Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
383 lines
17 KiB
383 lines
17 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// Benchmarks for absl random distributions as well as a selection of the |
|
// C++ standard library random distributions. |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <limits> |
|
#include <random> |
|
#include <type_traits> |
|
#include <vector> |
|
|
|
#include "benchmark/benchmark.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/random/bernoulli_distribution.h" |
|
#include "absl/random/beta_distribution.h" |
|
#include "absl/random/exponential_distribution.h" |
|
#include "absl/random/gaussian_distribution.h" |
|
#include "absl/random/internal/fast_uniform_bits.h" |
|
#include "absl/random/internal/randen_engine.h" |
|
#include "absl/random/log_uniform_int_distribution.h" |
|
#include "absl/random/poisson_distribution.h" |
|
#include "absl/random/random.h" |
|
#include "absl/random/uniform_int_distribution.h" |
|
#include "absl/random/uniform_real_distribution.h" |
|
#include "absl/random/zipf_distribution.h" |
|
|
|
namespace { |
|
|
|
// Seed data to avoid reading random_device() for benchmarks. |
|
uint32_t kSeedData[] = { |
|
0x1B510052, 0x9A532915, 0xD60F573F, 0xBC9BC6E4, 0x2B60A476, 0x81E67400, |
|
0x08BA6FB5, 0x571BE91F, 0xF296EC6B, 0x2A0DD915, 0xB6636521, 0xE7B9F9B6, |
|
0xFF34052E, 0xC5855664, 0x53B02D5D, 0xA99F8FA1, 0x08BA4799, 0x6E85076A, |
|
0x4B7A70E9, 0xB5B32944, 0xDB75092E, 0xC4192623, 0xAD6EA6B0, 0x49A7DF7D, |
|
0x9CEE60B8, 0x8FEDB266, 0xECAA8C71, 0x699A18FF, 0x5664526C, 0xC2B19EE1, |
|
0x193602A5, 0x75094C29, 0xA0591340, 0xE4183A3E, 0x3F54989A, 0x5B429D65, |
|
0x6B8FE4D6, 0x99F73FD6, 0xA1D29C07, 0xEFE830F5, 0x4D2D38E6, 0xF0255DC1, |
|
0x4CDD2086, 0x8470EB26, 0x6382E9C6, 0x021ECC5E, 0x09686B3F, 0x3EBAEFC9, |
|
0x3C971814, 0x6B6A70A1, 0x687F3584, 0x52A0E286, 0x13198A2E, 0x03707344, |
|
}; |
|
|
|
// PrecompiledSeedSeq provides kSeedData to a conforming |
|
// random engine to speed initialization in the benchmarks. |
|
class PrecompiledSeedSeq { |
|
public: |
|
using result_type = uint32_t; |
|
|
|
PrecompiledSeedSeq() {} |
|
|
|
template <typename Iterator> |
|
PrecompiledSeedSeq(Iterator begin, Iterator end) {} |
|
|
|
template <typename T> |
|
PrecompiledSeedSeq(std::initializer_list<T> il) {} |
|
|
|
template <typename OutIterator> |
|
void generate(OutIterator begin, OutIterator end) { |
|
static size_t idx = 0; |
|
for (; begin != end; begin++) { |
|
*begin = kSeedData[idx++]; |
|
if (idx >= ABSL_ARRAYSIZE(kSeedData)) { |
|
idx = 0; |
|
} |
|
} |
|
} |
|
|
|
size_t size() const { return ABSL_ARRAYSIZE(kSeedData); } |
|
|
|
template <typename OutIterator> |
|
void param(OutIterator out) const { |
|
std::copy(std::begin(kSeedData), std::end(kSeedData), out); |
|
} |
|
}; |
|
|
|
// use_default_initialization<T> indicates whether the random engine |
|
// T must be default initialized, or whether we may initialize it using |
|
// a seed sequence. This is used because some engines do not accept seed |
|
// sequence-based initialization. |
|
template <typename E> |
|
using use_default_initialization = std::false_type; |
|
|
|
// make_engine<T, SSeq> returns a random_engine which is initialized, |
|
// either via the default constructor, when use_default_initialization<T> |
|
// is true, or via the indicated seed sequence, SSeq. |
|
template <typename Engine, typename SSeq = PrecompiledSeedSeq> |
|
typename absl::enable_if_t<!use_default_initialization<Engine>::value, Engine> |
|
make_engine() { |
|
// Initialize the random engine using the seed sequence SSeq, which |
|
// is constructed from the precompiled seed data. |
|
SSeq seq(std::begin(kSeedData), std::end(kSeedData)); |
|
return Engine(seq); |
|
} |
|
|
|
template <typename Engine, typename SSeq = PrecompiledSeedSeq> |
|
typename absl::enable_if_t<use_default_initialization<Engine>::value, Engine> |
|
make_engine() { |
|
// Initialize the random engine using the default constructor. |
|
return Engine(); |
|
} |
|
|
|
template <typename Engine, typename SSeq> |
|
void BM_Construct(benchmark::State& state) { |
|
for (auto _ : state) { |
|
auto rng = make_engine<Engine, SSeq>(); |
|
benchmark::DoNotOptimize(rng()); |
|
} |
|
} |
|
|
|
template <typename Engine> |
|
void BM_Direct(benchmark::State& state) { |
|
using value_type = typename Engine::result_type; |
|
// Direct use of the URBG. |
|
auto rng = make_engine<Engine>(); |
|
for (auto _ : state) { |
|
benchmark::DoNotOptimize(rng()); |
|
} |
|
state.SetBytesProcessed(sizeof(value_type) * state.iterations()); |
|
} |
|
|
|
template <typename Engine> |
|
void BM_Generate(benchmark::State& state) { |
|
// std::generate makes a copy of the RNG; thus this tests the |
