Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
239 lines
8.8 KiB
239 lines
8.8 KiB
// Copyright 2021 The Abseil Authors |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_RISCV_INL_H_ |
|
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_RISCV_INL_H_ |
|
|
|
// Generate stack trace for riscv |
|
|
|
#include <sys/ucontext.h> |
|
|
|
#include "absl/base/config.h" |
|
#if defined(__linux__) |
|
#include <sys/mman.h> |
|
#include <ucontext.h> |
|
#include <unistd.h> |
|
#endif |
|
|
|
#include <atomic> |
|
#include <cassert> |
|
#include <cstdint> |
|
#include <iostream> |
|
|
|
#include "absl/base/attributes.h" |
|
#include "absl/debugging/internal/address_is_readable.h" |
|
#include "absl/debugging/internal/vdso_support.h" |
|
#include "absl/debugging/stacktrace.h" |
|
|
|
static const uintptr_t kUnknownFrameSize = 0; |
|
|
|
#if defined(__linux__) |
|
// Returns the address of the VDSO __kernel_rt_sigreturn function, if present. |
|
static const unsigned char *GetKernelRtSigreturnAddress() { |
|
constexpr uintptr_t kImpossibleAddress = 0; |
|
ABSL_CONST_INIT static std::atomic<uintptr_t> memoized(kImpossibleAddress); |
|
uintptr_t address = memoized.load(std::memory_order_relaxed); |
|
if (address != kImpossibleAddress) { |
|
return reinterpret_cast<const unsigned char *>(address); |
|
} |
|
|
|
address = reinterpret_cast<uintptr_t>(nullptr); |
|
|
|
#if ABSL_HAVE_VDSO_SUPPORT |
|
absl::debugging_internal::VDSOSupport vdso; |
|
if (vdso.IsPresent()) { |
|
absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info; |
|
// Symbol versioning pulled from arch/riscv/kernel/vdso/vdso.lds at v5.10. |
|
auto lookup = [&](int type) { |
|
return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_4.15", type, |
|
&symbol_info); |
|
}; |
|
if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) || |
|
symbol_info.address == nullptr) { |
|
// Unexpected: VDSO is present, yet the expected symbol is missing or |
|
// null. |
|
assert(false && "VDSO is present, but doesn't have expected symbol"); |
|
} else { |
|
if (reinterpret_cast<uintptr_t>(symbol_info.address) != |
|
kImpossibleAddress) { |
|
address = reinterpret_cast<uintptr_t>(symbol_info.address); |
|
} else { |
|
assert(false && "VDSO returned invalid address"); |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
memoized.store(address, std::memory_order_relaxed); |
|
return reinterpret_cast<const unsigned char *>(address); |
|
} |
|
#endif // __linux__ |
|
|
|
// Compute the size of a stack frame in [low..high). We assume that low < high. |
|
// Return size of kUnknownFrameSize. |
|
template <typename T> |
|
static inline uintptr_t ComputeStackFrameSize(const T *low, const T *high) { |
|
const char *low_char_ptr = reinterpret_cast<const char *>(low); |
|
const char *high_char_ptr = reinterpret_cast<const char *>(high); |
|
return low < high ? high_char_ptr - low_char_ptr : kUnknownFrameSize; |
|
} |
|
|
|
// Given a pointer to a stack frame, locate and return the calling stackframe, |
|
// or return null if no stackframe can be found. Perform sanity checks (the |
|
// strictness of which is controlled by the boolean parameter |
|
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. |
|
template <bool STRICT_UNWINDING, bool WITH_CONTEXT> |
|
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
|
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
|
static void ** NextStackFrame(void **old_frame_pointer, const void *uc) { |
|
// . |
|
// . |
|
// . |
|
// +-> +----------------+ |
|
// | | return address | |
|
// | | previous fp | |
|
// | | ... | |
|
// | +----------------+ <-+ |
|
// | | return address | | |
|
// +---|- previous fp | | |
|
// | ... | | |
|
// $fp ->|----------------+ | |
|
// | return address | | |
|
// | previous fp -|---+ |
|
// $sp ->| ... | |
|
// +----------------+ |
|
void **new_frame_pointer = reinterpret_cast<void **>(old_frame_pointer[-2]); |
|
bool check_frame_size = true; |
|
|
|
#if defined(__linux__) |
|
if (WITH_CONTEXT && uc != nullptr) { |
|
// Check to see if next frame's return address is __kernel_rt_sigreturn. |
|
if (old_frame_pointer[-1] == GetKernelRtSigreturnAddress()) { |
|
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); |
|
// old_frame_pointer is not suitable for unwinding, look at ucontext to |
