Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2404 lines
77 KiB
2404 lines
77 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/container/btree_test.h" |
|
|
|
#include <cstdint> |
|
#include <map> |
|
#include <memory> |
|
#include <stdexcept> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/container/btree_map.h" |
|
#include "absl/container/btree_set.h" |
|
#include "absl/container/internal/counting_allocator.h" |
|
#include "absl/container/internal/test_instance_tracker.h" |
|
#include "absl/flags/flag.h" |
|
#include "absl/hash/hash_testing.h" |
|
#include "absl/memory/memory.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_split.h" |
|
#include "absl/strings/string_view.h" |
|
#include "absl/types/compare.h" |
|
|
|
ABSL_FLAG(int, test_values, 10000, "The number of values to use for tests"); |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace container_internal { |
|
namespace { |
|
|
|
using ::absl::test_internal::CopyableMovableInstance; |
|
using ::absl::test_internal::InstanceTracker; |
|
using ::absl::test_internal::MovableOnlyInstance; |
|
using ::testing::ElementsAre; |
|
using ::testing::ElementsAreArray; |
|
using ::testing::IsEmpty; |
|
using ::testing::Pair; |
|
|
|
template <typename T, typename U> |
|
void CheckPairEquals(const T &x, const U &y) { |
|
ABSL_INTERNAL_CHECK(x == y, "Values are unequal."); |
|
} |
|
|
|
template <typename T, typename U, typename V, typename W> |
|
void CheckPairEquals(const std::pair<T, U> &x, const std::pair<V, W> &y) { |
|
CheckPairEquals(x.first, y.first); |
|
CheckPairEquals(x.second, y.second); |
|
} |
|
} // namespace |
|
|
|
// The base class for a sorted associative container checker. TreeType is the |
|
// container type to check and CheckerType is the container type to check |
|
// against. TreeType is expected to be btree_{set,map,multiset,multimap} and |
|
// CheckerType is expected to be {set,map,multiset,multimap}. |
|
template <typename TreeType, typename CheckerType> |
|
class base_checker { |
|
public: |
|
using key_type = typename TreeType::key_type; |
|
using value_type = typename TreeType::value_type; |
|
using key_compare = typename TreeType::key_compare; |
|
using pointer = typename TreeType::pointer; |
|
using const_pointer = typename TreeType::const_pointer; |
|
using reference = typename TreeType::reference; |
|
using const_reference = typename TreeType::const_reference; |
|
using size_type = typename TreeType::size_type; |
|
using difference_type = typename TreeType::difference_type; |
|
using iterator = typename TreeType::iterator; |
|
using const_iterator = typename TreeType::const_iterator; |
|
using reverse_iterator = typename TreeType::reverse_iterator; |
|
using const_reverse_iterator = typename TreeType::const_reverse_iterator; |
|
|
|
public: |
|
base_checker() : const_tree_(tree_) {} |
|
base_checker(const base_checker &x) |
|
: tree_(x.tree_), const_tree_(tree_), checker_(x.checker_) {} |
|
template <typename InputIterator> |
|
base_checker(InputIterator b, InputIterator e) |
|
: tree_(b, e), const_tree_(tree_), checker_(b, e) {} |
|
|
|
iterator begin() { return tree_.begin(); } |
|
const_iterator begin() const { return tree_.begin(); } |
|
iterator end() { return tree_.end(); } |
|
const_iterator end() const { return tree_.end(); } |
|
reverse_iterator rbegin() { return tree_.rbegin(); } |
|
const_reverse_iterator rbegin() const { return tree_.rbegin(); } |
|
reverse_iterator rend() { return tree_.rend(); } |
|
const_reverse_iterator rend() const { return tree_.rend(); } |
|
|
|
template <typename IterType, typename CheckerIterType> |
|
IterType iter_check(IterType tree_iter, CheckerIterType checker_iter) const { |
|
if (tree_iter == tree_.end()) { |
|
ABSL_INTERNAL_CHECK(checker_iter == checker_.end(), |
|
"Checker iterator not at end."); |
|
} else { |
|
CheckPairEquals(*tree_iter, *checker_iter); |
|
} |
|
return tree_iter; |
|
} |
|
template <typename IterType, typename CheckerIterType> |
|
IterType riter_check(IterType tree_iter, CheckerIterType checker_iter) const { |
|
if (tree_iter == tree_.rend()) { |
|
ABSL_INTERNAL_CHECK(checker_iter == checker_.rend(), |
|
"Checker iterator not at rend."); |
|
} else { |
|
CheckPairEquals(*tree_iter, *checker_iter); |
|
} |
|
return tree_iter; |
|
} |
|
void value_check(const value_type &x) { |
|
typename KeyOfValue<typename TreeType::key_type, |
|
typename TreeType::value_type>::type key_of_value; |
|
const key_type &key = key_of_value(x); |
|
CheckPairEquals(*find(key), x); |
|
lower_bound(key); |
|
upper_bound(key); |
|
equal_range(key); |
|
contains(key); |
|
count(key); |
|
} |
|
void erase_check(const key_type &key) { |
|
EXPECT_FALSE(tree_.contains(key)); |
|
EXPECT_EQ(tree_.find(key), const_tree_.end()); |
|
EXPECT_FALSE(const_tree_.contains(key)); |
|
EXPECT_EQ(const_tree_.find(key), tree_.end()); |
|
EXPECT_EQ(tree_.equal_range(key).first, |
|
const_tree_.equal_range(key).second); |
|
} |
|
|
|
iterator lower_bound(const key_type &key) { |
|
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); |
|
} |
|
const_iterator lower_bound(const key_type &key) const { |
|
return iter_check(tree_.lower_bound(key), checker_.lower_bound(key)); |
|
} |
|
iterator upper_bound(const key_type &key) { |
|
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); |
|
} |
|
const_iterator upper_bound(const key_type &key) const { |
|
return iter_check(tree_.upper_bound(key), checker_.upper_bound(key)); |
|
} |
|
std::pair<iterator, iterator> equal_range(const key_type &key) { |
|
std::pair<typename CheckerType::iterator, typename CheckerType::iterator> |
|
checker_res = checker_.equal_range(key); |
|
std::pair<iterator, iterator> tree_res = tree_.equal_range(key); |
|
iter_check(tree_res.first, checker_res.first); |
|
iter_check(tree_res.second, checker_res.second); |
|
return tree_res; |
|
} |
|
std::pair<const_iterator, const_iterator> equal_range( |
|
const key_type &key) const { |
|
std::pair<typename CheckerType::const_iterator, |
|
typename CheckerType::const_iterator> |
|
checker_res = checker_.equal_range(key); |
|
std::pair<const_iterator, const_iterator> tree_res = tree_.equal_range(key); |
|
iter_check(tree_res.first, checker_res.first); |
|
iter_check(tree_res.second, checker_res.second); |
|
return tree_res; |
|
} |
|
iterator find(const key_type &key) { |
|
return iter_check(tree_.find(key), checker_.find(key)); |
|
} |
|
const_iterator find(const key_type &key) const { |
|
return iter_check(tree_.find(key), checker_.find(key)); |
|
} |
|
bool contains(const key_type &key) const { return find(key) != end(); } |
|
size_type count(const key_type &key) const { |
|
size_type res = checker_.count(key); |
|
EXPECT_EQ(res, tree_.count(key)); |
|
return res; |
|
} |
|
|
|
base_checker &operator=(const base_checker &x) { |
|
tree_ = x.tree_; |
|
checker_ = x.checker_; |
|
return *this; |
|
} |
|
|
|
int erase(const key_type &key) { |
|
int size = tree_.size(); |
|
int res = checker_.erase(key); |
|
EXPECT_EQ(res, tree_.count(key)); |
|
EXPECT_EQ(res, tree_.erase(key)); |
|
EXPECT_EQ(tree_.count(key), 0); |
|
EXPECT_EQ(tree_.size(), size - res); |
|
erase_check(key); |
|
return res; |
|
} |
|
iterator erase(iterator iter) { |
|
key_type key = iter.key(); |
|
int size = tree_.size(); |
|
int count = tree_.count(key); |
|
auto checker_iter = checker_.lower_bound(key); |
|
for (iterator tmp(tree_.lower_bound(key)); tmp != iter; ++tmp) { |
|
++checker_iter; |
|
} |
|
auto checker_next = checker_iter; |
|
++checker_next; |
|
checker_.erase(checker_iter); |
|
iter = tree_.erase(iter); |
|
EXPECT_EQ(tree_.size(), checker_.size()); |
|
EXPECT_EQ(tree_.size(), size - 1); |
|
EXPECT_EQ(tree_.count(key), count - 1); |
|
if (count == 1) { |
|
erase_check(key); |
|
} |
|
return iter_check(iter, checker_next); |
|
} |
|
|
|
void erase(iterator begin, iterator end) { |
|
int size = tree_.size(); |
|
int count = std::distance(begin, end); |
|
auto checker_begin = checker_.lower_bound(begin.key()); |
|
for (iterator tmp(tree_.lower_bound(begin.key())); tmp != begin; ++tmp) { |
|
++checker_begin; |
|
} |
|
auto checker_end = |
|
end == tree_.end() ? checker_.end() : checker_.lower_bound(end.key()); |
|
if (end != tree_.end()) { |
|
for (iterator tmp(tree_.lower_bound(end.key())); tmp != end; ++tmp) { |
|
++checker_end; |
|
} |
|
} |
|
const auto checker_ret = checker_.erase(checker_begin, checker_end); |
|
const auto tree_ret = tree_.erase(begin, end); |
|
EXPECT_EQ(std::distance(checker_.begin(), checker_ret), |
|
std::distance(tree_.begin(), tree_ret)); |
|
EXPECT_EQ(tree_.size(), checker_.size()); |
|
EXPECT_EQ(tree_.size(), size - count); |
|
} |
|
|
|
void clear() { |
|
tree_.clear(); |
|
checker_.clear(); |
|
} |
|
void swap(base_checker &x) { |
|
tree_.swap(x.tree_); |
|
checker_.swap(x.checker_); |
|
} |
|
|
|
void verify() const { |
|
tree_.verify(); |
|
EXPECT_EQ(tree_.size(), checker_.size()); |
|
|
|
// Move through the forward iterators using increment. |
|
auto checker_iter = checker_.begin(); |
|
const_iterator tree_iter(tree_.begin()); |
|
for (; tree_iter != tree_.end(); ++tree_iter, ++checker_iter) { |
|
CheckPairEquals(*tree_iter, *checker_iter); |
|
} |
|
|
|
// Move through the forward iterators using decrement. |
|
for (int n = tree_.size() - 1; n >= 0; --n) { |
|
iter_check(tree_iter, checker_iter); |
|
--tree_iter; |
|
--checker_iter; |
|
} |
|
EXPECT_EQ(tree_iter, tree_.begin()); |
|
EXPECT_EQ(checker_iter, checker_.begin()); |
|
|
|
// Move through the reverse iterators using increment. |
|
auto checker_riter = checker_.rbegin(); |
|
const_reverse_iterator tree_riter(tree_.rbegin()); |
|
for (; tree_riter != tree_.rend(); ++tree_riter, ++checker_riter) { |
|
CheckPairEquals(*tree_riter, *checker_riter); |
|
} |
|
|
|
// Move through the reverse iterators using decrement. |
|
for (int n = tree_.size() - 1; n >= 0; --n) { |
|
riter_check(tree_riter, checker_riter); |
|
--tree_riter; |
|
--checker_riter; |
|
} |
|
EXPECT_EQ(tree_riter, tree_.rbegin()); |
|
EXPECT_EQ(checker_riter, checker_.rbegin()); |
|
} |
|
|
|
const TreeType &tree() const { return tree_; } |
|
|
|
size_type size() const { |
|
EXPECT_EQ(tree_.size(), checker_.size()); |
