Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
502 lines
17 KiB
502 lines
17 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: fixed_array.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A `FixedArray<T>` represents a non-resizable array of `T` where the length of |
|
// the array can be determined at run-time. It is a good replacement for |
|
// non-standard and deprecated uses of `alloca()` and variable length arrays |
|
// within the GCC extension. (See |
|
// https://gcc.gnu.org/onlinedocs/gcc/Variable-Length.html). |
|
// |
|
// `FixedArray` allocates small arrays inline, keeping performance fast by |
|
// avoiding heap operations. It also helps reduce the chances of |
|
// accidentally overflowing your stack if large input is passed to |
|
// your function. |
|
|
|
#ifndef ABSL_CONTAINER_FIXED_ARRAY_H_ |
|
#define ABSL_CONTAINER_FIXED_ARRAY_H_ |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cassert> |
|
#include <cstddef> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <limits> |
|
#include <memory> |
|
#include <new> |
|
#include <type_traits> |
|
|
|
#include "absl/algorithm/algorithm.h" |
|
#include "absl/base/dynamic_annotations.h" |
|
#include "absl/base/internal/throw_delegate.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/base/optimization.h" |
|
#include "absl/base/port.h" |
|
#include "absl/memory/memory.h" |
|
|
|
namespace absl { |
|
|
|
constexpr static auto kFixedArrayUseDefault = static_cast<size_t>(-1); |
|
|
|
// ----------------------------------------------------------------------------- |
|
// FixedArray |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A `FixedArray` provides a run-time fixed-size array, allocating small arrays |
|
// inline for efficiency and correctness. |
|
// |
|
// Most users should not specify an `inline_elements` argument and let |
|
// `FixedArray<>` automatically determine the number of elements |
|
// to store inline based on `sizeof(T)`. If `inline_elements` is specified, the |
|
// `FixedArray<>` implementation will inline arrays of |
|
// length <= `inline_elements`. |
|
// |
|
// Note that a `FixedArray` constructed with a `size_type` argument will |
|
// default-initialize its values by leaving trivially constructible types |
|
// uninitialized (e.g. int, int[4], double), and others default-constructed. |
|
// This matches the behavior of c-style arrays and `std::array`, but not |
|
// `std::vector`. |
|
// |
|
// Note that `FixedArray` does not provide a public allocator; if it requires a |
|
// heap allocation, it will do so with global `::operator new[]()` and |
|
// `::operator delete[]()`, even if T provides class-scope overrides for these |
|
// operators. |
|
template <typename T, size_t inlined = kFixedArrayUseDefault> |
|
class FixedArray { |
|
static constexpr size_t kInlineBytesDefault = 256; |
|
|
|
// std::iterator_traits isn't guaranteed to be SFINAE-friendly until C++17, |
|
// but this seems to be mostly pedantic. |
|
template <typename Iter> |
|
using EnableIfForwardIterator = typename std::enable_if< |
|
std::is_convertible< |
|
typename std::iterator_traits<Iter>::iterator_category, |
|
std::forward_iterator_tag>::value, |
|
int>::type; |
|
|
|
public: |
|
// For playing nicely with stl: |
|
using value_type = T; |
|
using iterator = T*; |
|
using const_iterator = const T*; |
|
using reverse_iterator = std::reverse_iterator<iterator>; |
|
using const_reverse_iterator = std::reverse_iterator<const_iterator>; |
|
using reference = T&; |
|
using const_reference = const T&; |
|
using pointer = T*; |
|
using const_pointer = const T*; |
|
using difference_type = ptrdiff_t; |
|
using size_type = size_t; |
|
|
|
static constexpr size_type inline_elements = |
|
inlined == kFixedArrayUseDefault |
|
? kInlineBytesDefault / sizeof(value_type) |
|
: inlined; |
|
|
|
FixedArray(const FixedArray& other) : rep_(other.begin(), other.end()) {} |
|
FixedArray(FixedArray&& other) noexcept( |
|
// clang-format off |
|
absl::allocator_is_nothrow<std::allocator<value_type>>::value && |
|
// clang-format on |
|
std::is_nothrow_move_constructible<value_type>::value) |
|
: rep_(std::make_move_iterator(other.begin()), |
|
std::make_move_iterator(other.end())) {} |
|
|
|
// Creates an array object that can store `n` elements. |
|