|
// discover frame pointer before signal. |
|
// |
|
// RISCV ELF psABI has the frame pointer at x8/fp/s0. |
|
// -- RISCV psABI Table 18.2 |
|
void **const pre_signal_frame_pointer = |
|
reinterpret_cast<void **>(ucv->uc_mcontext.__gregs[8]); |
|
|
|
// Check the alleged frame pointer is actually readable. This is to |
|
// prevent "double fault" in case we hit the first fault due to stack |
|
// corruption. |
|
if (!absl::debugging_internal::AddressIsReadable( |
|
pre_signal_frame_pointer)) |
|
return nullptr; |
|
|
|
// Alleged frame pointer is readable, use it for further unwinding. |
|
new_frame_pointer = pre_signal_frame_pointer; |
|
|
|
// Skip frame size check if we return from a signal. We may be using an |
|
// alterate stack for signals. |
|
check_frame_size = false; |
|
} |
|
} |
|
#endif |
|
|
|
// The RISCV ELF psABI mandates that the stack pointer is always 16-byte |
|
// aligned. |
|
// FIXME(abdulras) this doesn't hold for ILP32E which only mandates a 4-byte |
|
// alignment. |
|
if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 15) != 0) |
|
return nullptr; |
|
|
|
// Check frame size. In strict mode, we assume frames to be under 100,000 |
|
// bytes. In non-strict mode, we relax the limit to 1MB. |
|
if (check_frame_size) { |
|
const uintptr_t max_size = STRICT_UNWINDING ? 100000 : 1000000; |
|
const uintptr_t frame_size = |
|
ComputeStackFrameSize(old_frame_pointer, new_frame_pointer); |
|
if (frame_size == kUnknownFrameSize || frame_size > max_size) |
|
return nullptr; |
|
} |
|
|
|
return new_frame_pointer; |
|
} |
|
|
|
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> |
|
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
|
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
|
static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, |
|
const void *ucp, int *min_dropped_frames) { |
|
#if defined(__GNUC__) |
|
void **frame_pointer = reinterpret_cast<void **>(__builtin_frame_address(0)); |
|
#else |
|
#error reading stack pointer not yet supported on this platform |
|
#endif |
|
|
|
skip_count++; // Skip the frame for this function. |
|
int n = 0; |
|
|
|
// The `frame_pointer` that is computed here points to the top of the frame. |
|
// The two words preceding the address are the return address and the previous |
|
// frame pointer. To find a PC value associated with the current frame, we |
|
// need to go down a level in the call chain. So we remember the return |
|
// address of the last frame seen. This does not work for the first stack |
|
// frame, which belongs to `UnwindImp()` but we skip the frame for |
|
// `UnwindImp()` anyway. |
|
void *prev_return_address = nullptr; |
|
|
|
while (frame_pointer && n < max_depth) { |
|
// The absl::GetStackFrames routine si called when we are in some |
|
// informational context (the failure signal handler for example). Use the |
|
// non-strict unwinding rules to produce a stack trace that is as complete |
|
// as possible (even if it contains a few bogus entries in some rare cases). |
|
void **next_frame_pointer = |
|
NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp); |
|
|
|
if (skip_count > 0) { |
|
skip_count--; |
|
} else { |
|
result[n] = prev_return_address; |
|
if (IS_STACK_FRAMES) { |
|
sizes[n] = ComputeStackFrameSize(frame_pointer, next_frame_pointer); |
|
} |
|
n++; |
|
} |
|
prev_return_address = frame_pointer[-1]; |
|
frame_pointer = next_frame_pointer; |
|
} |
|
if (min_dropped_frames != nullptr) { |
|
// Implementation detail: we clamp the max of frames we are willing to |
|
// count, so as not to spend too much time in the loop below. |
|
const int kMaxUnwind = 200; |
|
int num_dropped_frames = 0; |
|
for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) { |
|
if (skip_count > 0) { |
|
skip_count--; |
|
} else { |
|
num_dropped_frames++; |
|
} |
|
frame_pointer = |
|
NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(frame_pointer, ucp); |
|
} |
|
*min_dropped_frames = num_dropped_frames; |
|
} |
|
return n; |
|
} |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace debugging_internal { |
|
bool StackTraceWorksForTest() { return true; } |
|
} // namespace debugging_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif
|
|
|