|
return tree_.size(); |
|
} |
|
size_type max_size() const { return tree_.max_size(); } |
|
bool empty() const { |
|
EXPECT_EQ(tree_.empty(), checker_.empty()); |
|
return tree_.empty(); |
|
} |
|
|
|
protected: |
|
TreeType tree_; |
|
const TreeType &const_tree_; |
|
CheckerType checker_; |
|
}; |
|
|
|
namespace { |
|
// A checker for unique sorted associative containers. TreeType is expected to |
|
// be btree_{set,map} and CheckerType is expected to be {set,map}. |
|
template <typename TreeType, typename CheckerType> |
|
class unique_checker : public base_checker<TreeType, CheckerType> { |
|
using super_type = base_checker<TreeType, CheckerType>; |
|
|
|
public: |
|
using iterator = typename super_type::iterator; |
|
using value_type = typename super_type::value_type; |
|
|
|
public: |
|
unique_checker() : super_type() {} |
|
unique_checker(const unique_checker &x) : super_type(x) {} |
|
template <class InputIterator> |
|
unique_checker(InputIterator b, InputIterator e) : super_type(b, e) {} |
|
unique_checker &operator=(const unique_checker &) = default; |
|
|
|
// Insertion routines. |
|
std::pair<iterator, bool> insert(const value_type &x) { |
|
int size = this->tree_.size(); |
|
std::pair<typename CheckerType::iterator, bool> checker_res = |
|
this->checker_.insert(x); |
|
std::pair<iterator, bool> tree_res = this->tree_.insert(x); |
|
CheckPairEquals(*tree_res.first, *checker_res.first); |
|
EXPECT_EQ(tree_res.second, checker_res.second); |
|
EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
|
EXPECT_EQ(this->tree_.size(), size + tree_res.second); |
|
return tree_res; |
|
} |
|
iterator insert(iterator position, const value_type &x) { |
|
int size = this->tree_.size(); |
|
std::pair<typename CheckerType::iterator, bool> checker_res = |
|
this->checker_.insert(x); |
|
iterator tree_res = this->tree_.insert(position, x); |
|
CheckPairEquals(*tree_res, *checker_res.first); |
|
EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
|
EXPECT_EQ(this->tree_.size(), size + checker_res.second); |
|
return tree_res; |
|
} |
|
template <typename InputIterator> |
|
void insert(InputIterator b, InputIterator e) { |
|
for (; b != e; ++b) { |
|
insert(*b); |
|
} |
|
} |
|
}; |
|
|
|
// A checker for multiple sorted associative containers. TreeType is expected |
|
// to be btree_{multiset,multimap} and CheckerType is expected to be |
|
// {multiset,multimap}. |
|
template <typename TreeType, typename CheckerType> |
|
class multi_checker : public base_checker<TreeType, CheckerType> { |
|
using super_type = base_checker<TreeType, CheckerType>; |
|
|
|
public: |
|
using iterator = typename super_type::iterator; |
|
using value_type = typename super_type::value_type; |
|
|
|
public: |
|
multi_checker() : super_type() {} |
|
multi_checker(const multi_checker &x) : super_type(x) {} |
|
template <class InputIterator> |
|
multi_checker(InputIterator b, InputIterator e) : super_type(b, e) {} |
|
multi_checker &operator=(const multi_checker &) = default; |
|
|
|
// Insertion routines. |
|
iterator insert(const value_type &x) { |
|
int size = this->tree_.size(); |
|
auto checker_res = this->checker_.insert(x); |
|
iterator tree_res = this->tree_.insert(x); |
|
CheckPairEquals(*tree_res, *checker_res); |
|
EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
|
EXPECT_EQ(this->tree_.size(), size + 1); |
|
return tree_res; |
|
} |
|
iterator insert(iterator position, const value_type &x) { |
|
int size = this->tree_.size(); |
|
auto checker_res = this->checker_.insert(x); |
|
iterator tree_res = this->tree_.insert(position, x); |
|
CheckPairEquals(*tree_res, *checker_res); |
|
EXPECT_EQ(this->tree_.size(), this->checker_.size()); |
|
EXPECT_EQ(this->tree_.size(), size + 1); |
|
return tree_res; |
|
} |
|
template <typename InputIterator> |
|
void insert(InputIterator b, InputIterator e) { |
|
for (; b != e; ++b) { |
|
insert(*b); |
|
} |
|
} |
|
}; |
|
|
|
template <typename T, typename V> |
|
void DoTest(const char *name, T *b, const std::vector<V> &values) { |
|
typename KeyOfValue<typename T::key_type, V>::type key_of_value; |
|
|
|
T &mutable_b = *b; |
|
const T &const_b = *b; |
|
|
|
// Test insert. |
|
for (int i = 0; i < values.size(); ++i) { |
|
mutable_b.insert(values[i]); |
|
mutable_b.value_check(values[i]); |
|
} |
|
ASSERT_EQ(mutable_b.size(), values.size()); |
|
|
|
const_b.verify(); |
|
|
|
// Test copy constructor. |
|
T b_copy(const_b); |
|
EXPECT_EQ(b_copy.size(), const_b.size()); |
|
for (int i = 0; i < values.size(); ++i) { |
|
CheckPairEquals(*b_copy.find(key_of_value(values[i])), values[i]); |
|
} |
|
|
|
// Test range constructor. |
|
T b_range(const_b.begin(), const_b.end()); |
|
EXPECT_EQ(b_range.size(), const_b.size()); |
|
for (int i = 0; i < values.size(); ++i) { |
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
|
} |
|
|
|
// Test range insertion for values that already exist. |
|
b_range.insert(b_copy.begin(), b_copy.end()); |
|
b_range.verify(); |
|
|
|
// Test range insertion for new values. |
|
b_range.clear(); |
|
b_range.insert(b_copy.begin(), b_copy.end()); |
|
EXPECT_EQ(b_range.size(), b_copy.size()); |
|
for (int i = 0; i < values.size(); ++i) { |
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
|
} |
|
|
|
// Test assignment to self. Nothing should change. |
|
b_range.operator=(b_range); |
|
EXPECT_EQ(b_range.size(), b_copy.size()); |
|
|
|
// Test assignment of new values. |
|
b_range.clear(); |
|
b_range = b_copy; |
|
EXPECT_EQ(b_range.size(), b_copy.size()); |
|
|
|
// Test swap. |
|
b_range.clear(); |
|
b_range.swap(b_copy); |
|
EXPECT_EQ(b_copy.size(), 0); |
|
EXPECT_EQ(b_range.size(), const_b.size()); |
|
for (int i = 0; i < values.size(); ++i) { |
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
|
} |
|
b_range.swap(b_copy); |
|
|
|
// Test non-member function swap. |
|
swap(b_range, b_copy); |
|
EXPECT_EQ(b_copy.size(), 0); |
|
EXPECT_EQ(b_range.size(), const_b.size()); |
|
for (int i = 0; i < values.size(); ++i) { |
|
CheckPairEquals(*b_range.find(key_of_value(values[i])), values[i]); |
|
} |
|
swap(b_range, b_copy); |
|
|
|
// Test erase via values. |
|
for (int i = 0; i < values.size(); ++i) { |
|
mutable_b.erase(key_of_value(values[i])); |
|
// Erasing a non-existent key should have no effect. |
|
ASSERT_EQ(mutable_b.erase(key_of_value(values[i])), 0); |
|
} |
|
|
|
const_b.verify(); |
|
EXPECT_EQ(const_b.size(), 0); |
|
|
|
// Test erase via iterators. |
|
mutable_b = b_copy; |
|
for (int i = 0; i < values.size(); ++i) { |
|
mutable_b.erase(mutable_b.find(key_of_value(values[i]))); |
|
} |
|
|
|
const_b.verify(); |
|
EXPECT_EQ(const_b.size(), 0); |
|
|
|
// Test insert with hint. |
|
for (int i = 0; i < values.size(); i++) { |
|
mutable_b.insert(mutable_b.upper_bound(key_of_value(values[i])), values[i]); |
|
} |
|
|
|
const_b.verify(); |
|
|
|
// Test range erase. |
|
mutable_b.erase(mutable_b.begin(), mutable_b.end()); |
|
EXPECT_EQ(mutable_b.size(), 0); |
|
const_b.verify(); |
|
|
|
// First half. |
|
mutable_b = b_copy; |
|
typename T::iterator mutable_iter_end = mutable_b.begin(); |
|
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_end; |
|
mutable_b.erase(mutable_b.begin(), mutable_iter_end); |
|
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 2); |
|
const_b.verify(); |
|
|
|
// Second half. |
|
mutable_b = b_copy; |
|
typename T::iterator mutable_iter_begin = mutable_b.begin(); |
|
for (int i = 0; i < values.size() / 2; ++i) ++mutable_iter_begin; |
|
mutable_b.erase(mutable_iter_begin, mutable_b.end()); |
|
EXPECT_EQ(mutable_b.size(), values.size() / 2); |
|
const_b.verify(); |
|
|
|
// Second quarter. |
|
mutable_b = b_copy; |
|
mutable_iter_begin = mutable_b.begin(); |
|
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_begin; |
|
mutable_iter_end = mutable_iter_begin; |
|
for (int i = 0; i < values.size() / 4; ++i) ++mutable_iter_end; |
|
mutable_b.erase(mutable_iter_begin, mutable_iter_end); |
|
EXPECT_EQ(mutable_b.size(), values.size() - values.size() / 4); |
|
const_b.verify(); |
|
|
|
mutable_b.clear(); |
|
} |
|
|
|
template <typename T> |
|
void ConstTest() { |
|
using value_type = typename T::value_type; |
|
typename KeyOfValue<typename T::key_type, value_type>::type key_of_value; |
|
|
|
T mutable_b; |
|
const T &const_b = mutable_b; |
|
|
|
// Insert a single value into the container and test looking it up. |
|
value_type value = Generator<value_type>(2)(2); |
|
mutable_b.insert(value); |
|
EXPECT_TRUE(mutable_b.contains(key_of_value(value))); |
|
EXPECT_NE(mutable_b.find(key_of_value(value)), const_b.end()); |
|
EXPECT_TRUE(const_b.contains(key_of_value(value))); |
|
EXPECT_NE(const_b.find(key_of_value(value)), mutable_b.end()); |
|
EXPECT_EQ(*const_b.lower_bound(key_of_value(value)), value); |
|
EXPECT_EQ(const_b.upper_bound(key_of_value(value)), const_b.end()); |
|
EXPECT_EQ(*const_b.equal_range(key_of_value(value)).first, value); |
|
|
|
// We can only create a non-const iterator from a non-const container. |
|
typename T::iterator mutable_iter(mutable_b.begin()); |
|
EXPECT_EQ(mutable_iter, const_b.begin()); |
|
EXPECT_NE(mutable_iter, const_b.end()); |
|
EXPECT_EQ(const_b.begin(), mutable_iter); |
|
EXPECT_NE(const_b.end(), mutable_iter); |
|
typename T::reverse_iterator mutable_riter(mutable_b.rbegin()); |
|
EXPECT_EQ(mutable_riter, const_b.rbegin()); |
|
EXPECT_NE(mutable_riter, const_b.rend()); |
|
EXPECT_EQ(const_b.rbegin(), mutable_riter); |
|
EXPECT_NE(const_b.rend(), mutable_riter); |
|
|
|
// We can create a const iterator from a non-const iterator. |
|
typename T::const_iterator const_iter(mutable_iter); |
|
EXPECT_EQ(const_iter, mutable_b.begin()); |
|
EXPECT_NE(const_iter, mutable_b.end()); |
|
EXPECT_EQ(mutable_b.begin(), const_iter); |
|
EXPECT_NE(mutable_b.end(), const_iter); |
|
typename T::const_reverse_iterator const_riter(mutable_riter); |
|
EXPECT_EQ(const_riter, mutable_b.rbegin()); |
|
EXPECT_NE(const_riter, mutable_b.rend()); |
|
EXPECT_EQ(mutable_b.rbegin(), const_riter); |
|
EXPECT_NE(mutable_b.rend(), const_riter); |
|
|
|
// Make sure various methods can be invoked on a const container. |
|
const_b.verify(); |
|
ASSERT_TRUE(!const_b.empty()); |
