Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
264 lines
9.5 KiB
264 lines
9.5 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ |
|
#define ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_ |
|
|
|
#include <algorithm> |
|
#include <cinttypes> |
|
#include <cstdlib> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <limits> |
|
#include <type_traits> |
|
|
|
#include "absl/base/internal/endian.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
#include "absl/random/internal/randen.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace random_internal { |
|
|
|
// Deterministic pseudorandom byte generator with backtracking resistance |
|
// (leaking the state does not compromise prior outputs). Based on Reverie |
|
// (see "A Robust and Sponge-Like PRNG with Improved Efficiency") instantiated |
|
// with an improved Simpira-like permutation. |
|
// Returns values of type "T" (must be a built-in unsigned integer type). |
|
// |
|
// RANDen = RANDom generator or beetroots in Swiss High German. |
|
// 'Strong' (well-distributed, unpredictable, backtracking-resistant) random |
|
// generator, faster in some benchmarks than std::mt19937_64 and pcg64_c32. |
|
template <typename T> |
|
class alignas(8) randen_engine { |
|
public: |
|
// C++11 URBG interface: |
|
using result_type = T; |
|
static_assert(std::is_unsigned<result_type>::value, |
|
"randen_engine template argument must be a built-in unsigned " |
|
"integer type"); |
|
|
|
static constexpr result_type(min)() { |
|
return (std::numeric_limits<result_type>::min)(); |
|
} |
|
|
|
static constexpr result_type(max)() { |
|
return (std::numeric_limits<result_type>::max)(); |
|
} |
|
|
|
randen_engine() : randen_engine(0) {} |
|
explicit randen_engine(result_type seed_value) { seed(seed_value); } |
|
|
|
template <class SeedSequence, |
|
typename = typename absl::enable_if_t< |
|
!std::is_same<SeedSequence, randen_engine>::value>> |
|
explicit randen_engine(SeedSequence&& seq) { |
|
seed(seq); |
|
} |
|
|
|
// alignment requirements dictate custom copy and move constructors. |
|
randen_engine(const randen_engine& other) |
|
: next_(other.next_), impl_(other.impl_) { |
|
std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type)); |
|
} |
|
randen_engine& operator=(const randen_engine& other) { |
|
next_ = other.next_; |
|
impl_ = other.impl_; |
|
std::memcpy(state(), other.state(), kStateSizeT * sizeof(result_type)); |
|
return *this; |
|
} |
|
|
|
// Returns random bits from the buffer in units of result_type. |
|
result_type operator()() { |
|
// Refill the buffer if needed (unlikely). |
|
auto* begin = state(); |
|
if (next_ >= kStateSizeT) { |
|
next_ = kCapacityT; |
|
impl_.Generate(begin); |
|
} |
|
return little_endian::ToHost(begin[next_++]); |
|
} |
|
|
|
template <class SeedSequence> |
|
typename absl::enable_if_t< |
|
!std::is_convertible<SeedSequence, result_type>::value> |
|
seed(SeedSequence&& seq) { |
|
// Zeroes the state. |
|
seed(); |
|
reseed(seq); |
|
} |
|
|
|
void seed(result_type seed_value = 0) { |
|
next_ = kStateSizeT; |
|
// Zeroes the inner state and fills the outer state with seed_value to |
|
// mimic the behaviour of reseed |
|
auto* begin = state(); |
|
std::fill(begin, begin + kCapacityT, 0); |
|
std::fill(begin + kCapacityT, begin + kStateSizeT, seed_value); |
|
} |
|
|
|
// Inserts entropy into (part of) the state. Calling this periodically with |
|
// sufficient entropy ensures prediction resistance (attackers cannot predict |
|
// future outputs even if state is compromised). |
|
template <class SeedSequence> |
|
void reseed(SeedSequence& seq) { |
|
using sequence_result_type = typename SeedSequence::result_type; |
|
static_assert(sizeof(sequence_result_type) == 4, |
|
"SeedSequence::result_type must be 32-bit"); |
|
constexpr size_t kBufferSize = |
|
Randen::kSeedBytes / sizeof(sequence_result_type); |
|
alignas(16) sequence_result_type buffer[kBufferSize]; |
|
|
|
// Randen::Absorb XORs the seed into state, which is then mixed by a call |
|
// to Randen::Generate. Seeding with only the provided entropy is preferred |
|
// to using an arbitrary generate() call, so use [rand.req.seed_seq] |
|
// size as a proxy for the number of entropy units that can be generated |
|
// without relying on seed sequence mixing... |
|
const size_t entropy_size = seq.size(); |
|
if (entropy_size < kBufferSize) { |
|
// ... and only request that many values, or 256-bits, when unspecified. |
|
const size_t requested_entropy = (entropy_size == 0) ? 8u : entropy_size; |