// Note that trivially constructible elements will be uninitialized. |
|
explicit FixedArray(size_type n) : rep_(n) {} |
|
|
|
// Creates an array initialized with `n` copies of `val`. |
|
FixedArray(size_type n, const value_type& val) : rep_(n, val) {} |
|
|
|
// Creates an array initialized with the elements from the input |
|
// range. The array's size will always be `std::distance(first, last)`. |
|
// REQUIRES: Iter must be a forward_iterator or better. |
|
template <typename Iter, EnableIfForwardIterator<Iter> = 0> |
|
FixedArray(Iter first, Iter last) : rep_(first, last) {} |
|
|
|
// Creates the array from an initializer_list. |
|
FixedArray(std::initializer_list<T> init_list) |
|
: FixedArray(init_list.begin(), init_list.end()) {} |
|
|
|
~FixedArray() {} |
|
|
|
// Assignments are deleted because they break the invariant that the size of a |
|
// `FixedArray` never changes. |
|
void operator=(FixedArray&&) = delete; |
|
void operator=(const FixedArray&) = delete; |
|
|
|
// FixedArray::size() |
|
// |
|
// Returns the length of the fixed array. |
|
size_type size() const { return rep_.size(); } |
|
|
|
// FixedArray::max_size() |
|
// |
|
// Returns the largest possible value of `std::distance(begin(), end())` for a |
|
// `FixedArray<T>`. This is equivalent to the most possible addressable bytes |
|
// over the number of bytes taken by T. |
|
constexpr size_type max_size() const { |
|
return std::numeric_limits<difference_type>::max() / sizeof(value_type); |
|
} |
|
|
|
// FixedArray::empty() |
|
// |
|
// Returns whether or not the fixed array is empty. |
|
bool empty() const { return size() == 0; } |
|
|
|
// FixedArray::memsize() |
|
// |
|
// Returns the memory size of the fixed array in bytes. |
|
size_t memsize() const { return size() * sizeof(value_type); } |
|
|
|
// FixedArray::data() |
|
// |
|
// Returns a const T* pointer to elements of the `FixedArray`. This pointer |
|
// can be used to access (but not modify) the contained elements. |
|
const_pointer data() const { return AsValue(rep_.begin()); } |
|
|
|
// Overload of FixedArray::data() to return a T* pointer to elements of the |
|
// fixed array. This pointer can be used to access and modify the contained |
|
// elements. |
|
pointer data() { return AsValue(rep_.begin()); } |
|
|
|
// FixedArray::operator[] |
|
// |
|
// Returns a reference the ith element of the fixed array. |
|
// REQUIRES: 0 <= i < size() |
|
reference operator[](size_type i) { |
|
assert(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// Overload of FixedArray::operator()[] to return a const reference to the |
|
// ith element of the fixed array. |
|
// REQUIRES: 0 <= i < size() |
|
const_reference operator[](size_type i) const { |
|
assert(i < size()); |
|
return data()[i]; |
|
} |
|
|
|
// FixedArray::at |
|
// |
|
// Bounds-checked access. Returns a reference to the ith element of the |
|
// fiexed array, or throws std::out_of_range |
|
reference at(size_type i) { |
|
if (ABSL_PREDICT_FALSE(i >= size())) { |
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// Overload of FixedArray::at() to return a const reference to the ith element |
|
// of the fixed array. |
|
const_reference at(size_type i) const { |
|
if (i >= size()) { |
|
base_internal::ThrowStdOutOfRange("FixedArray::at failed bounds check"); |
|
} |
|
return data()[i]; |
|
} |
|
|
|
// FixedArray::front() |
|
// |
|
// Returns a reference to the first element of the fixed array. |
|
reference front() { return *begin(); } |
|
|
|
// Overload of FixedArray::front() to return a reference to the first element |
|
// of a fixed array of const values. |
|
const_reference front() const { return *begin(); } |
|
|
|
// FixedArray::back() |
|
// |
|
// Returns a reference to the last element of the fixed array. |
|
reference back() { return *(end() - 1); } |
|
|
|
// Overload of FixedArray::back() to return a reference to the last element |
|
// of a fixed array of const values. |
|
const_reference back() const { return *(end() - 1); } |
|
|
|
// FixedArray::begin() |
|
// |
|
// Returns an iterator to the beginning of the fixed array. |
|
iterator begin() { return data(); } |
|
|
|
// Overload of FixedArray::begin() to return a const iterator to the |
|
// beginning of the fixed array. |
|
const_iterator begin() const { return data(); } |