|
EXPECT_EQ(const_b.size(), 1); |
|
EXPECT_GT(const_b.max_size(), 0); |
|
EXPECT_TRUE(const_b.contains(key_of_value(value))); |
|
EXPECT_EQ(const_b.count(key_of_value(value)), 1); |
|
} |
|
|
|
template <typename T, typename C> |
|
void BtreeTest() { |
|
ConstTest<T>(); |
|
|
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
const std::vector<V> random_values = GenerateValuesWithSeed<V>( |
|
absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), |
|
testing::GTEST_FLAG(random_seed)); |
|
|
|
unique_checker<T, C> container; |
|
|
|
// Test key insertion/deletion in sorted order. |
|
std::vector<V> sorted_values(random_values); |
|
std::sort(sorted_values.begin(), sorted_values.end()); |
|
DoTest("sorted: ", &container, sorted_values); |
|
|
|
// Test key insertion/deletion in reverse sorted order. |
|
std::reverse(sorted_values.begin(), sorted_values.end()); |
|
DoTest("rsorted: ", &container, sorted_values); |
|
|
|
// Test key insertion/deletion in random order. |
|
DoTest("random: ", &container, random_values); |
|
} |
|
|
|
template <typename T, typename C> |
|
void BtreeMultiTest() { |
|
ConstTest<T>(); |
|
|
|
using V = typename remove_pair_const<typename T::value_type>::type; |
|
const std::vector<V> random_values = GenerateValuesWithSeed<V>( |
|
absl::GetFlag(FLAGS_test_values), 4 * absl::GetFlag(FLAGS_test_values), |
|
testing::GTEST_FLAG(random_seed)); |
|
|
|
multi_checker<T, C> container; |
|
|
|
// Test keys in sorted order. |
|
std::vector<V> sorted_values(random_values); |
|
std::sort(sorted_values.begin(), sorted_values.end()); |
|
DoTest("sorted: ", &container, sorted_values); |
|
|
|
// Test keys in reverse sorted order. |
|
std::reverse(sorted_values.begin(), sorted_values.end()); |
|
DoTest("rsorted: ", &container, sorted_values); |
|
|
|
// Test keys in random order. |
|
DoTest("random: ", &container, random_values); |
|
|
|
// Test keys in random order w/ duplicates. |
|
std::vector<V> duplicate_values(random_values); |
|
duplicate_values.insert(duplicate_values.end(), random_values.begin(), |
|
random_values.end()); |
|
DoTest("duplicates:", &container, duplicate_values); |
|
|
|
// Test all identical keys. |
|
std::vector<V> identical_values(100); |
|
std::fill(identical_values.begin(), identical_values.end(), |
|
Generator<V>(2)(2)); |
|
DoTest("identical: ", &container, identical_values); |
|
} |
|
|
|
template <typename T> |
|
struct PropagatingCountingAlloc : public CountingAllocator<T> { |
|
using propagate_on_container_copy_assignment = std::true_type; |
|
using propagate_on_container_move_assignment = std::true_type; |
|
using propagate_on_container_swap = std::true_type; |
|
|
|
using Base = CountingAllocator<T>; |
|
using Base::Base; |
|
|
|
template <typename U> |
|
explicit PropagatingCountingAlloc(const PropagatingCountingAlloc<U> &other) |
|
: Base(other.bytes_used_) {} |
|
|
|
template <typename U> |
|
struct rebind { |
|
using other = PropagatingCountingAlloc<U>; |
|
}; |
|
}; |
|
|
|
template <typename T> |
|
void BtreeAllocatorTest() { |
|
using value_type = typename T::value_type; |
|
|
|
int64_t bytes1 = 0, bytes2 = 0; |
|
PropagatingCountingAlloc<T> allocator1(&bytes1); |
|
PropagatingCountingAlloc<T> allocator2(&bytes2); |
|
Generator<value_type> generator(1000); |
|
|
|
// Test that we allocate properly aligned memory. If we don't, then Layout |
|
// will assert fail. |
|
auto unused1 = allocator1.allocate(1); |
|
auto unused2 = allocator2.allocate(1); |
|
|
|
// Test copy assignment |
|
{ |
|
T b1(typename T::key_compare(), allocator1); |
|
T b2(typename T::key_compare(), allocator2); |
|
|
|
int64_t original_bytes1 = bytes1; |
|
b1.insert(generator(0)); |
|
EXPECT_GT(bytes1, original_bytes1); |
|
|
|
// This should propagate the allocator. |
|
b1 = b2; |
|
EXPECT_EQ(b1.size(), 0); |
|
EXPECT_EQ(b2.size(), 0); |
|
EXPECT_EQ(bytes1, original_bytes1); |
|
|
|
for (int i = 1; i < 1000; i++) { |
|
b1.insert(generator(i)); |
|
} |
|
|
|
// We should have allocated out of allocator2. |
|
EXPECT_GT(bytes2, bytes1); |
|
} |
|
|
|
// Test move assignment |
|
{ |
|
T b1(typename T::key_compare(), allocator1); |
|
T b2(typename T::key_compare(), allocator2); |
|
|
|
int64_t original_bytes1 = bytes1; |
|
b1.insert(generator(0)); |
|
EXPECT_GT(bytes1, original_bytes1); |
|
|
|
// This should propagate the allocator. |
|
b1 = std::move(b2); |
|
EXPECT_EQ(b1.size(), 0); |
|
EXPECT_EQ(bytes1, original_bytes1); |
|
|
|
for (int i = 1; i < 1000; i++) { |
|
b1.insert(generator(i)); |
|
} |
|
|
|
// We should have allocated out of allocator2. |
|
EXPECT_GT(bytes2, bytes1); |
|
} |
|
|
|
// Test swap |
|
{ |
|
T b1(typename T::key_compare(), allocator1); |
|
T b2(typename T::key_compare(), allocator2); |
|
|
|
int64_t original_bytes1 = bytes1; |
|
b1.insert(generator(0)); |
|
EXPECT_GT(bytes1, original_bytes1); |
|
|
|
// This should swap the allocators. |
|
swap(b1, b2); |
|
EXPECT_EQ(b1.size(), 0); |
|
EXPECT_EQ(b2.size(), 1); |
|
EXPECT_GT(bytes1, original_bytes1); |
|
|
|
for (int i = 1; i < 1000; i++) { |
|
b1.insert(generator(i)); |
|
} |
|
|
|
// We should have allocated out of allocator2. |
|
EXPECT_GT(bytes2, bytes1); |
|
} |
|
|
|
allocator1.deallocate(unused1, 1); |
|
allocator2.deallocate(unused2, 1); |
|
} |
|
|
|
template <typename T> |
|
void BtreeMapTest() { |
|
using value_type = typename T::value_type; |
|
using mapped_type = typename T::mapped_type; |
|
|
|
mapped_type m = Generator<mapped_type>(0)(0); |
|
(void)m; |
|
|
|
T b; |
|
|
|
// Verify we can insert using operator[]. |
|
for (int i = 0; i < 1000; i++) { |
|
value_type v = Generator<value_type>(1000)(i); |
|
b[v.first] = v.second; |
|
} |
|
EXPECT_EQ(b.size(), 1000); |
|
|
|
// Test whether we can use the "->" operator on iterators and |
|
// reverse_iterators. This stresses the btree_map_params::pair_pointer |
|
// mechanism. |
|
EXPECT_EQ(b.begin()->first, Generator<value_type>(1000)(0).first); |
|
EXPECT_EQ(b.begin()->second, Generator<value_type>(1000)(0).second); |
|
EXPECT_EQ(b.rbegin()->first, Generator<value_type>(1000)(999).first); |
|
EXPECT_EQ(b.rbegin()->second, Generator<value_type>(1000)(999).second); |
|
} |
|
|
|
template <typename T> |
|
void BtreeMultiMapTest() { |
|
using mapped_type = typename T::mapped_type; |
|
mapped_type m = Generator<mapped_type>(0)(0); |
|
(void)m; |
|
} |
|
|
|
template <typename K, int N = 256> |
|
void SetTest() { |
|
EXPECT_EQ( |
|
sizeof(absl::btree_set<K>), |
|
2 * sizeof(void *) + sizeof(typename absl::btree_set<K>::size_type)); |
|
using BtreeSet = absl::btree_set<K>; |
|
using CountingBtreeSet = |
|
absl::btree_set<K, std::less<K>, PropagatingCountingAlloc<K>>; |
|
BtreeTest<BtreeSet, std::set<K>>(); |
|
BtreeAllocatorTest<CountingBtreeSet>(); |
|
} |
|
|
|
template <typename K, int N = 256> |
|
void MapTest() { |
|
EXPECT_EQ( |
|
sizeof(absl::btree_map<K, K>), |
|
2 * sizeof(void *) + sizeof(typename absl::btree_map<K, K>::size_type)); |
|
using BtreeMap = absl::btree_map<K, K>; |
|
using CountingBtreeMap = |
|
absl::btree_map<K, K, std::less<K>, |
|
PropagatingCountingAlloc<std::pair<const K, K>>>; |
|
BtreeTest<BtreeMap, std::map<K, K>>(); |
|
BtreeAllocatorTest<CountingBtreeMap>(); |
|
BtreeMapTest<BtreeMap>(); |
|
} |
|
|
|
TEST(Btree, set_int32) { SetTest<int32_t>(); } |
|
TEST(Btree, set_int64) { SetTest<int64_t>(); } |
|
TEST(Btree, set_string) { SetTest<std::string>(); } |
|
TEST(Btree, set_pair) { SetTest<std::pair<int, int>>(); } |
|
TEST(Btree, map_int32) { MapTest<int32_t>(); } |
|
TEST(Btree, map_int64) { MapTest<int64_t>(); } |
|
TEST(Btree, map_string) { MapTest<std::string>(); } |
|
TEST(Btree, map_pair) { MapTest<std::pair<int, int>>(); } |
|
|
|
template <typename K, int N = 256> |
|
void MultiSetTest() { |
|
EXPECT_EQ( |
|
sizeof(absl::btree_multiset<K>), |
|
2 * sizeof(void *) + sizeof(typename absl::btree_multiset<K>::size_type)); |
|
using BtreeMSet = absl::btree_multiset<K>; |
|
using CountingBtreeMSet = |
|
absl::btree_multiset<K, std::less<K>, PropagatingCountingAlloc<K>>; |
|
BtreeMultiTest<BtreeMSet, std::multiset<K>>(); |
|
BtreeAllocatorTest<CountingBtreeMSet>(); |
|
} |
|
|
|
template <typename K, int N = 256> |
|
void MultiMapTest() { |
|
EXPECT_EQ(sizeof(absl::btree_multimap<K, K>), |
|
2 * sizeof(void *) + |
|
sizeof(typename absl::btree_multimap<K, K>::size_type)); |
|
using BtreeMMap = absl::btree_multimap<K, K>; |
|
using CountingBtreeMMap = |
|
absl::btree_multimap<K, K, std::less<K>, |
|
PropagatingCountingAlloc<std::pair<const K, K>>>; |
|
BtreeMultiTest<BtreeMMap, std::multimap<K, K>>(); |
|
BtreeMultiMapTest<BtreeMMap>(); |
|
BtreeAllocatorTest<CountingBtreeMMap>(); |
|
} |
|
|
|
TEST(Btree, multiset_int32) { MultiSetTest<int32_t>(); } |
|
TEST(Btree, multiset_int64) { MultiSetTest<int64_t>(); } |
|
TEST(Btree, multiset_string) { MultiSetTest<std::string>(); } |
|
TEST(Btree, multiset_pair) { MultiSetTest<std::pair<int, int>>(); } |
|
TEST(Btree, multimap_int32) { MultiMapTest<int32_t>(); } |
|
TEST(Btree, multimap_int64) { MultiMapTest<int64_t>(); } |
|
TEST(Btree, multimap_string) { MultiMapTest<std::string>(); } |
|
TEST(Btree, multimap_pair) { MultiMapTest<std::pair<int, int>>(); } |
|
|
|
struct CompareIntToString { |
|
bool operator()(const std::string &a, const std::string &b) const { |
|
return a < b; |
|
} |
|
bool operator()(const std::string &a, int b) const { |
|
return a < absl::StrCat(b); |
|
} |
|
bool operator()(int a, const std::string &b) const { |
|
return absl::StrCat(a) < b; |
|
} |
|
using is_transparent = void; |
|
}; |
|
|
|
struct NonTransparentCompare { |
|
template <typename T, typename U> |
|
bool operator()(const T &t, const U &u) const { |
|
// Treating all comparators as transparent can cause inefficiencies (see |
|
// N3657 C++ proposal). Test that for comparators without 'is_transparent' |
|
// alias (like this one), we do not attempt heterogeneous lookup. |
|
EXPECT_TRUE((std::is_same<T, U>())); |
|
return t < u; |
|
} |
|
}; |
|
|
|
template <typename T> |
|
bool CanEraseWithEmptyBrace(T t, decltype(t.erase({})) *) { |
|
return true; |
|
} |
|
|
|
template <typename T> |
|
bool CanEraseWithEmptyBrace(T, ...) { |
|
return false; |
|
} |