|
std::fill(buffer + requested_entropy, buffer + kBufferSize, 0); |
|
seq.generate(buffer, buffer + requested_entropy); |
|
#ifdef ABSL_IS_BIG_ENDIAN |
|
// Randen expects the seed buffer to be in Little Endian; reverse it on |
|
// Big Endian platforms. |
|
for (sequence_result_type& e : buffer) { |
|
e = absl::little_endian::FromHost(e); |
|
} |
|
#endif |
|
// The Randen paper suggests preferentially initializing even-numbered |
|
// 128-bit vectors of the randen state (there are 16 such vectors). |
|
// The seed data is merged into the state offset by 128-bits, which |
|
// implies prefering seed bytes [16..31, ..., 208..223]. Since the |
|
// buffer is 32-bit values, we swap the corresponding buffer positions in |
|
// 128-bit chunks. |
|
size_t dst = kBufferSize; |
|
while (dst > 7) { |
|
// leave the odd bucket as-is. |
|
dst -= 4; |
|
size_t src = dst >> 1; |
|
// swap 128-bits into the even bucket |
|
std::swap(buffer[--dst], buffer[--src]); |
|
std::swap(buffer[--dst], buffer[--src]); |
|
std::swap(buffer[--dst], buffer[--src]); |
|
std::swap(buffer[--dst], buffer[--src]); |
|
} |
|
} else { |
|
seq.generate(buffer, buffer + kBufferSize); |
|
} |
|
impl_.Absorb(buffer, state()); |
|
|
|
// Generate will be called when operator() is called |
|
next_ = kStateSizeT; |
|
} |
|
|
|
void discard(uint64_t count) { |
|
uint64_t step = std::min<uint64_t>(kStateSizeT - next_, count); |
|
count -= step; |
|
|
|
constexpr uint64_t kRateT = kStateSizeT - kCapacityT; |
|
auto* begin = state(); |
|
while (count > 0) { |
|
next_ = kCapacityT; |
|
impl_.Generate(*reinterpret_cast<result_type(*)[kStateSizeT]>(begin)); |
|
step = std::min<uint64_t>(kRateT, count); |
|
count -= step; |
|
} |
|
next_ += step; |
|
} |
|
|
|
bool operator==(const randen_engine& other) const { |
|
const auto* begin = state(); |
|
return next_ == other.next_ && |
|
std::equal(begin, begin + kStateSizeT, other.state()); |
|
} |
|
|
|
bool operator!=(const randen_engine& other) const { |
|
return !(*this == other); |
|
} |
|
|
|
template <class CharT, class Traits> |
|
friend std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const randen_engine<T>& engine) { // NOLINT(runtime/references) |
|
using numeric_type = |
|
typename random_internal::stream_format_type<result_type>::type; |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
auto* it = engine.state(); |
|
for (auto* end = it + kStateSizeT; it < end; ++it) { |
|
// In the case that `elem` is `uint8_t`, it must be cast to something |
|
// larger so that it prints as an integer rather than a character. For |
|
// simplicity, apply the cast all circumstances. |
|
os << static_cast<numeric_type>(little_endian::FromHost(*it)) |
|
<< os.fill(); |
|
} |
|
os << engine.next_; |
|
return os; |
|
} |
|
|
|
template <class CharT, class Traits> |
|
friend std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
randen_engine<T>& engine) { // NOLINT(runtime/references) |
|
using numeric_type = |
|
typename random_internal::stream_format_type<result_type>::type; |
|
result_type state[kStateSizeT]; |
|
size_t next; |
|
for (auto& elem : state) { |
|
// It is not possible to read uint8_t from wide streams, so it is |
|
// necessary to read a wider type and then cast it to uint8_t. |
|
numeric_type value; |
|
is >> value; |
|
elem = little_endian::ToHost(static_cast<result_type>(value)); |
|
} |
|
is >> next; |
|
if (is.fail()) { |
|
return is; |
|
} |
|
std::memcpy(engine.state(), state, sizeof(state)); |
|
engine.next_ = next; |
|
return is; |
|
} |
|
|
|
private: |
|
static constexpr size_t kStateSizeT = |
|
Randen::kStateBytes / sizeof(result_type); |
|
static constexpr size_t kCapacityT = |
|
Randen::kCapacityBytes / sizeof(result_type); |
|
|
|
// Returns the state array pointer, which is aligned to 16 bytes. |
|
// The first kCapacityT are the `inner' sponge; the remainder are available. |
|
result_type* state() { |
|
return reinterpret_cast<result_type*>( |
|
(reinterpret_cast<uintptr_t>(&raw_state_) & 0xf) ? (raw_state_ + 8) |
|
: raw_state_); |
|
} |
|
const result_type* state() const { |
|
return const_cast<randen_engine*>(this)->state(); |
|
} |
|
|
|
// raw state array, manually aligned in state(). This overallocates |
|
// by 8 bytes since C++ does not guarantee extended heap alignment. |
|
alignas(8) char raw_state_[Randen::kStateBytes + 8]; |
|
size_t next_; // index within state() |
|
Randen impl_; |
|
}; |
|
|
|
} // namespace random_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_INTERNAL_RANDEN_ENGINE_H_
|
|
|