|
// copy-constructor efficiency. |
|
using value_type = typename Engine::result_type; |
|
std::vector<value_type> v(64); |
|
auto rng = make_engine<Engine>(); |
|
while (state.KeepRunningBatch(64)) { |
|
std::generate(std::begin(v), std::end(v), rng); |
|
} |
|
} |
|
|
|
template <typename Engine, size_t elems> |
|
void BM_Shuffle(benchmark::State& state) { |
|
// Direct use of the Engine. |
|
std::vector<uint32_t> v(elems); |
|
while (state.KeepRunningBatch(elems)) { |
|
auto rng = make_engine<Engine>(); |
|
std::shuffle(std::begin(v), std::end(v), rng); |
|
} |
|
} |
|
|
|
template <typename Engine, size_t elems> |
|
void BM_ShuffleReuse(benchmark::State& state) { |
|
// Direct use of the Engine. |
|
std::vector<uint32_t> v(elems); |
|
auto rng = make_engine<Engine>(); |
|
while (state.KeepRunningBatch(elems)) { |
|
std::shuffle(std::begin(v), std::end(v), rng); |
|
} |
|
} |
|
|
|
template <typename Engine, typename Dist, typename... Args> |
|
void BM_Dist(benchmark::State& state, Args&&... args) { |
|
using value_type = typename Dist::result_type; |
|
auto rng = make_engine<Engine>(); |
|
Dist dis{std::forward<Args>(args)...}; |
|
// Compare the following loop performance: |
|
for (auto _ : state) { |
|
benchmark::DoNotOptimize(dis(rng)); |
|
} |
|
state.SetBytesProcessed(sizeof(value_type) * state.iterations()); |
|
} |
|
|
|
template <typename Engine, typename Dist> |
|
void BM_Large(benchmark::State& state) { |
|
using value_type = typename Dist::result_type; |
|
volatile value_type kMin = 0; |
|
volatile value_type kMax = std::numeric_limits<value_type>::max() / 2 + 1; |
|
BM_Dist<Engine, Dist>(state, kMin, kMax); |
|
} |
|
|
|
template <typename Engine, typename Dist> |
|
void BM_Small(benchmark::State& state) { |
|
using value_type = typename Dist::result_type; |
|
volatile value_type kMin = 0; |
|
volatile value_type kMax = std::numeric_limits<value_type>::max() / 64 + 1; |
|
BM_Dist<Engine, Dist>(state, kMin, kMax); |
|
} |
|
|
|
template <typename Engine, typename Dist, int A> |
|
void BM_Bernoulli(benchmark::State& state) { |
|
volatile double a = static_cast<double>(A) / 1000000; |
|
BM_Dist<Engine, Dist>(state, a); |
|
} |
|
|
|
template <typename Engine, typename Dist, int A, int B> |
|
void BM_Beta(benchmark::State& state) { |
|
using value_type = typename Dist::result_type; |
|
volatile value_type a = static_cast<value_type>(A) / 100; |
|
volatile value_type b = static_cast<value_type>(B) / 100; |
|
BM_Dist<Engine, Dist>(state, a, b); |
|
} |
|
|
|
template <typename Engine, typename Dist, int A> |
|
void BM_Gamma(benchmark::State& state) { |
|
using value_type = typename Dist::result_type; |
|
volatile value_type a = static_cast<value_type>(A) / 100; |
|
BM_Dist<Engine, Dist>(state, a); |
|
} |
|
|
|
template <typename Engine, typename Dist, int A = 100> |
|
void BM_Poisson(benchmark::State& state) { |
|
volatile double a = static_cast<double>(A) / 100; |
|
BM_Dist<Engine, Dist>(state, a); |
|
} |
|
|
|
template <typename Engine, typename Dist, int V = 1, int Q = 2> |
|
void BM_Zipf(benchmark::State& state) { |
|
using value_type = typename Dist::result_type; |
|
volatile double v = V; |
|
volatile double q = Q; |
|
BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), v, q); |
|
} |
|
|
|
template <typename Engine, typename Dist> |
|
void BM_Thread(benchmark::State& state) { |
|
using value_type = typename Dist::result_type; |
|
auto rng = make_engine<Engine>(); |
|
Dist dis{}; |
|
for (auto _ : state) { |
|
benchmark::DoNotOptimize(dis(rng)); |
|
} |
|
state.SetBytesProcessed(sizeof(value_type) * state.iterations()); |
|
} |
|
|
|
// NOTES: |
|
// |
|
// std::geometric_distribution is similar to the zipf distributions. |
|
// The algorithm for the geometric_distribution is, basically, |
|
// floor(log(1-X) / log(1-p)) |
|
|
|
// Normal benchmark suite |
|
#define BM_BASIC(Engine) \ |
|
BENCHMARK_TEMPLATE(BM_Construct, Engine, PrecompiledSeedSeq); \ |
|
BENCHMARK_TEMPLATE(BM_Construct, Engine, std::seed_seq); \ |
|
BENCHMARK_TEMPLATE(BM_Direct, Engine); \ |
|
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 10); \ |
|
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100); \ |
|
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000); \ |
|
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100); \ |
|
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, \ |
|
absl::random_internal::FastUniformBits<uint32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, \ |
|
absl::random_internal::FastUniformBits<uint64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, \ |
|
absl::uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, \ |
|
absl::uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Large, Engine, \ |