|
|
|
template <typename T> |
|
void TestHeterogeneous(T table) { |
|
auto lb = table.lower_bound("3"); |
|
EXPECT_EQ(lb, table.lower_bound(3)); |
|
EXPECT_NE(lb, table.lower_bound(4)); |
|
EXPECT_EQ(lb, table.lower_bound({"3"})); |
|
EXPECT_NE(lb, table.lower_bound({})); |
|
|
|
auto ub = table.upper_bound("3"); |
|
EXPECT_EQ(ub, table.upper_bound(3)); |
|
EXPECT_NE(ub, table.upper_bound(5)); |
|
EXPECT_EQ(ub, table.upper_bound({"3"})); |
|
EXPECT_NE(ub, table.upper_bound({})); |
|
|
|
auto er = table.equal_range("3"); |
|
EXPECT_EQ(er, table.equal_range(3)); |
|
EXPECT_NE(er, table.equal_range(4)); |
|
EXPECT_EQ(er, table.equal_range({"3"})); |
|
EXPECT_NE(er, table.equal_range({})); |
|
|
|
auto it = table.find("3"); |
|
EXPECT_EQ(it, table.find(3)); |
|
EXPECT_NE(it, table.find(4)); |
|
EXPECT_EQ(it, table.find({"3"})); |
|
EXPECT_NE(it, table.find({})); |
|
|
|
EXPECT_TRUE(table.contains(3)); |
|
EXPECT_FALSE(table.contains(4)); |
|
EXPECT_TRUE(table.count({"3"})); |
|
EXPECT_FALSE(table.contains({})); |
|
|
|
EXPECT_EQ(1, table.count(3)); |
|
EXPECT_EQ(0, table.count(4)); |
|
EXPECT_EQ(1, table.count({"3"})); |
|
EXPECT_EQ(0, table.count({})); |
|
|
|
auto copy = table; |
|
copy.erase(3); |
|
EXPECT_EQ(table.size() - 1, copy.size()); |
|
copy.erase(4); |
|
EXPECT_EQ(table.size() - 1, copy.size()); |
|
copy.erase({"5"}); |
|
EXPECT_EQ(table.size() - 2, copy.size()); |
|
EXPECT_FALSE(CanEraseWithEmptyBrace(table, nullptr)); |
|
|
|
// Also run it with const T&. |
|
if (std::is_class<T>()) TestHeterogeneous<const T &>(table); |
|
} |
|
|
|
TEST(Btree, HeterogeneousLookup) { |
|
TestHeterogeneous(btree_set<std::string, CompareIntToString>{"1", "3", "5"}); |
|
TestHeterogeneous(btree_map<std::string, int, CompareIntToString>{ |
|
{"1", 1}, {"3", 3}, {"5", 5}}); |
|
TestHeterogeneous( |
|
btree_multiset<std::string, CompareIntToString>{"1", "3", "5"}); |
|
TestHeterogeneous(btree_multimap<std::string, int, CompareIntToString>{ |
|
{"1", 1}, {"3", 3}, {"5", 5}}); |
|
|
|
// Only maps have .at() |
|
btree_map<std::string, int, CompareIntToString> map{ |
|
{"", -1}, {"1", 1}, {"3", 3}, {"5", 5}}; |
|
EXPECT_EQ(1, map.at(1)); |
|
EXPECT_EQ(3, map.at({"3"})); |
|
EXPECT_EQ(-1, map.at({})); |
|
const auto &cmap = map; |
|
EXPECT_EQ(1, cmap.at(1)); |
|
EXPECT_EQ(3, cmap.at({"3"})); |
|
EXPECT_EQ(-1, cmap.at({})); |
|
} |
|
|
|
TEST(Btree, NoHeterogeneousLookupWithoutAlias) { |
|
using StringSet = absl::btree_set<std::string, NonTransparentCompare>; |
|
StringSet s; |
|
ASSERT_TRUE(s.insert("hello").second); |
|
ASSERT_TRUE(s.insert("world").second); |
|
EXPECT_TRUE(s.end() == s.find("blah")); |
|
EXPECT_TRUE(s.begin() == s.lower_bound("hello")); |
|
EXPECT_EQ(1, s.count("world")); |
|
EXPECT_TRUE(s.contains("hello")); |
|
EXPECT_TRUE(s.contains("world")); |
|
EXPECT_FALSE(s.contains("blah")); |
|
|
|
using StringMultiSet = |
|
absl::btree_multiset<std::string, NonTransparentCompare>; |
|
StringMultiSet ms; |
|
ms.insert("hello"); |
|
ms.insert("world"); |
|
ms.insert("world"); |
|
EXPECT_TRUE(ms.end() == ms.find("blah")); |
|
EXPECT_TRUE(ms.begin() == ms.lower_bound("hello")); |
|
EXPECT_EQ(2, ms.count("world")); |
|
EXPECT_TRUE(ms.contains("hello")); |
|
EXPECT_TRUE(ms.contains("world")); |
|
EXPECT_FALSE(ms.contains("blah")); |
|
} |
|
|
|
TEST(Btree, DefaultTransparent) { |
|
{ |
|
// `int` does not have a default transparent comparator. |
|
// The input value is converted to key_type. |
|
btree_set<int> s = {1}; |
|
double d = 1.1; |
|
EXPECT_EQ(s.begin(), s.find(d)); |
|
EXPECT_TRUE(s.contains(d)); |
|
} |
|
|
|
{ |
|
// `std::string` has heterogeneous support. |
|
btree_set<std::string> s = {"A"}; |
|
EXPECT_EQ(s.begin(), s.find(absl::string_view("A"))); |
|
EXPECT_TRUE(s.contains(absl::string_view("A"))); |
|
} |
|
} |
|
|
|
class StringLike { |
|
public: |
|
StringLike() = default; |
|
|
|
StringLike(const char *s) : s_(s) { // NOLINT |
|
++constructor_calls_; |
|
} |
|
|
|
bool operator<(const StringLike &a) const { return s_ < a.s_; } |
|
|
|
static void clear_constructor_call_count() { constructor_calls_ = 0; } |
|
|
|
static int constructor_calls() { return constructor_calls_; } |
|
|
|
private: |
|
static int constructor_calls_; |
|
std::string s_; |
|
}; |
|
|
|
int StringLike::constructor_calls_ = 0; |
|
|
|
TEST(Btree, HeterogeneousLookupDoesntDegradePerformance) { |
|
using StringSet = absl::btree_set<StringLike>; |
|
StringSet s; |
|
for (int i = 0; i < 100; ++i) { |
|
ASSERT_TRUE(s.insert(absl::StrCat(i).c_str()).second); |
|
} |
|
StringLike::clear_constructor_call_count(); |
|
s.find("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
|
|
StringLike::clear_constructor_call_count(); |
|
s.contains("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
|
|
StringLike::clear_constructor_call_count(); |
|
s.count("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
|
|
StringLike::clear_constructor_call_count(); |
|
s.lower_bound("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
|
|
StringLike::clear_constructor_call_count(); |
|
s.upper_bound("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
|
|
StringLike::clear_constructor_call_count(); |
|
s.equal_range("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
|
|
StringLike::clear_constructor_call_count(); |
|
s.erase("50"); |
|
ASSERT_EQ(1, StringLike::constructor_calls()); |
|
} |
|
|
|
// Verify that swapping btrees swaps the key comparison functors and that we can |
|
// use non-default constructible comparators. |
|
struct SubstringLess { |
|
SubstringLess() = delete; |
|
explicit SubstringLess(int length) : n(length) {} |
|
bool operator()(const std::string &a, const std::string &b) const { |
|
return absl::string_view(a).substr(0, n) < |
|
absl::string_view(b).substr(0, n); |
|
} |
|
int n; |
|
}; |
|
|
|
TEST(Btree, SwapKeyCompare) { |
|
using SubstringSet = absl::btree_set<std::string, SubstringLess>; |
|
SubstringSet s1(SubstringLess(1), SubstringSet::allocator_type()); |
|
SubstringSet s2(SubstringLess(2), SubstringSet::allocator_type()); |
|
|
|
ASSERT_TRUE(s1.insert("a").second); |
|
ASSERT_FALSE(s1.insert("aa").second); |
|
|
|
ASSERT_TRUE(s2.insert("a").second); |
|
ASSERT_TRUE(s2.insert("aa").second); |
|
ASSERT_FALSE(s2.insert("aaa").second); |
|
|
|
swap(s1, s2); |
|
|
|
ASSERT_TRUE(s1.insert("b").second); |
|
ASSERT_TRUE(s1.insert("bb").second); |
|
ASSERT_FALSE(s1.insert("bbb").second); |
|
|
|
ASSERT_TRUE(s2.insert("b").second); |
|
ASSERT_FALSE(s2.insert("bb").second); |
|
} |
|
|
|
TEST(Btree, UpperBoundRegression) { |
|
// Regress a bug where upper_bound would default-construct a new key_compare |
|
// instead of copying the existing one. |
|
using SubstringSet = absl::btree_set<std::string, SubstringLess>; |
|
SubstringSet my_set(SubstringLess(3)); |
|
my_set.insert("aab"); |
|
my_set.insert("abb"); |
|
// We call upper_bound("aaa"). If this correctly uses the length 3 |
|
// comparator, aaa < aab < abb, so we should get aab as the result. |
|
// If it instead uses the default-constructed length 2 comparator, |
|
// aa == aa < ab, so we'll get abb as our result. |
|
SubstringSet::iterator it = my_set.upper_bound("aaa"); |
|
ASSERT_TRUE(it != my_set.end()); |
|
EXPECT_EQ("aab", *it); |
|
} |
|
|
|
TEST(Btree, Comparison) { |
|
const int kSetSize = 1201; |
|
absl::btree_set<int64_t> my_set; |
|
for (int i = 0; i < kSetSize; ++i) { |
|
my_set.insert(i); |
|
} |
|
absl::btree_set<int64_t> my_set_copy(my_set); |
|
EXPECT_TRUE(my_set_copy == my_set); |
|
EXPECT_TRUE(my_set == my_set_copy); |
|
EXPECT_FALSE(my_set_copy != my_set); |
|
EXPECT_FALSE(my_set != my_set_copy); |
|
|
|
my_set.insert(kSetSize); |
|
EXPECT_FALSE(my_set_copy == my_set); |
|
EXPECT_FALSE(my_set == my_set_copy); |
|
EXPECT_TRUE(my_set_copy != my_set); |
|
EXPECT_TRUE(my_set != my_set_copy); |
|
|
|
my_set.erase(kSetSize - 1); |
|
EXPECT_FALSE(my_set_copy == my_set); |
|
EXPECT_FALSE(my_set == my_set_copy); |
|
EXPECT_TRUE(my_set_copy != my_set); |
|
EXPECT_TRUE(my_set != my_set_copy); |
|
|
|
absl::btree_map<std::string, int64_t> my_map; |
|
for (int i = 0; i < kSetSize; ++i) { |
|
my_map[std::string(i, 'a')] = i; |
|
} |
|
absl::btree_map<std::string, int64_t> my_map_copy(my_map); |
|
EXPECT_TRUE(my_map_copy == my_map); |
|
EXPECT_TRUE(my_map == my_map_copy); |
|
EXPECT_FALSE(my_map_copy != my_map); |
|
EXPECT_FALSE(my_map != my_map_copy); |
|
|
|
++my_map_copy[std::string(7, 'a')]; |
|
EXPECT_FALSE(my_map_copy == my_map); |
|
EXPECT_FALSE(my_map == my_map_copy); |
|
EXPECT_TRUE(my_map_copy != my_map); |
|
EXPECT_TRUE(my_map != my_map_copy); |
|
|
|
my_map_copy = my_map; |
|
my_map["hello"] = kSetSize; |
|
EXPECT_FALSE(my_map_copy == my_map); |
|
EXPECT_FALSE(my_map == my_map_copy); |
|
EXPECT_TRUE(my_map_copy != my_map); |
|
EXPECT_TRUE(my_map != my_map_copy); |
|
|
|
my_map.erase(std::string(kSetSize - 1, 'a')); |
|
EXPECT_FALSE(my_map_copy == my_map); |
|
EXPECT_FALSE(my_map == my_map_copy); |
|
EXPECT_TRUE(my_map_copy != my_map); |
|
EXPECT_TRUE(my_map != my_map_copy); |
|
} |
|
|
|
TEST(Btree, RangeCtorSanity) { |
|
std::vector<int> ivec; |
|
ivec.push_back(1); |
|
std::map<int, int> imap; |
|
imap.insert(std::make_pair(1, 2)); |
|
absl::btree_multiset<int> tmset(ivec.begin(), ivec.end()); |
|
absl::btree_multimap<int, int> tmmap(imap.begin(), imap.end()); |
|
absl::btree_set<int> tset(ivec.begin(), ivec.end()); |
|
absl::btree_map<int, int> tmap(imap.begin(), imap.end()); |
|
EXPECT_EQ(1, tmset.size()); |
|
EXPECT_EQ(1, tmmap.size()); |
|
EXPECT_EQ(1, tset.size()); |
|
EXPECT_EQ(1, tmap.size()); |
|
} |
|
|
|
TEST(Btree, BtreeMapCanHoldMoveOnlyTypes) { |
|
absl::btree_map<std::string, std::unique_ptr<std::string>> m; |
|
|
|
std::unique_ptr<std::string> &v = m["A"]; |
|
EXPECT_TRUE(v == nullptr); |
|
v.reset(new std::string("X")); |
|
|
|
auto iter = m.find("A"); |
|
EXPECT_EQ("X", *iter->second); |
|
} |
|
|
|
TEST(Btree, InitializerListConstructor) { |
|
absl::btree_set<std::string> set({"a", "b"}); |
|
EXPECT_EQ(set.count("a"), 1); |
|
EXPECT_EQ(set.count("b"), 1); |
|
|
|
absl::btree_multiset<int> mset({1, 1, 4}); |
|
EXPECT_EQ(mset.count(1), 2); |
|
EXPECT_EQ(mset.count(4), 1); |
|
|
|