|
|
|
// FixedArray::cbegin() |
|
// |
|
// Returns a const iterator to the beginning of the fixed array. |
|
const_iterator cbegin() const { return begin(); } |
|
|
|
// FixedArray::end() |
|
// |
|
// Returns an iterator to the end of the fixed array. |
|
iterator end() { return data() + size(); } |
|
|
|
// Overload of FixedArray::end() to return a const iterator to the end of the |
|
// fixed array. |
|
const_iterator end() const { return data() + size(); } |
|
|
|
// FixedArray::cend() |
|
// |
|
// Returns a const iterator to the end of the fixed array. |
|
const_iterator cend() const { return end(); } |
|
|
|
// FixedArray::rbegin() |
|
// |
|
// Returns a reverse iterator from the end of the fixed array. |
|
reverse_iterator rbegin() { return reverse_iterator(end()); } |
|
|
|
// Overload of FixedArray::rbegin() to return a const reverse iterator from |
|
// the end of the fixed array. |
|
const_reverse_iterator rbegin() const { |
|
return const_reverse_iterator(end()); |
|
} |
|
|
|
// FixedArray::crbegin() |
|
// |
|
// Returns a const reverse iterator from the end of the fixed array. |
|
const_reverse_iterator crbegin() const { return rbegin(); } |
|
|
|
// FixedArray::rend() |
|
// |
|
// Returns a reverse iterator from the beginning of the fixed array. |
|
reverse_iterator rend() { return reverse_iterator(begin()); } |
|
|
|
// Overload of FixedArray::rend() for returning a const reverse iterator |
|
// from the beginning of the fixed array. |
|
const_reverse_iterator rend() const { |
|
return const_reverse_iterator(begin()); |
|
} |
|
|
|
// FixedArray::crend() |
|
// |
|
// Returns a reverse iterator from the beginning of the fixed array. |
|
const_reverse_iterator crend() const { return rend(); } |
|
|
|
// FixedArray::fill() |
|
// |
|
// Assigns the given `value` to all elements in the fixed array. |
|
void fill(const T& value) { std::fill(begin(), end(), value); } |
|
|
|
// Relational operators. Equality operators are elementwise using |
|
// `operator==`, while order operators order FixedArrays lexicographically. |
|
friend bool operator==(const FixedArray& lhs, const FixedArray& rhs) { |
|
return absl::equal(lhs.begin(), lhs.end(), rhs.begin(), rhs.end()); |
|
} |
|
|
|
friend bool operator!=(const FixedArray& lhs, const FixedArray& rhs) { |
|
return !(lhs == rhs); |
|
} |
|
|
|
friend bool operator<(const FixedArray& lhs, const FixedArray& rhs) { |
|
return std::lexicographical_compare(lhs.begin(), lhs.end(), rhs.begin(), |
|
rhs.end()); |
|
} |
|
|
|
friend bool operator>(const FixedArray& lhs, const FixedArray& rhs) { |
|
return rhs < lhs; |
|
} |
|
|
|
friend bool operator<=(const FixedArray& lhs, const FixedArray& rhs) { |
|
return !(rhs < lhs); |
|
} |
|
|
|
friend bool operator>=(const FixedArray& lhs, const FixedArray& rhs) { |
|
return !(lhs < rhs); |
|
} |
|
|
|
private: |
|
// HolderTraits |
|
// |
|
// Wrapper to hold elements of type T for the case where T is an array type. |
|
// If 'T' is an array type, HolderTraits::type is a struct with a 'T v;'. |
|
// Otherwise, HolderTraits::type is simply 'T'. |
|
// |
|
// Maintainer's Note: The simpler solution would be to simply wrap T in a |
|
// struct whether it's an array or not: 'struct Holder { T v; };', but |
|
// that causes some paranoid diagnostics to misfire about uses of data(), |
|
// believing that 'data()' (aka '&rep_.begin().v') is a pointer to a single |
|
// element, rather than the packed array that it really is. |
|
// e.g.: |
|
// |
|
// FixedArray<char> buf(1); |
|
// sprintf(buf.data(), "foo"); |
|
// |
|
// error: call to int __builtin___sprintf_chk(etc...) |
|
// will always overflow destination buffer [-Werror] |
|
// |
|
class HolderTraits { |
|
template <typename U> |
|
struct SelectImpl { |
|
using type = U; |
|
static pointer AsValue(type* p) { return p; } |
|
}; |
|
|
|
// Partial specialization for elements of array type. |
|
template <typename U, size_t N> |
|
struct SelectImpl<U[N]> { |
|
struct Holder { U v[N]; }; |
|
using type = Holder; |
|
static pointer AsValue(type* p) { return &p->v; } |
|
}; |
|
using Impl = SelectImpl<value_type>; |
|
|
|
public: |
|
using type = typename Impl::type; |
|
|
|
static pointer AsValue(type *p) { return Impl::AsValue(p); } |
|
|
|
// TODO(billydonahue): fix the type aliasing violation |
