Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

237 lines
7.5 KiB

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/explicit_seed_seq.h"
#include <iterator>
#include <random>
#include <utility>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/random/seed_sequences.h"
namespace {
using ::absl::random_internal::ExplicitSeedSeq;
template <typename Sseq>
bool ConformsToInterface() {
// Check that the SeedSequence can be default-constructed.
{ Sseq default_constructed_seq; }
// Check that the SeedSequence can be constructed with two iterators.
{
uint32_t init_array[] = {1, 3, 5, 7, 9};
Sseq iterator_constructed_seq(init_array, &init_array[5]);
}
// Check that the SeedSequence can be std::initializer_list-constructed.
{ Sseq list_constructed_seq = {1, 3, 5, 7, 9, 11, 13}; }
// Check that param() and size() return state provided to constructor.
{
uint32_t init_array[] = {1, 2, 3, 4, 5};
Sseq seq(init_array, &init_array[ABSL_ARRAYSIZE(init_array)]);
EXPECT_EQ(seq.size(), ABSL_ARRAYSIZE(init_array));
uint32_t state_array[ABSL_ARRAYSIZE(init_array)];
seq.param(state_array);
for (int i = 0; i < ABSL_ARRAYSIZE(state_array); i++) {
EXPECT_EQ(state_array[i], i + 1);
}
}
// Check for presence of generate() method.
{
Sseq seq;
uint32_t seeds[5];
seq.generate(seeds, &seeds[ABSL_ARRAYSIZE(seeds)]);
}
return true;
}
} // namespace
TEST(SeedSequences, CheckInterfaces) {
// Control case
EXPECT_TRUE(ConformsToInterface<std::seed_seq>());
// Abseil classes
EXPECT_TRUE(ConformsToInterface<ExplicitSeedSeq>());
}
TEST(ExplicitSeedSeq, DefaultConstructorGeneratesZeros) {
const size_t kNumBlocks = 128;
uint32_t outputs[kNumBlocks];
ExplicitSeedSeq seq;
seq.generate(outputs, &outputs[kNumBlocks]);
for (uint32_t& seed : outputs) {
EXPECT_EQ(seed, 0);
}
}
TEST(ExplicitSeeqSeq, SeedMaterialIsForwardedIdentically) {
const size_t kNumBlocks = 128;
uint32_t seed_material[kNumBlocks];
std::random_device urandom{"/dev/urandom"};
for (uint32_t& seed : seed_material) {
seed = urandom();
}
ExplicitSeedSeq seq(seed_material, &seed_material[kNumBlocks]);
// Check that output is same as seed-material provided to constructor.
{
const size_t kNumGenerated = kNumBlocks / 2;
uint32_t outputs[kNumGenerated];
seq.generate(outputs, &outputs[kNumGenerated]);
for (size_t i = 0; i < kNumGenerated; i++) {
EXPECT_EQ(outputs[i], seed_material[i]);
}
}
// Check that SeedSequence is stateless between invocations: Despite the last
// invocation of generate() only consuming half of the input-entropy, the same
// entropy will be recycled for the next invocation.
{
const size_t kNumGenerated = kNumBlocks;
uint32_t outputs[kNumGenerated];
seq.generate(outputs, &outputs[kNumGenerated]);
for (size_t i = 0; i < kNumGenerated; i++) {
EXPECT_EQ(outputs[i], seed_material[i]);
}
}
// Check that when more seed-material is asked for than is provided, nonzero
// values are still written.
{
const size_t kNumGenerated = kNumBlocks * 2;
uint32_t outputs[kNumGenerated];
seq.generate(outputs, &outputs[kNumGenerated]);
for (size_t i = 0; i < kNumGenerated; i++) {
EXPECT_EQ(outputs[i], seed_material[i % kNumBlocks]);
}
}
}
TEST(ExplicitSeedSeq, CopyAndMoveConstructors) {
using testing::Each;
using testing::Eq;
using testing::Not;
using testing::Pointwise;
uint32_t entropy[4];
std::random_device urandom("/dev/urandom");
for (uint32_t& entry : entropy) {
entry = urandom();
}
ExplicitSeedSeq seq_from_entropy(std::begin(entropy), std::end(entropy));
// Copy constructor.
{
ExplicitSeedSeq seq_copy(seq_from_entropy);
EXPECT_EQ(seq_copy.size(), seq_from_entropy.size());
std::vector<uint32_t> seeds_1(1000, 0);
std::vector<uint32_t> seeds_2(1000, 1);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
seq_copy.generate(seeds_2.begin(), seeds_2.end());
EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2));
}
// Assignment operator.
{
for (uint32_t& entry : entropy) {
entry = urandom();
}
ExplicitSeedSeq another_seq(std::begin(entropy), std::end(entropy));
std::vector<uint32_t> seeds_1(1000, 0);
std::vector<uint32_t> seeds_2(1000, 0);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
another_seq.generate(seeds_2.begin(), seeds_2.end());
// Assert precondition: Sequences generated by seed-sequences are not equal.
EXPECT_THAT(seeds_1, Not(Pointwise(Eq(), seeds_2)));
// Apply the assignment-operator.
// GCC 12 has a false-positive -Wstringop-overflow warning here.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstringop-overflow"
#endif
another_seq = seq_from_entropy;
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
// Re-generate seeds.
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
another_seq.generate(seeds_2.begin(), seeds_2.end());
// Seeds generated by seed-sequences should now be equal.
EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2));
}
// Move constructor.
{
// Get seeds from seed-sequence constructed from entropy.
std::vector<uint32_t> seeds_1(1000, 0);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
// Apply move-constructor move the sequence to another instance.
absl::random_internal::ExplicitSeedSeq moved_seq(
std::move(seq_from_entropy));
std::vector<uint32_t> seeds_2(1000, 1);
moved_seq.generate(seeds_2.begin(), seeds_2.end());
// Verify that seeds produced by moved-instance are the same as original.
EXPECT_THAT(seeds_1, Pointwise(Eq(), seeds_2));
// Verify that the moved-from instance now behaves like a
// default-constructed instance.
EXPECT_EQ(seq_from_entropy.size(), 0);
seq_from_entropy.generate(seeds_1.begin(), seeds_1.end());
EXPECT_THAT(seeds_1, Each(Eq(0)));
}
}
TEST(ExplicitSeedSeq, StdURBGGoldenTests) {
// Verify that for std::- URBG instances the results are stable across
// platforms (these should have deterministic output).
{
ExplicitSeedSeq seed_sequence{12, 34, 56};
std::minstd_rand rng(seed_sequence);
std::minstd_rand::result_type values[4] = {rng(), rng(), rng(), rng()};
EXPECT_THAT(values,
testing::ElementsAre(579252, 43785881, 464353103, 1501811174));
}
{
ExplicitSeedSeq seed_sequence{12, 34, 56};
std::mt19937 rng(seed_sequence);
std::mt19937::result_type values[4] = {rng(), rng(), rng(), rng()};
EXPECT_THAT(values, testing::ElementsAre(138416803, 151130212, 33817739,
138416803));
}
{
ExplicitSeedSeq seed_sequence{12, 34, 56};
std::mt19937_64 rng(seed_sequence);
std::mt19937_64::result_type values[4] = {rng(), rng(), rng(), rng()};
EXPECT_THAT(values,
testing::ElementsAre(19738651785169348, 1464811352364190456,
18054685302720800, 19738651785169348));
}
}