absl::btree_map<int, int> map({{1, 5}, {2, 10}}); |
|
EXPECT_EQ(map[1], 5); |
|
EXPECT_EQ(map[2], 10); |
|
|
|
absl::btree_multimap<int, int> mmap({{1, 5}, {1, 10}}); |
|
auto range = mmap.equal_range(1); |
|
auto it = range.first; |
|
ASSERT_NE(it, range.second); |
|
EXPECT_EQ(it->second, 5); |
|
ASSERT_NE(++it, range.second); |
|
EXPECT_EQ(it->second, 10); |
|
EXPECT_EQ(++it, range.second); |
|
} |
|
|
|
TEST(Btree, InitializerListInsert) { |
|
absl::btree_set<std::string> set; |
|
set.insert({"a", "b"}); |
|
EXPECT_EQ(set.count("a"), 1); |
|
EXPECT_EQ(set.count("b"), 1); |
|
|
|
absl::btree_multiset<int> mset; |
|
mset.insert({1, 1, 4}); |
|
EXPECT_EQ(mset.count(1), 2); |
|
EXPECT_EQ(mset.count(4), 1); |
|
|
|
absl::btree_map<int, int> map; |
|
map.insert({{1, 5}, {2, 10}}); |
|
// Test that inserting one element using an initializer list also works. |
|
map.insert({3, 15}); |
|
EXPECT_EQ(map[1], 5); |
|
EXPECT_EQ(map[2], 10); |
|
EXPECT_EQ(map[3], 15); |
|
|
|
absl::btree_multimap<int, int> mmap; |
|
mmap.insert({{1, 5}, {1, 10}}); |
|
auto range = mmap.equal_range(1); |
|
auto it = range.first; |
|
ASSERT_NE(it, range.second); |
|
EXPECT_EQ(it->second, 5); |
|
ASSERT_NE(++it, range.second); |
|
EXPECT_EQ(it->second, 10); |
|
EXPECT_EQ(++it, range.second); |
|
} |
|
|
|
template <typename Compare, typename K> |
|
void AssertKeyCompareToAdapted() { |
|
using Adapted = typename key_compare_to_adapter<Compare>::type; |
|
static_assert(!std::is_same<Adapted, Compare>::value, |
|
"key_compare_to_adapter should have adapted this comparator."); |
|
static_assert( |
|
std::is_same<absl::weak_ordering, |
|
absl::result_of_t<Adapted(const K &, const K &)>>::value, |
|
"Adapted comparator should be a key-compare-to comparator."); |
|
} |
|
template <typename Compare, typename K> |
|
void AssertKeyCompareToNotAdapted() { |
|
using Unadapted = typename key_compare_to_adapter<Compare>::type; |
|
static_assert( |
|
std::is_same<Unadapted, Compare>::value, |
|
"key_compare_to_adapter shouldn't have adapted this comparator."); |
|
static_assert( |
|
std::is_same<bool, |
|
absl::result_of_t<Unadapted(const K &, const K &)>>::value, |
|
"Un-adapted comparator should return bool."); |
|
} |
|
|
|
TEST(Btree, KeyCompareToAdapter) { |
|
AssertKeyCompareToAdapted<std::less<std::string>, std::string>(); |
|
AssertKeyCompareToAdapted<std::greater<std::string>, std::string>(); |
|
AssertKeyCompareToAdapted<std::less<absl::string_view>, absl::string_view>(); |
|
AssertKeyCompareToAdapted<std::greater<absl::string_view>, |
|
absl::string_view>(); |
|
AssertKeyCompareToNotAdapted<std::less<int>, int>(); |
|
AssertKeyCompareToNotAdapted<std::greater<int>, int>(); |
|
} |
|
|
|
TEST(Btree, RValueInsert) { |
|
InstanceTracker tracker; |
|
|
|
absl::btree_set<MovableOnlyInstance> set; |
|
set.insert(MovableOnlyInstance(1)); |
|
set.insert(MovableOnlyInstance(3)); |
|
MovableOnlyInstance two(2); |
|
set.insert(set.find(MovableOnlyInstance(3)), std::move(two)); |
|
auto it = set.find(MovableOnlyInstance(2)); |
|
ASSERT_NE(it, set.end()); |
|
ASSERT_NE(++it, set.end()); |
|
EXPECT_EQ(it->value(), 3); |
|
|
|
absl::btree_multiset<MovableOnlyInstance> mset; |
|
MovableOnlyInstance zero(0); |
|
MovableOnlyInstance zero2(0); |
|
mset.insert(std::move(zero)); |
|
mset.insert(mset.find(MovableOnlyInstance(0)), std::move(zero2)); |
|
EXPECT_EQ(mset.count(MovableOnlyInstance(0)), 2); |
|
|
|
absl::btree_map<int, MovableOnlyInstance> map; |
|
std::pair<const int, MovableOnlyInstance> p1 = {1, MovableOnlyInstance(5)}; |
|
std::pair<const int, MovableOnlyInstance> p2 = {2, MovableOnlyInstance(10)}; |
|
std::pair<const int, MovableOnlyInstance> p3 = {3, MovableOnlyInstance(15)}; |
|
map.insert(std::move(p1)); |
|
map.insert(std::move(p3)); |
|
map.insert(map.find(3), std::move(p2)); |
|
ASSERT_NE(map.find(2), map.end()); |
|
EXPECT_EQ(map.find(2)->second.value(), 10); |
|
|
|
absl::btree_multimap<int, MovableOnlyInstance> mmap; |
|
std::pair<const int, MovableOnlyInstance> p4 = {1, MovableOnlyInstance(5)}; |
|
std::pair<const int, MovableOnlyInstance> p5 = {1, MovableOnlyInstance(10)}; |
|
mmap.insert(std::move(p4)); |
|
mmap.insert(mmap.find(1), std::move(p5)); |
|
auto range = mmap.equal_range(1); |
|
auto it1 = range.first; |
|
ASSERT_NE(it1, range.second); |
|
EXPECT_EQ(it1->second.value(), 10); |
|
ASSERT_NE(++it1, range.second); |
|
EXPECT_EQ(it1->second.value(), 5); |
|
EXPECT_EQ(++it1, range.second); |
|
|
|
EXPECT_EQ(tracker.copies(), 0); |
|
EXPECT_EQ(tracker.swaps(), 0); |
|
} |
|
|
|
} // namespace |
|
|
|
class BtreeNodePeer { |
|
public: |
|
// Yields the size of a leaf node with a specific number of values. |
|
template <typename ValueType> |
|
constexpr static size_t GetTargetNodeSize(size_t target_values_per_node) { |
|
return btree_node< |
|
set_params<ValueType, std::less<ValueType>, std::allocator<ValueType>, |
|
/*TargetNodeSize=*/256, // This parameter isn't used here. |
|
/*Multi=*/false>>::SizeWithNValues(target_values_per_node); |
|
} |
|
|
|
// Yields the number of values in a (non-root) leaf node for this set. |
|
template <typename Set> |
|
constexpr static size_t GetNumValuesPerNode() { |
|
return btree_node<typename Set::params_type>::kNodeValues; |
|
} |
|
}; |
|
|
|
namespace { |
|
|
|
// A btree set with a specific number of values per node. |
|
template <typename Key, int TargetValuesPerNode, typename Cmp = std::less<Key>> |
|
class SizedBtreeSet |
|
: public btree_set_container<btree< |
|
set_params<Key, Cmp, std::allocator<Key>, |
|
BtreeNodePeer::GetTargetNodeSize<Key>(TargetValuesPerNode), |
|
/*Multi=*/false>>> { |
|
using Base = typename SizedBtreeSet::btree_set_container; |
|
|
|
public: |
|
SizedBtreeSet() {} |
|
using Base::Base; |
|
}; |
|
|
|
template <typename Set> |
|
void ExpectOperationCounts(const int expected_moves, |
|
const int expected_comparisons, |
|
const std::vector<int> &values, |
|
InstanceTracker *tracker, Set *set) { |
|
for (const int v : values) set->insert(MovableOnlyInstance(v)); |
|
set->clear(); |
|
EXPECT_EQ(tracker->moves(), expected_moves); |
|
EXPECT_EQ(tracker->comparisons(), expected_comparisons); |
|
EXPECT_EQ(tracker->copies(), 0); |
|
EXPECT_EQ(tracker->swaps(), 0); |
|
tracker->ResetCopiesMovesSwaps(); |
|
} |
|
|
|
// Note: when the values in this test change, it is expected to have an impact |
|
// on performance. |
|
TEST(Btree, MovesComparisonsCopiesSwapsTracking) { |
|
InstanceTracker tracker; |
|
// Note: this is minimum number of values per node. |
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3> set3; |
|
// Note: this is the default number of values per node for a set of int32s |
|
// (with 64-bit pointers). |
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61> set61; |
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100> set100; |
|
|
|
// Don't depend on flags for random values because then the expectations will |
|
// fail if the flags change. |
|
std::vector<int> values = |
|
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23); |
|
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3); |
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61); |
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100); |
|
if (sizeof(void *) == 8) { |
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(), |
|
BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>()); |
|
} |
|
|
|
// Test key insertion/deletion in random order. |
|
ExpectOperationCounts(45281, 132551, values, &tracker, &set3); |
|
ExpectOperationCounts(386718, 129807, values, &tracker, &set61); |
|
ExpectOperationCounts(586761, 130310, values, &tracker, &set100); |
|
|
|
// Test key insertion/deletion in sorted order. |
|
std::sort(values.begin(), values.end()); |
|
ExpectOperationCounts(26638, 92134, values, &tracker, &set3); |
|
ExpectOperationCounts(20208, 87757, values, &tracker, &set61); |
|
ExpectOperationCounts(20124, 96583, values, &tracker, &set100); |
|
|
|
// Test key insertion/deletion in reverse sorted order. |
|
std::reverse(values.begin(), values.end()); |
|
ExpectOperationCounts(49951, 119325, values, &tracker, &set3); |
|
ExpectOperationCounts(338813, 118266, values, &tracker, &set61); |
|
ExpectOperationCounts(534529, 125279, values, &tracker, &set100); |
|
} |
|
|
|
struct MovableOnlyInstanceThreeWayCompare { |
|
absl::weak_ordering operator()(const MovableOnlyInstance &a, |
|
const MovableOnlyInstance &b) const { |
|
return a.compare(b); |
|
} |
|
}; |
|
|
|
// Note: when the values in this test change, it is expected to have an impact |
|
// on performance. |
|
TEST(Btree, MovesComparisonsCopiesSwapsTrackingThreeWayCompare) { |
|
InstanceTracker tracker; |
|
// Note: this is minimum number of values per node. |
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/3, |
|
MovableOnlyInstanceThreeWayCompare> |
|
set3; |
|
// Note: this is the default number of values per node for a set of int32s |
|
// (with 64-bit pointers). |
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/61, |
|
MovableOnlyInstanceThreeWayCompare> |
|
set61; |
|
SizedBtreeSet<MovableOnlyInstance, /*TargetValuesPerNode=*/100, |
|
MovableOnlyInstanceThreeWayCompare> |
|
set100; |
|
|
|
// Don't depend on flags for random values because then the expectations will |
|
// fail if the flags change. |
|
std::vector<int> values = |
|
GenerateValuesWithSeed<int>(10000, 1 << 22, /*seed=*/23); |
|
|
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set3)>(), 3); |
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>(), 61); |
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<decltype(set100)>(), 100); |
|
if (sizeof(void *) == 8) { |
|
EXPECT_EQ(BtreeNodePeer::GetNumValuesPerNode<absl::btree_set<int32_t>>(), |
|
BtreeNodePeer::GetNumValuesPerNode<decltype(set61)>()); |
|
} |
|
|
|
// Test key insertion/deletion in random order. |
|
ExpectOperationCounts(45281, 122560, values, &tracker, &set3); |
|
ExpectOperationCounts(386718, 119816, values, &tracker, &set61); |
|
ExpectOperationCounts(586761, 120319, values, &tracker, &set100); |
|
|
|
// Test key insertion/deletion in sorted order. |
|
std::sort(values.begin(), values.end()); |
|
ExpectOperationCounts(26638, 92134, values, &tracker, &set3); |