|
// this assertion hints at. |
|
static_assert(sizeof(type) == sizeof(value_type), |
|
"Holder must be same size as value_type"); |
|
}; |
|
|
|
using Holder = typename HolderTraits::type; |
|
static pointer AsValue(Holder *p) { return HolderTraits::AsValue(p); } |
|
|
|
// InlineSpace |
|
// |
|
// Allocate some space, not an array of elements of type T, so that we can |
|
// skip calling the T constructors and destructors for space we never use. |
|
// How many elements should we store inline? |
|
// a. If not specified, use a default of kInlineBytesDefault bytes (This is |
|
// currently 256 bytes, which seems small enough to not cause stack overflow |
|
// or unnecessary stack pollution, while still allowing stack allocation for |
|
// reasonably long character arrays). |
|
// b. Never use 0 length arrays (not ISO C++) |
|
// |
|
template <size_type N, typename = void> |
|
class InlineSpace { |
|
public: |
|
Holder* data() { return reinterpret_cast<Holder*>(space_.data()); } |
|
void AnnotateConstruct(size_t n) const { Annotate(n, true); } |
|
void AnnotateDestruct(size_t n) const { Annotate(n, false); } |
|
|
|
private: |
|
#ifndef ADDRESS_SANITIZER |
|
void Annotate(size_t, bool) const { } |
|
#else |
|
void Annotate(size_t n, bool creating) const { |
|
if (!n) return; |
|
const void* bot = &left_redzone_; |
|
const void* beg = space_.data(); |
|
const void* end = space_.data() + n; |
|
const void* top = &right_redzone_ + 1; |
|
// args: (beg, end, old_mid, new_mid) |
|
if (creating) { |
|
ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, top, end); |
|
ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, beg, bot); |
|
} else { |
|
ANNOTATE_CONTIGUOUS_CONTAINER(beg, top, end, top); |
|
ANNOTATE_CONTIGUOUS_CONTAINER(bot, beg, bot, beg); |
|
} |
|
} |
|
#endif // ADDRESS_SANITIZER |
|
|
|
using Buffer = |
|
typename std::aligned_storage<sizeof(Holder), alignof(Holder)>::type; |
|
|
|
ADDRESS_SANITIZER_REDZONE(left_redzone_); |
|
std::array<Buffer, N> space_; |
|
ADDRESS_SANITIZER_REDZONE(right_redzone_); |
|
}; |
|
|
|
// specialization when N = 0. |
|
template <typename U> |
|
class InlineSpace<0, U> { |
|
public: |
|
Holder* data() { return nullptr; } |
|
void AnnotateConstruct(size_t) const {} |
|
void AnnotateDestruct(size_t) const {} |
|
}; |
|
|
|
// Rep |
|
// |
|
// A const Rep object holds FixedArray's size and data pointer. |
|
// |
|
class Rep : public InlineSpace<inline_elements> { |
|
public: |
|
Rep(size_type n, const value_type& val) : n_(n), p_(MakeHolder(n)) { |
|
std::uninitialized_fill_n(p_, n, val); |
|
} |
|
|
|
explicit Rep(size_type n) : n_(n), p_(MakeHolder(n)) { |
|
// Loop optimizes to nothing for trivially constructible T. |
|
for (Holder* p = p_; p != p_ + n; ++p) |
|
// Note: no parens: default init only. |
|
// Also note '::' to avoid Holder class placement new operator. |
|
::new (static_cast<void*>(p)) Holder; |
|
} |
|
|
|
template <typename Iter> |
|
Rep(Iter first, Iter last) |
|
: n_(std::distance(first, last)), p_(MakeHolder(n_)) { |
|
std::uninitialized_copy(first, last, AsValue(p_)); |
|
} |
|
|
|
~Rep() { |
|
// Destruction must be in reverse order. |
|
// Loop optimizes to nothing for trivially destructible T. |
|
for (Holder* p = end(); p != begin();) (--p)->~Holder(); |
|
if (IsAllocated(size())) { |
|
::operator delete[](begin()); |
|
} else { |
|
this->AnnotateDestruct(size()); |
|
} |
|
} |
|
Holder* begin() const { return p_; } |
|
Holder* end() const { return p_ + n_; } |
|
size_type size() const { return n_; } |
|
|
|
private: |
|
Holder* MakeHolder(size_type n) { |
|
if (IsAllocated(n)) { |
|
return Allocate(n); |
|
} else { |
|
this->AnnotateConstruct(n); |
|
return this->data(); |
|
} |
|
} |
|
|
|
Holder* Allocate(size_type n) { |
|
return static_cast<Holder*>(::operator new[](n * sizeof(Holder))); |
|
} |
|
|
|
bool IsAllocated(size_type n) const { return n > inline_elements; } |
|
|
|
const size_type n_; |
|
Holder* const p_; |
|
}; |
|
|
|
|
|
// Data members |
|
Rep rep_; |
|
}; |
|
|
|
template <typename T, size_t N> |
|
constexpr size_t FixedArray<T, N>::inline_elements; |
|
|
|
template <typename T, size_t N> |
|
constexpr size_t FixedArray<T, N>::kInlineBytesDefault; |
|
|
|
} // namespace absl |
|
#endif // ABSL_CONTAINER_FIXED_ARRAY_H_
|
|
|