
|
swap(small_ptr->GetInlinedData()[i], large_ptr->GetInlinedData()[i]); |
|
} |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(large_ptr->GetInlinedData() + small_ptr->GetSize())); |
|
|
|
ConstructElements<A>(large_ptr->GetAllocator(), |
|
small_ptr->GetInlinedData() + small_ptr->GetSize(), |
|
move_values, |
|
large_ptr->GetSize() - small_ptr->GetSize()); |
|
|
|
DestroyElements<A>(large_ptr->GetAllocator(), |
|
large_ptr->GetInlinedData() + small_ptr->GetSize(), |
|
large_ptr->GetSize() - small_ptr->GetSize()); |
|
} else { |
|
Storage* allocated_ptr = this; |
|
Storage* inlined_ptr = other_storage_ptr; |
|
if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr); |
|
|
|
StorageView<A> allocated_storage_view{ |
|
allocated_ptr->GetAllocatedData(), allocated_ptr->GetSize(), |
|
allocated_ptr->GetAllocatedCapacity()}; |
|
|
|
IteratorValueAdapter<A, MoveIterator<A>> move_values( |
|
MoveIterator<A>(inlined_ptr->GetInlinedData())); |
|
|
|
ABSL_INTERNAL_TRY { |
|
ConstructElements<A>(inlined_ptr->GetAllocator(), |
|
allocated_ptr->GetInlinedData(), move_values, |
|
inlined_ptr->GetSize()); |
|
} |
|
ABSL_INTERNAL_CATCH_ANY { |
|
allocated_ptr->SetAllocatedData(allocated_storage_view.data, |
|
allocated_storage_view.capacity); |
|
ABSL_INTERNAL_RETHROW; |
|
} |
|
|
|
DestroyElements<A>(inlined_ptr->GetAllocator(), |
|
inlined_ptr->GetInlinedData(), inlined_ptr->GetSize()); |
|
|
|
inlined_ptr->SetAllocatedData(allocated_storage_view.data, |
|
allocated_storage_view.capacity); |
|
} |
|
|
|
swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated()); |
|
swap(GetAllocator(), other_storage_ptr->GetAllocator()); |
|
} |
|
|
|
// End ignore "array-bounds" and "maybe-uninitialized" |
|
#if !defined(__clang__) && defined(__GNUC__) |
|
#pragma GCC diagnostic pop |
|
#endif |
|
|
|
} // namespace inlined_vector_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_INTERNAL_H_
|
|
|