|
ExpectOperationCounts(20208, 87757, values, &tracker, &set61); |
|
ExpectOperationCounts(20124, 96583, values, &tracker, &set100); |
|
|
|
// Test key insertion/deletion in reverse sorted order. |
|
std::reverse(values.begin(), values.end()); |
|
ExpectOperationCounts(49951, 109326, values, &tracker, &set3); |
|
ExpectOperationCounts(338813, 108267, values, &tracker, &set61); |
|
ExpectOperationCounts(534529, 115280, values, &tracker, &set100); |
|
} |
|
|
|
struct NoDefaultCtor { |
|
int num; |
|
explicit NoDefaultCtor(int i) : num(i) {} |
|
|
|
friend bool operator<(const NoDefaultCtor &a, const NoDefaultCtor &b) { |
|
return a.num < b.num; |
|
} |
|
}; |
|
|
|
TEST(Btree, BtreeMapCanHoldNoDefaultCtorTypes) { |
|
absl::btree_map<NoDefaultCtor, NoDefaultCtor> m; |
|
|
|
for (int i = 1; i <= 99; ++i) { |
|
SCOPED_TRACE(i); |
|
EXPECT_TRUE(m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)).second); |
|
} |
|
EXPECT_FALSE(m.emplace(NoDefaultCtor(78), NoDefaultCtor(0)).second); |
|
|
|
auto iter99 = m.find(NoDefaultCtor(99)); |
|
ASSERT_NE(iter99, m.end()); |
|
EXPECT_EQ(iter99->second.num, 1); |
|
|
|
auto iter1 = m.find(NoDefaultCtor(1)); |
|
ASSERT_NE(iter1, m.end()); |
|
EXPECT_EQ(iter1->second.num, 99); |
|
|
|
auto iter50 = m.find(NoDefaultCtor(50)); |
|
ASSERT_NE(iter50, m.end()); |
|
EXPECT_EQ(iter50->second.num, 50); |
|
|
|
auto iter25 = m.find(NoDefaultCtor(25)); |
|
ASSERT_NE(iter25, m.end()); |
|
EXPECT_EQ(iter25->second.num, 75); |
|
} |
|
|
|
TEST(Btree, BtreeMultimapCanHoldNoDefaultCtorTypes) { |
|
absl::btree_multimap<NoDefaultCtor, NoDefaultCtor> m; |
|
|
|
for (int i = 1; i <= 99; ++i) { |
|
SCOPED_TRACE(i); |
|
m.emplace(NoDefaultCtor(i), NoDefaultCtor(100 - i)); |
|
} |
|
|
|
auto iter99 = m.find(NoDefaultCtor(99)); |
|
ASSERT_NE(iter99, m.end()); |
|
EXPECT_EQ(iter99->second.num, 1); |
|
|
|
auto iter1 = m.find(NoDefaultCtor(1)); |
|
ASSERT_NE(iter1, m.end()); |
|
EXPECT_EQ(iter1->second.num, 99); |
|
|
|
auto iter50 = m.find(NoDefaultCtor(50)); |
|
ASSERT_NE(iter50, m.end()); |
|
EXPECT_EQ(iter50->second.num, 50); |
|
|
|
auto iter25 = m.find(NoDefaultCtor(25)); |
|
ASSERT_NE(iter25, m.end()); |
|
EXPECT_EQ(iter25->second.num, 75); |
|
} |
|
|
|
TEST(Btree, MapAt) { |
|
absl::btree_map<int, int> map = {{1, 2}, {2, 4}}; |
|
EXPECT_EQ(map.at(1), 2); |
|
EXPECT_EQ(map.at(2), 4); |
|
map.at(2) = 8; |
|
const absl::btree_map<int, int> &const_map = map; |
|
EXPECT_EQ(const_map.at(1), 2); |
|
EXPECT_EQ(const_map.at(2), 8); |
|
#ifdef ABSL_HAVE_EXCEPTIONS |
|
EXPECT_THROW(map.at(3), std::out_of_range); |
|
#else |
|
EXPECT_DEATH(map.at(3), "absl::btree_map::at"); |
|
#endif |
|
} |
|
|
|
TEST(Btree, BtreeMultisetEmplace) { |
|
const int value_to_insert = 123456; |
|
absl::btree_multiset<int> s; |
|
auto iter = s.emplace(value_to_insert); |
|
ASSERT_NE(iter, s.end()); |
|
EXPECT_EQ(*iter, value_to_insert); |
|
auto iter2 = s.emplace(value_to_insert); |
|
EXPECT_NE(iter2, iter); |
|
ASSERT_NE(iter2, s.end()); |
|
EXPECT_EQ(*iter2, value_to_insert); |
|
auto result = s.equal_range(value_to_insert); |
|
EXPECT_EQ(std::distance(result.first, result.second), 2); |
|
} |
|
|
|
TEST(Btree, BtreeMultisetEmplaceHint) { |
|
const int value_to_insert = 123456; |
|
absl::btree_multiset<int> s; |
|
auto iter = s.emplace(value_to_insert); |
|
ASSERT_NE(iter, s.end()); |
|
EXPECT_EQ(*iter, value_to_insert); |
|
auto emplace_iter = s.emplace_hint(iter, value_to_insert); |
|
EXPECT_NE(emplace_iter, iter); |
|
ASSERT_NE(emplace_iter, s.end()); |
|
EXPECT_EQ(*emplace_iter, value_to_insert); |
|
} |
|
|
|
TEST(Btree, BtreeMultimapEmplace) { |
|
const int key_to_insert = 123456; |
|
const char value0[] = "a"; |
|
absl::btree_multimap<int, std::string> s; |
|
auto iter = s.emplace(key_to_insert, value0); |
|
ASSERT_NE(iter, s.end()); |
|
EXPECT_EQ(iter->first, key_to_insert); |
|
EXPECT_EQ(iter->second, value0); |
|
const char value1[] = "b"; |
|
auto iter2 = s.emplace(key_to_insert, value1); |
|
EXPECT_NE(iter2, iter); |
|
ASSERT_NE(iter2, s.end()); |
|
EXPECT_EQ(iter2->first, key_to_insert); |
|
EXPECT_EQ(iter2->second, value1); |
|
auto result = s.equal_range(key_to_insert); |
|
EXPECT_EQ(std::distance(result.first, result.second), 2); |
|
} |
|
|
|
TEST(Btree, BtreeMultimapEmplaceHint) { |
|
const int key_to_insert = 123456; |
|
const char value0[] = "a"; |
|
absl::btree_multimap<int, std::string> s; |
|
auto iter = s.emplace(key_to_insert, value0); |
|
ASSERT_NE(iter, s.end()); |
|
EXPECT_EQ(iter->first, key_to_insert); |
|
EXPECT_EQ(iter->second, value0); |
|
const char value1[] = "b"; |
|
auto emplace_iter = s.emplace_hint(iter, key_to_insert, value1); |
|
EXPECT_NE(emplace_iter, iter); |
|
ASSERT_NE(emplace_iter, s.end()); |
|
EXPECT_EQ(emplace_iter->first, key_to_insert); |
|
EXPECT_EQ(emplace_iter->second, value1); |
|
} |
|
|
|
TEST(Btree, ConstIteratorAccessors) { |
|
absl::btree_set<int> set; |
|
for (int i = 0; i < 100; ++i) { |
|
set.insert(i); |
|
} |
|
|
|
auto it = set.cbegin(); |
|
auto r_it = set.crbegin(); |
|
for (int i = 0; i < 100; ++i, ++it, ++r_it) { |
|
ASSERT_EQ(*it, i); |
|
ASSERT_EQ(*r_it, 99 - i); |
|
} |
|
EXPECT_EQ(it, set.cend()); |
|
EXPECT_EQ(r_it, set.crend()); |
|
} |
|
|
|
TEST(Btree, StrSplitCompatible) { |
|
const absl::btree_set<std::string> split_set = absl::StrSplit("a,b,c", ','); |
|
const absl::btree_set<std::string> expected_set = {"a", "b", "c"}; |
|
|
|
EXPECT_EQ(split_set, expected_set); |
|
} |
|
|
|
// We can't use EXPECT_EQ/etc. to compare absl::weak_ordering because they |
|
// convert literal 0 to int and absl::weak_ordering can only be compared with |
|
// literal 0. Defining this function allows for avoiding ClangTidy warnings. |
|
bool Identity(const bool b) { return b; } |
|
|
|
TEST(Btree, ValueComp) { |
|
absl::btree_set<int> s; |
|
EXPECT_TRUE(s.value_comp()(1, 2)); |
|
EXPECT_FALSE(s.value_comp()(2, 2)); |
|
EXPECT_FALSE(s.value_comp()(2, 1)); |
|
|
|
absl::btree_map<int, int> m1; |
|
EXPECT_TRUE(m1.value_comp()(std::make_pair(1, 0), std::make_pair(2, 0))); |
|
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(2, 0))); |
|
EXPECT_FALSE(m1.value_comp()(std::make_pair(2, 0), std::make_pair(1, 0))); |
|
|
|
absl::btree_map<std::string, int> m2; |
|
EXPECT_TRUE(Identity( |
|
m2.value_comp()(std::make_pair("a", 0), std::make_pair("b", 0)) < 0)); |
|
EXPECT_TRUE(Identity( |
|
m2.value_comp()(std::make_pair("b", 0), std::make_pair("b", 0)) == 0)); |
|
EXPECT_TRUE(Identity( |
|
m2.value_comp()(std::make_pair("b", 0), std::make_pair("a", 0)) > 0)); |
|
} |
|
|
|
TEST(Btree, DefaultConstruction) { |
|
absl::btree_set<int> s; |
|
absl::btree_map<int, int> m; |
|
absl::btree_multiset<int> ms; |
|
absl::btree_multimap<int, int> mm; |
|
|
|
EXPECT_TRUE(s.empty()); |
|
EXPECT_TRUE(m.empty()); |
|
EXPECT_TRUE(ms.empty()); |
|
EXPECT_TRUE(mm.empty()); |
|
} |
|
|
|
TEST(Btree, SwissTableHashable) { |
|
static constexpr int kValues = 10000; |
|
std::vector<int> values(kValues); |
|
std::iota(values.begin(), values.end(), 0); |
|
std::vector<std::pair<int, int>> map_values; |
|
for (int v : values) map_values.emplace_back(v, -v); |
|
|
|
using set = absl::btree_set<int>; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
|
set{}, |
|
set{1}, |
|
set{2}, |
|
set{1, 2}, |
|
set{2, 1}, |
|
set(values.begin(), values.end()), |
|
set(values.rbegin(), values.rend()), |
|
})); |
|
|
|
using mset = absl::btree_multiset<int>; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
|
mset{}, |
|
mset{1}, |
|
mset{1, 1}, |
|
mset{2}, |
|
mset{2, 2}, |
|
mset{1, 2}, |
|
mset{1, 1, 2}, |
|
mset{1, 2, 2}, |
|
mset{1, 1, 2, 2}, |
|
mset(values.begin(), values.end()), |
|
mset(values.rbegin(), values.rend()), |
|
})); |
|
|
|
using map = absl::btree_map<int, int>; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
|
map{}, |
|
map{{1, 0}}, |
|
map{{1, 1}}, |
|
map{{2, 0}}, |
|
map{{2, 2}}, |
|
map{{1, 0}, {2, 1}}, |
|
map(map_values.begin(), map_values.end()), |
|
map(map_values.rbegin(), map_values.rend()), |
|
})); |
|
|
|
using mmap = absl::btree_multimap<int, int>; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly({ |
|
mmap{}, |
|
mmap{{1, 0}}, |
|
mmap{{1, 1}}, |
|
mmap{{1, 0}, {1, 1}}, |
|
mmap{{1, 1}, {1, 0}}, |
|
mmap{{2, 0}}, |
|
mmap{{2, 2}}, |
|
mmap{{1, 0}, {2, 1}}, |
|
mmap(map_values.begin(), map_values.end()), |
|
mmap(map_values.rbegin(), map_values.rend()), |
|
})); |
|
} |
|
|
|
TEST(Btree, ComparableSet) { |
|
absl::btree_set<int> s1 = {1, 2}; |
|
absl::btree_set<int> s2 = {2, 3}; |
|
EXPECT_LT(s1, s2); |
|
EXPECT_LE(s1, s2); |
|
EXPECT_LE(s1, s1); |
|
EXPECT_GT(s2, s1); |
|
EXPECT_GE(s2, s1); |
|
EXPECT_GE(s1, s1); |
|
} |
|
|
|
TEST(Btree, ComparableSetsDifferentLength) { |
|
absl::btree_set<int> s1 = {1, 2}; |
|
absl::btree_set<int> s2 = {1, 2, 3}; |
|
EXPECT_LT(s1, s2); |
|
EXPECT_LE(s1, s2); |
|
EXPECT_GT(s2, s1); |
|
EXPECT_GE(s2, s1); |
|
} |
|
|
|
TEST(Btree, ComparableMultiset) { |
|
absl::btree_multiset<int> s1 = {1, 2}; |
|
absl::btree_multiset<int> s2 = {2, 3}; |
|
EXPECT_LT(s1, s2); |
|
EXPECT_LE(s1, s2); |
|
EXPECT_LE(s1, s1); |
|
EXPECT_GT(s2, s1); |
|
EXPECT_GE(s2, s1); |
|
EXPECT_GE(s1, s1); |
|
} |
|
|
|
TEST(Btree, ComparableMap) { |
|
absl::btree_map<int, int> s1 = {{1, 2}}; |
|
absl::btree_map<int, int> s2 = {{2, 3}}; |
|
EXPECT_LT(s1, s2); |
|
EXPECT_LE(s1, s2); |
|
EXPECT_LE(s1, s1); |
|
EXPECT_GT(s2, s1); |
|
EXPECT_GE(s2, s1); |
|
EXPECT_GE(s1, s1); |
|
} |
|
|
|
TEST(Btree, ComparableMultimap) { |
|
absl::btree_multimap<int, int> s1 = {{1, 2}}; |
|
absl::btree_multimap<int, int> s2 = {{2, 3}}; |
|
EXPECT_LT(s1, s2); |
|
EXPECT_LE(s1, s2); |
|
EXPECT_LE(s1, s1); |
|
EXPECT_GT(s2, s1); |
|
EXPECT_GE(s2, s1); |
|
EXPECT_GE(s1, s1); |
|
} |
|
|
|
TEST(Btree, ComparableSetWithCustomComparator) { |
|
// As specified by |
|
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2012/n3337.pdf section |
|
// [container.requirements.general].12, ordering associative containers always |
|
// uses default '<' operator |
|
// - even if otherwise the container uses custom functor. |
|
absl::btree_set<int, std::greater<int>> s1 = {1, 2}; |
|
absl::btree_set<int, std::greater<int>> s2 = {2, 3}; |