|
std::uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Large, Engine, \ |
|
std::uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Large, Engine, \ |
|
absl::uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Large, Engine, \ |
|
absl::uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<float>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<double>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<float>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<double>) |
|
|
|
#define BM_COPY(Engine) BENCHMARK_TEMPLATE(BM_Generate, Engine) |
|
|
|
#define BM_THREAD(Engine) \ |
|
BENCHMARK_TEMPLATE(BM_Thread, Engine, \ |
|
absl::uniform_int_distribution<int64_t>) \ |
|
->ThreadPerCpu(); \ |
|
BENCHMARK_TEMPLATE(BM_Thread, Engine, \ |
|
absl::uniform_real_distribution<double>) \ |
|
->ThreadPerCpu(); \ |
|
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100)->ThreadPerCpu(); \ |
|
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000)->ThreadPerCpu(); \ |
|
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100)->ThreadPerCpu(); \ |
|
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000)->ThreadPerCpu(); |
|
|
|
#define BM_EXTENDED(Engine) \ |
|
/* -------------- Extended Uniform -----------------------*/ \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
std::uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
std::uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
absl::uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
absl::uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, std::uniform_real_distribution<float>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
std::uniform_real_distribution<double>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
absl::uniform_real_distribution<float>); \ |
|
BENCHMARK_TEMPLATE(BM_Small, Engine, \ |
|
absl::uniform_real_distribution<double>); \ |
|
/* -------------- Other -----------------------*/ \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::normal_distribution<double>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::gaussian_distribution<double>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::exponential_distribution<double>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::exponential_distribution<double>); \ |
|
BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \ |
|
100); \ |
|
BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \ |
|
100); \ |
|
BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \ |
|
10 * 100); \ |
|
BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \ |
|
10 * 100); \ |
|
BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \ |
|
13 * 100); \ |
|
BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \ |
|
13 * 100); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, \ |
|
absl::log_uniform_int_distribution<int32_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, \ |
|
absl::log_uniform_int_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>); \ |
|
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 3, \ |
|
2); \ |
|
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution, \ |
|
257305); \ |
|
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution, \ |
|
257305); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 65, \ |
|
41); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 99, \ |
|
330); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 150, \ |
|
150); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 410, \ |
|
580); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 65, 41); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 99, \ |
|
330); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 150, \ |
|
150); \ |
|
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 410, \ |
|
580); \ |
|
BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<float>, 199); \ |
|
BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<double>, 199); |
|
|
|
// ABSL Recommended interfaces. |
|
BM_BASIC(absl::InsecureBitGen); // === pcg64_2018_engine |
|
BM_BASIC(absl::BitGen); // === randen_engine<uint64_t>. |
|
BM_THREAD(absl::BitGen); |
|
BM_EXTENDED(absl::BitGen); |
|
|
|
// Instantiate benchmarks for multiple engines. |
|
using randen_engine_64 = absl::random_internal::randen_engine<uint64_t>; |
|
using randen_engine_32 = absl::random_internal::randen_engine<uint32_t>; |
|
|
|
// Comparison interfaces. |
|
BM_BASIC(std::mt19937_64); |
|
BM_COPY(std::mt19937_64); |
|
BM_EXTENDED(std::mt19937_64); |
|
BM_BASIC(randen_engine_64); |
|
BM_COPY(randen_engine_64); |
|
BM_EXTENDED(randen_engine_64); |
|
|
|
BM_BASIC(std::mt19937); |
|
BM_COPY(std::mt19937); |
|
BM_BASIC(randen_engine_32); |
|
BM_COPY(randen_engine_32); |
|
|
|
} // namespace
|
|
|