|
EXPECT_LT(s1, s2); |
|
EXPECT_LE(s1, s2); |
|
EXPECT_LE(s1, s1); |
|
EXPECT_GT(s2, s1); |
|
EXPECT_GE(s2, s1); |
|
EXPECT_GE(s1, s1); |
|
} |
|
|
|
TEST(Btree, EraseReturnsIterator) { |
|
absl::btree_set<int> set = {1, 2, 3, 4, 5}; |
|
auto result_it = set.erase(set.begin(), set.find(3)); |
|
EXPECT_EQ(result_it, set.find(3)); |
|
result_it = set.erase(set.find(5)); |
|
EXPECT_EQ(result_it, set.end()); |
|
} |
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleSet) { |
|
absl::btree_set<int> src1 = {1, 2, 3, 4, 5}; |
|
auto nh = src1.extract(src1.find(3)); |
|
EXPECT_THAT(src1, ElementsAre(1, 2, 4, 5)); |
|
absl::btree_set<int> other; |
|
absl::btree_set<int>::insert_return_type res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(3)); |
|
EXPECT_EQ(res.position, other.find(3)); |
|
EXPECT_TRUE(res.inserted); |
|
EXPECT_TRUE(res.node.empty()); |
|
|
|
absl::btree_set<int> src2 = {3, 4}; |
|
nh = src2.extract(src2.find(3)); |
|
EXPECT_THAT(src2, ElementsAre(4)); |
|
res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(3)); |
|
EXPECT_EQ(res.position, other.find(3)); |
|
EXPECT_FALSE(res.inserted); |
|
ASSERT_FALSE(res.node.empty()); |
|
EXPECT_EQ(res.node.value(), 3); |
|
} |
|
|
|
template <typename Set> |
|
void TestExtractWithTrackingForSet() { |
|
InstanceTracker tracker; |
|
{ |
|
Set s; |
|
// Add enough elements to make sure we test internal nodes too. |
|
const size_t kSize = 1000; |
|
while (s.size() < kSize) { |
|
s.insert(MovableOnlyInstance(s.size())); |
|
} |
|
for (int i = 0; i < kSize; ++i) { |
|
// Extract with key |
|
auto nh = s.extract(MovableOnlyInstance(i)); |
|
EXPECT_EQ(s.size(), kSize - 1); |
|
EXPECT_EQ(nh.value().value(), i); |
|
// Insert with node |
|
s.insert(std::move(nh)); |
|
EXPECT_EQ(s.size(), kSize); |
|
|
|
// Extract with iterator |
|
auto it = s.find(MovableOnlyInstance(i)); |
|
nh = s.extract(it); |
|
EXPECT_EQ(s.size(), kSize - 1); |
|
EXPECT_EQ(nh.value().value(), i); |
|
// Insert with node and hint |
|
s.insert(s.begin(), std::move(nh)); |
|
EXPECT_EQ(s.size(), kSize); |
|
} |
|
} |
|
EXPECT_EQ(0, tracker.instances()); |
|
} |
|
|
|
template <typename Map> |
|
void TestExtractWithTrackingForMap() { |
|
InstanceTracker tracker; |
|
{ |
|
Map m; |
|
// Add enough elements to make sure we test internal nodes too. |
|
const size_t kSize = 1000; |
|
while (m.size() < kSize) { |
|
m.insert( |
|
{CopyableMovableInstance(m.size()), MovableOnlyInstance(m.size())}); |
|
} |
|
for (int i = 0; i < kSize; ++i) { |
|
// Extract with key |
|
auto nh = m.extract(CopyableMovableInstance(i)); |
|
EXPECT_EQ(m.size(), kSize - 1); |
|
EXPECT_EQ(nh.key().value(), i); |
|
EXPECT_EQ(nh.mapped().value(), i); |
|
// Insert with node |
|
m.insert(std::move(nh)); |
|
EXPECT_EQ(m.size(), kSize); |
|
|
|
// Extract with iterator |
|
auto it = m.find(CopyableMovableInstance(i)); |
|
nh = m.extract(it); |
|
EXPECT_EQ(m.size(), kSize - 1); |
|
EXPECT_EQ(nh.key().value(), i); |
|
EXPECT_EQ(nh.mapped().value(), i); |
|
// Insert with node and hint |
|
m.insert(m.begin(), std::move(nh)); |
|
EXPECT_EQ(m.size(), kSize); |
|
} |
|
} |
|
EXPECT_EQ(0, tracker.instances()); |
|
} |
|
|
|
TEST(Btree, ExtractTracking) { |
|
TestExtractWithTrackingForSet<absl::btree_set<MovableOnlyInstance>>(); |
|
TestExtractWithTrackingForSet<absl::btree_multiset<MovableOnlyInstance>>(); |
|
TestExtractWithTrackingForMap< |
|
absl::btree_map<CopyableMovableInstance, MovableOnlyInstance>>(); |
|
TestExtractWithTrackingForMap< |
|
absl::btree_multimap<CopyableMovableInstance, MovableOnlyInstance>>(); |
|
} |
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleMultiSet) { |
|
absl::btree_multiset<int> src1 = {1, 2, 3, 3, 4, 5}; |
|
auto nh = src1.extract(src1.find(3)); |
|
EXPECT_THAT(src1, ElementsAre(1, 2, 3, 4, 5)); |
|
absl::btree_multiset<int> other; |
|
auto res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(3)); |
|
EXPECT_EQ(res, other.find(3)); |
|
|
|
absl::btree_multiset<int> src2 = {3, 4}; |
|
nh = src2.extract(src2.find(3)); |
|
EXPECT_THAT(src2, ElementsAre(4)); |
|
res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(3, 3)); |
|
EXPECT_EQ(res, ++other.find(3)); |
|
} |
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleMap) { |
|
absl::btree_map<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; |
|
auto nh = src1.extract(src1.find(3)); |
|
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); |
|
absl::btree_map<int, int> other; |
|
absl::btree_map<int, int>::insert_return_type res = |
|
other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4))); |
|
EXPECT_EQ(res.position, other.find(3)); |
|
EXPECT_TRUE(res.inserted); |
|
EXPECT_TRUE(res.node.empty()); |
|
|
|
absl::btree_map<int, int> src2 = {{3, 6}}; |
|
nh = src2.extract(src2.find(3)); |
|
EXPECT_TRUE(src2.empty()); |
|
res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4))); |
|
EXPECT_EQ(res.position, other.find(3)); |
|
EXPECT_FALSE(res.inserted); |
|
ASSERT_FALSE(res.node.empty()); |
|
EXPECT_EQ(res.node.key(), 3); |
|
EXPECT_EQ(res.node.mapped(), 6); |
|
} |
|
|
|
TEST(Btree, ExtractAndInsertNodeHandleMultiMap) { |
|
absl::btree_multimap<int, int> src1 = {{1, 2}, {3, 4}, {5, 6}}; |
|
auto nh = src1.extract(src1.find(3)); |
|
EXPECT_THAT(src1, ElementsAre(Pair(1, 2), Pair(5, 6))); |
|
absl::btree_multimap<int, int> other; |
|
auto res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4))); |
|
EXPECT_EQ(res, other.find(3)); |
|
|
|
absl::btree_multimap<int, int> src2 = {{3, 6}}; |
|
nh = src2.extract(src2.find(3)); |
|
EXPECT_TRUE(src2.empty()); |
|
res = other.insert(std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(Pair(3, 4), Pair(3, 6))); |
|
EXPECT_EQ(res, ++other.begin()); |
|
} |
|
|
|
// For multisets, insert with hint also affects correctness because we need to |
|
// insert immediately before the hint if possible. |
|
struct InsertMultiHintData { |
|
int key; |
|
int not_key; |
|
bool operator==(const InsertMultiHintData other) const { |
|
return key == other.key && not_key == other.not_key; |
|
} |
|
}; |
|
|
|
struct InsertMultiHintDataKeyCompare { |
|
using is_transparent = void; |
|
bool operator()(const InsertMultiHintData a, |
|
const InsertMultiHintData b) const { |
|
return a.key < b.key; |
|
} |
|
bool operator()(const int a, const InsertMultiHintData b) const { |
|
return a < b.key; |
|
} |
|
bool operator()(const InsertMultiHintData a, const int b) const { |
|
return a.key < b; |
|
} |
|
}; |
|
|
|
TEST(Btree, InsertHintNodeHandle) { |
|
// For unique sets, insert with hint is just a performance optimization. |
|
// Test that insert works correctly when the hint is right or wrong. |
|
{ |
|
absl::btree_set<int> src = {1, 2, 3, 4, 5}; |
|
auto nh = src.extract(src.find(3)); |
|
EXPECT_THAT(src, ElementsAre(1, 2, 4, 5)); |
|
absl::btree_set<int> other = {0, 100}; |
|
// Test a correct hint. |
|
auto it = other.insert(other.lower_bound(3), std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(0, 3, 100)); |
|
EXPECT_EQ(it, other.find(3)); |
|
|
|
nh = src.extract(src.find(5)); |
|
// Test an incorrect hint. |
|
it = other.insert(other.end(), std::move(nh)); |
|
EXPECT_THAT(other, ElementsAre(0, 3, 5, 100)); |
|
EXPECT_EQ(it, other.find(5)); |
|
} |
|
|
|
absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> src = |
|
{{1, 2}, {3, 4}, {3, 5}}; |
|
auto nh = src.extract(src.lower_bound(3)); |
|
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 4})); |
|
absl::btree_multiset<InsertMultiHintData, InsertMultiHintDataKeyCompare> |
|
other = {{3, 1}, {3, 2}, {3, 3}}; |
|
auto it = other.insert(--other.end(), std::move(nh)); |
|
EXPECT_THAT( |
|
other, ElementsAre(InsertMultiHintData{3, 1}, InsertMultiHintData{3, 2}, |
|
InsertMultiHintData{3, 4}, InsertMultiHintData{3, 3})); |
|
EXPECT_EQ(it, --(--other.end())); |
|
|
|
nh = src.extract(src.find(3)); |
|
EXPECT_EQ(nh.value(), (InsertMultiHintData{3, 5})); |
|
it = other.insert(other.begin(), std::move(nh)); |
|
EXPECT_THAT(other, |
|
ElementsAre(InsertMultiHintData{3, 5}, InsertMultiHintData{3, 1}, |
|
InsertMultiHintData{3, 2}, InsertMultiHintData{3, 4}, |
|
InsertMultiHintData{3, 3})); |
|
EXPECT_EQ(it, other.begin()); |
|
} |
|
|
|
struct IntCompareToCmp { |
|
absl::weak_ordering operator()(int a, int b) const { |
|
if (a < b) return absl::weak_ordering::less; |
|
if (a > b) return absl::weak_ordering::greater; |
|
return absl::weak_ordering::equivalent; |
|
} |
|
}; |
|
|
|
TEST(Btree, MergeIntoUniqueContainers) { |
|
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
|
absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
|
absl::btree_set<int> dst; |
|
|
|
dst.merge(src1); |
|
EXPECT_TRUE(src1.empty()); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
|
dst.merge(src2); |
|
EXPECT_THAT(src2, ElementsAre(3, 4)); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); |
|
} |
|
|
|
TEST(Btree, MergeIntoUniqueContainersWithCompareTo) { |
|
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
|
absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
|
absl::btree_set<int, IntCompareToCmp> dst; |
|
|
|
dst.merge(src1); |
|
EXPECT_TRUE(src1.empty()); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
|
dst.merge(src2); |
|
EXPECT_THAT(src2, ElementsAre(3, 4)); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 4, 5)); |
|
} |
|
|
|
TEST(Btree, MergeIntoMultiContainers) { |
|
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
|
absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
|
absl::btree_multiset<int> dst; |
|
|
|
dst.merge(src1); |
|
EXPECT_TRUE(src1.empty()); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
|
dst.merge(src2); |
|
EXPECT_TRUE(src2.empty()); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); |
|
} |
|
|
|
TEST(Btree, MergeIntoMultiContainersWithCompareTo) { |
|
absl::btree_set<int, IntCompareToCmp> src1 = {1, 2, 3}; |
|
absl::btree_multiset<int> src2 = {3, 4, 4, 5}; |
|
absl::btree_multiset<int, IntCompareToCmp> dst; |
|
|
|
dst.merge(src1); |
|
EXPECT_TRUE(src1.empty()); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3)); |
|
dst.merge(src2); |
|
EXPECT_TRUE(src2.empty()); |
|
EXPECT_THAT(dst, ElementsAre(1, 2, 3, 3, 4, 4, 5)); |
|
} |
|
|
|
TEST(Btree, MergeIntoMultiMapsWithDifferentComparators) { |
|
absl::btree_map<int, int, IntCompareToCmp> src1 = {{1, 1}, {2, 2}, {3, 3}}; |
|
absl::btree_multimap<int, int, std::greater<int>> src2 = { |
|
{5, 5}, {4, 1}, {4, 4}, {3, 2}}; |
|
absl::btree_multimap<int, int> dst; |
|
|
|
dst.merge(src1); |
|
EXPECT_TRUE(src1.empty()); |
|
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3))); |
|
dst.merge(src2); |
|
EXPECT_TRUE(src2.empty()); |
|
EXPECT_THAT(dst, ElementsAre(Pair(1, 1), Pair(2, 2), Pair(3, 3), Pair(3, 2), |
|
Pair(4, 1), Pair(4, 4), Pair(5, 5))); |
|
} |
|
|
|
struct KeyCompareToWeakOrdering { |
|
template <typename T> |
|
absl::weak_ordering operator()(const T &a, const T &b) const { |
|
return a < b ? absl::weak_ordering::less |
|
: a == b ? absl::weak_ordering::equivalent |
|
: absl::weak_ordering::greater; |
|
} |
|
}; |
|
|
|
struct KeyCompareToStrongOrdering { |
|
template <typename T> |
|
absl::strong_ordering operator()(const T &a, const T &b) const { |
|
return a < b ? absl::strong_ordering::less |
|
: a == b ? absl::strong_ordering::equal |
|
: absl::strong_ordering::greater; |
|
} |
|
}; |
|
|
|
TEST(Btree, UserProvidedKeyCompareToComparators) { |
|
absl::btree_set<int, KeyCompareToWeakOrdering> weak_set = {1, 2, 3}; |
|
EXPECT_TRUE(weak_set.contains(2)); |
|
EXPECT_FALSE(weak_set.contains(4)); |
|
|
|
absl::btree_set<int, KeyCompareToStrongOrdering> strong_set = {1, 2, 3}; |
|
EXPECT_TRUE(strong_set.contains(2)); |
|
EXPECT_FALSE(strong_set.contains(4)); |
|
} |
|
|
|
TEST(Btree, TryEmplaceBasicTest) { |
|
absl::btree_map<int, std::string> m; |
|
|
|
// Should construct a std::string from the literal. |
|
m.try_emplace(1, "one"); |
|
EXPECT_EQ(1, m.size()); |
|
|
|
// Try other std::string constructors and const lvalue key. |
|
const int key(42); |
|
m.try_emplace(key, 3, 'a'); |
|
m.try_emplace(2, std::string("two")); |
|
|
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
|
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, std::string>>{ |
|
{1, "one"}, {2, "two"}, {42, "aaa"}})); |
|
} |
|
|
|
TEST(Btree, TryEmplaceWithHintWorks) { |
|
// Use a counting comparator here to verify that hint is used. |
|
int calls = 0; |
|
auto cmp = [&calls](int x, int y) { |
|
++calls; |
|
return x < y; |
|
}; |
|
using Cmp = decltype(cmp); |
|
|
|
absl::btree_map<int, int, Cmp> m(cmp); |
|
for (int i = 0; i < 128; ++i) { |
|
m.emplace(i, i); |
|
} |
|
|
|
// Sanity check for the comparator |
|
calls = 0; |
|
m.emplace(127, 127); |
|
EXPECT_GE(calls, 4); |
|
|
|
// Try with begin hint: |
|
calls = 0; |
|
auto it = m.try_emplace(m.begin(), -1, -1); |
|
EXPECT_EQ(129, m.size()); |
|
EXPECT_EQ(it, m.begin()); |
|
EXPECT_LE(calls, 2); |
|
|
|
// Try with end hint: |
|
calls = 0; |
|
std::pair<int, int> pair1024 = {1024, 1024}; |
|
it = m.try_emplace(m.end(), pair1024.first, pair1024.second); |
|
EXPECT_EQ(130, m.size()); |
|
EXPECT_EQ(it, --m.end()); |
|
EXPECT_LE(calls, 2); |
|
|
|
// Try value already present, bad hint; ensure no duplicate added: |
|
calls = 0; |
|
it = m.try_emplace(m.end(), 16, 17); |
|
EXPECT_EQ(130, m.size()); |
|
EXPECT_GE(calls, 4); |
|
EXPECT_EQ(it, m.find(16)); |
|
|
|
// Try value already present, hint points directly to it: |
|
calls = 0; |
|
it = m.try_emplace(it, 16, 17); |
|
EXPECT_EQ(130, m.size()); |
|
EXPECT_LE(calls, 2); |
|
EXPECT_EQ(it, m.find(16)); |
|
|
|
m.erase(2); |
|
EXPECT_EQ(129, m.size()); |
|
auto hint = m.find(3); |
|
// Try emplace in the middle of two other elements. |
|
calls = 0; |
|
m.try_emplace(hint, 2, 2); |
|
EXPECT_EQ(130, m.size()); |
|
EXPECT_LE(calls, 2); |
|
|
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
|
} |
|
|
|
TEST(Btree, TryEmplaceWithBadHint) { |
|
absl::btree_map<int, int> m = {{1, 1}, {9, 9}}; |
|
|
|
// Bad hint (too small), should still emplace: |
|
auto it = m.try_emplace(m.begin(), 2, 2); |
|
EXPECT_EQ(it, ++m.begin()); |
|
EXPECT_THAT(m, ElementsAreArray( |
|
std::vector<std::pair<int, int>>{{1, 1}, {2, 2}, {9, 9}})); |
|
|
|
// Bad hint, too large this time: |
|
it = m.try_emplace(++(++m.begin()), 0, 0); |
|
EXPECT_EQ(it, m.begin()); |
|
EXPECT_THAT(m, ElementsAreArray(std::vector<std::pair<int, int>>{ |
|
{0, 0}, {1, 1}, {2, 2}, {9, 9}})); |
|
} |
|
|
|
TEST(Btree, TryEmplaceMaintainsSortedOrder) { |
|
absl::btree_map<int, std::string> m; |
|
std::pair<int, std::string> pair5 = {5, "five"}; |
|
|
|
// Test both lvalue & rvalue emplace. |
|
m.try_emplace(10, "ten"); |
|
m.try_emplace(pair5.first, pair5.second); |
|
EXPECT_EQ(2, m.size()); |
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
|
|
|
int int100{100}; |
|
m.try_emplace(int100, "hundred"); |
|
m.try_emplace(1, "one"); |
|
EXPECT_EQ(4, m.size()); |
|
EXPECT_TRUE(std::is_sorted(m.begin(), m.end())); |
|
} |
|
|
|
TEST(Btree, TryEmplaceWithHintAndNoValueArgsWorks) { |
|
absl::btree_map<int, int> m; |
|
m.try_emplace(m.end(), 1); |
|
EXPECT_EQ(0, m[1]); |
|
} |
|
|
|
TEST(Btree, TryEmplaceWithHintAndMultipleValueArgsWorks) { |
|
absl::btree_map<int, std::string> m; |
|
m.try_emplace(m.end(), 1, 10, 'a'); |
|
EXPECT_EQ(std::string(10, 'a'), m[1]); |
|
} |
|
|
|
TEST(Btree, MoveAssignmentAllocatorPropagation) { |
|
InstanceTracker tracker; |
|
|
|
int64_t bytes1 = 0, bytes2 = 0; |
|
PropagatingCountingAlloc<MovableOnlyInstance> allocator1(&bytes1); |
|
PropagatingCountingAlloc<MovableOnlyInstance> allocator2(&bytes2); |
|
std::less<MovableOnlyInstance> cmp; |
|
|
|
// Test propagating allocator_type. |
|
{ |
|
absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>, |
|
PropagatingCountingAlloc<MovableOnlyInstance>> |
|
set1(cmp, allocator1), set2(cmp, allocator2); |
|
|
|
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i)); |
|
|
|
tracker.ResetCopiesMovesSwaps(); |
|
set2 = std::move(set1); |
|
EXPECT_EQ(tracker.moves(), 0); |
|
} |
|
// Test non-propagating allocator_type with equal allocators. |
|
{ |
|
absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>, |
|
CountingAllocator<MovableOnlyInstance>> |
|
set1(cmp, allocator1), set2(cmp, allocator1); |
|
|
|
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i)); |
|
|
|
tracker.ResetCopiesMovesSwaps(); |
|
set2 = std::move(set1); |
|
EXPECT_EQ(tracker.moves(), 0); |
|
} |
|
// Test non-propagating allocator_type with different allocators. |
|
{ |
|
absl::btree_set<MovableOnlyInstance, std::less<MovableOnlyInstance>, |
|
CountingAllocator<MovableOnlyInstance>> |
|
set1(cmp, allocator1), set2(cmp, allocator2); |
|
|
|
for (int i = 0; i < 100; ++i) set1.insert(MovableOnlyInstance(i)); |
|
|
|
tracker.ResetCopiesMovesSwaps(); |
|
set2 = std::move(set1); |
|
EXPECT_GE(tracker.moves(), 100); |
|
} |
|
} |
|
|
|
TEST(Btree, EmptyTree) { |
|
absl::btree_set<int> s; |
|
EXPECT_TRUE(s.empty()); |
|
EXPECT_EQ(s.size(), 0); |
|
EXPECT_GT(s.max_size(), 0); |
|
} |
|
|
|
bool IsEven(int k) { return k % 2 == 0; } |
|
|
|
TEST(Btree, EraseIf) { |
|
// Test that erase_if works with all the container types and supports lambdas. |
|
{ |
|
absl::btree_set<int> s = {1, 3, 5, 6, 100}; |
|
erase_if(s, [](int k) { return k > 3; }); |
|
EXPECT_THAT(s, ElementsAre(1, 3)); |
|
} |
|
{ |
|
absl::btree_multiset<int> s = {1, 3, 3, 5, 6, 6, 100}; |
|
erase_if(s, [](int k) { return k <= 3; }); |
|
EXPECT_THAT(s, ElementsAre(5, 6, 6, 100)); |
|
} |
|
{ |
|
absl::btree_map<int, int> m = {{1, 1}, {3, 3}, {6, 6}, {100, 100}}; |
|
erase_if(m, [](std::pair<const int, int> kv) { return kv.first > 3; }); |
|
EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3))); |
|
} |
|
{ |
|
absl::btree_multimap<int, int> m = {{1, 1}, {3, 3}, {3, 6}, |
|
{6, 6}, {6, 7}, {100, 6}}; |
|
erase_if(m, [](std::pair<const int, int> kv) { return kv.second == 6; }); |
|
EXPECT_THAT(m, ElementsAre(Pair(1, 1), Pair(3, 3), Pair(6, 7))); |
|
} |
|
// Test that erasing all elements from a large set works and test support for |
|
// function pointers. |
|
{ |
|
absl::btree_set<int> s; |
|
for (int i = 0; i < 1000; ++i) s.insert(2 * i); |
|
erase_if(s, IsEven); |
|
EXPECT_THAT(s, IsEmpty()); |
|
} |
|
// Test that erase_if supports other format of function pointers. |
|
{ |
|
absl::btree_set<int> s = {1, 3, 5, 6, 100}; |
|
erase_if(s, &IsEven); |
|
EXPECT_THAT(s, ElementsAre(1, 3, 5)); |
|
} |
|
} |
|
|
|
TEST(Btree, InsertOrAssign) { |
|
absl::btree_map<int, int> m = {{1, 1}, {3, 3}}; |
|
using value_type = typename decltype(m)::value_type; |
|
|
|
auto ret = m.insert_or_assign(4, 4); |
|
EXPECT_EQ(*ret.first, value_type(4, 4)); |
|
EXPECT_TRUE(ret.second); |
|
ret = m.insert_or_assign(3, 100); |
|
EXPECT_EQ(*ret.first, value_type(3, 100)); |
|
EXPECT_FALSE(ret.second); |
|
|
|
auto hint_ret = m.insert_or_assign(ret.first, 3, 200); |
|
EXPECT_EQ(*hint_ret, value_type(3, 200)); |
|
hint_ret = m.insert_or_assign(m.find(1), 0, 1); |
|
EXPECT_EQ(*hint_ret, value_type(0, 1)); |
|
// Test with bad hint. |
|
hint_ret = m.insert_or_assign(m.end(), -1, 1); |
|
EXPECT_EQ(*hint_ret, value_type(-1, 1)); |
|
|
|
EXPECT_THAT(m, ElementsAre(Pair(-1, 1), Pair(0, 1), Pair(1, 1), Pair(3, 200), |
|
Pair(4, 4))); |
|
} |
|
|
|
TEST(Btree, InsertOrAssignMovableOnly) { |
|
absl::btree_map<int, MovableOnlyInstance> m; |
|
using value_type = typename decltype(m)::value_type; |
|
|
|
auto ret = m.insert_or_assign(4, MovableOnlyInstance(4)); |
|
EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(4))); |
|
EXPECT_TRUE(ret.second); |
|
ret = m.insert_or_assign(4, MovableOnlyInstance(100)); |
|
EXPECT_EQ(*ret.first, value_type(4, MovableOnlyInstance(100))); |
|
EXPECT_FALSE(ret.second); |
|
|
|
auto hint_ret = m.insert_or_assign(ret.first, 3, MovableOnlyInstance(200)); |
|
EXPECT_EQ(*hint_ret, value_type(3, MovableOnlyInstance(200))); |
|
|
|
EXPECT_EQ(m.size(), 2); |
|
} |
|
|
|
TEST(Btree, BitfieldArgument) { |
|
union { |
|
int n : 1; |
|
}; |
|
n = 0; |
|
absl::btree_map<int, int> m; |
|
m.erase(n); |
|
m.count(n); |
|
m.find(n); |
|
m.contains(n); |
|
m.equal_range(n); |
|
m.insert_or_assign(n, n); |
|
m.insert_or_assign(m.end(), n, n); |
|
m.try_emplace(n); |
|
m.try_emplace(m.end(), n); |
|
m.at(n); |
|
m[n]; |
|
} |
|
|
|
} // namespace |
|
} // namespace container_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|