Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1312 lines
46 KiB
1312 lines
46 KiB
// Copyright 2020 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: cord.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This file defines the `absl::Cord` data structure and operations on that data |
|
// structure. A Cord is a string-like sequence of characters optimized for |
|
// specific use cases. Unlike a `std::string`, which stores an array of |
|
// contiguous characters, Cord data is stored in a structure consisting of |
|
// separate, reference-counted "chunks." (Currently, this implementation is a |
|
// tree structure, though that implementation may change.) |
|
// |
|
// Because a Cord consists of these chunks, data can be added to or removed from |
|
// a Cord during its lifetime. Chunks may also be shared between Cords. Unlike a |
|
// `std::string`, a Cord can therefore accomodate data that changes over its |
|
// lifetime, though it's not quite "mutable"; it can change only in the |
|
// attachment, detachment, or rearrangement of chunks of its constituent data. |
|
// |
|
// A Cord provides some benefit over `std::string` under the following (albeit |
|
// narrow) circumstances: |
|
// |
|
// * Cord data is designed to grow and shrink over a Cord's lifetime. Cord |
|
// provides efficient insertions and deletions at the start and end of the |
|
// character sequences, avoiding copies in those cases. Static data should |
|
// generally be stored as strings. |
|
// * External memory consisting of string-like data can be directly added to |
|
// a Cord without requiring copies or allocations. |
|
// * Cord data may be shared and copied cheaply. Cord provides a copy-on-write |
|
// implementation and cheap sub-Cord operations. Copying a Cord is an O(1) |
|
// operation. |
|
// |
|
// As a consequence to the above, Cord data is generally large. Small data |
|
// should generally use strings, as construction of a Cord requires some |
|
// overhead. Small Cords (<= 15 bytes) are represented inline, but most small |
|
// Cords are expected to grow over their lifetimes. |
|
// |
|
// Note that because a Cord is made up of separate chunked data, random access |
|
// to character data within a Cord is slower than within a `std::string`. |
|
// |
|
// Thread Safety |
|
// |
|
// Cord has the same thread-safety properties as many other types like |
|
// std::string, std::vector<>, int, etc -- it is thread-compatible. In |
|
// particular, if threads do not call non-const methods, then it is safe to call |
|
// const methods without synchronization. Copying a Cord produces a new instance |
|
// that can be used concurrently with the original in arbitrary ways. |
|
|
|
#ifndef ABSL_STRINGS_CORD_H_ |
|
#define ABSL_STRINGS_CORD_H_ |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <iostream> |
|
#include <iterator> |
|
#include <string> |
|
#include <type_traits> |
|
|
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/internal/invoke.h" |
|
#include "absl/base/internal/per_thread_tls.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/inlined_vector.h" |
|
#include "absl/functional/function_ref.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/strings/internal/cord_internal.h" |
|
#include "absl/strings/internal/resize_uninitialized.h" |
|
#include "absl/strings/string_view.h" |
|
#include "absl/types/optional.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
class Cord; |
|
class CordTestPeer; |
|
template <typename Releaser> |
|
Cord MakeCordFromExternal(absl::string_view, Releaser&&); |
|
void CopyCordToString(const Cord& src, std::string* dst); |
|
namespace hash_internal { |
|
template <typename H> |
|
H HashFragmentedCord(H, const Cord&); |
|
} |
|
|
|
// Cord |
|
// |
|
// A Cord is a sequence of characters, designed to be more efficient than a |
|
// `std::string` in certain circumstances: namely, large string data that needs |
|
// to change over its lifetime or shared, especially when such data is shared |
|
// across API boundaries. |
|
// |
|
// A Cord stores its character data in a structure that allows efficient prepend |
|
// and append operations. This makes a Cord useful for large string data sent |
|
// over in a wire format that may need to be prepended or appended at some point |
|
// during the data exchange (e.g. HTTP, protocol buffers). For example, a |
|
// Cord is useful for storing an HTTP request, and prepending an HTTP header to |
|
// such a request. |
|
// |
|
// Cords should not be used for storing general string data, however. They |
|
// require overhead to construct and are slower than strings for random access. |
|
// |
|
// The Cord API provides the following common API operations: |
|
// |
|
// * Create or assign Cords out of existing string data, memory, or other Cords |
|
// * Append and prepend data to an existing Cord |
|
// * Create new Sub-Cords from existing Cord data |
|
// * Swap Cord data and compare Cord equality |
|
// * Write out Cord data by constructing a `std::string` |
|
// |
|
// Additionally, the API provides iterator utilities to iterate through Cord |
|
// data via chunks or character bytes. |
|
// |
|
class Cord { |
|
private: |
|
template <typename T> |
|
using EnableIfString = |
|
absl::enable_if_t<std::is_same<T, std::string>::value, int>; |
|
|
|
public: |
|
// Cord::Cord() Constructors |
|
|
|
// Creates an empty Cord |
|
constexpr Cord() noexcept; |
|
|
|
// Creates a Cord from an existing Cord. Cord is copyable and efficiently |
|
// movable. The moved-from state is valid but unspecified. |
|
Cord(const Cord& src); |
|
Cord(Cord&& src) noexcept; |
|
Cord& operator=(const Cord& x); |
|
Cord& operator=(Cord&& x) noexcept; |
|
|
|
// Creates a Cord from a `src` string. This constructor is marked explicit to |
|
// prevent implicit Cord constructions from arguments convertible to an |
|
// `absl::string_view`. |
|
explicit Cord(absl::string_view src); |
|
Cord& operator=(absl::string_view src); |
|
|
|
// Creates a Cord from a `std::string&&` rvalue. These constructors are |
|
// templated to avoid ambiguities for types that are convertible to both |
|
// `absl::string_view` and `std::string`, such as `const char*`. |
|
// |
|
// Note that these functions reserve the right to use the `string&&`'s |
|
// memory and that they will do so in the future. |
|
template <typename T, EnableIfString<T> = 0> |
|
explicit Cord(T&& src) : Cord(absl::string_view(src)) {} |
|
template <typename T, EnableIfString<T> = 0> |
|
Cord& operator=(T&& src); |
|
|
|
// Cord::~Cord() |
|
// |
|
// Destructs the Cord |
|
~Cord() { |
|
if (contents_.is_tree()) DestroyCordSlow(); |
|
} |
|
|
|
// Cord::MakeCordFromExternal(data, callable) |
|
// |
|
// Creates a Cord that takes ownership of external string memory. The |
|
// contents of `data` are not copied to the Cord; instead, the external |
|
// memory is added to the Cord and reference-counted. This data may not be |
|
// changed for the life of the Cord, though it may be prepended or appended |
|
// to. |
|
// |
|
// `MakeCordFromExternal()` takes a callable "releaser" that is invoked when |
|
// the reference count for `data` reaches zero. As noted above, this data must |
|
// remain live until the releaser is invoked. The callable releaser also must: |
|
// |
|
// * be move constructible |
|
// * support `void operator()(absl::string_view) const` or `void operator()` |
|
// * not have alignment requirement greater than what is guaranteed by |
|
// `::operator new`. This alignment is dictated by |
|
// `alignof(std::max_align_t)` (pre-C++17 code) or |
|
// `__STDCPP_DEFAULT_NEW_ALIGNMENT__` (C++17 code). |
|
// |
|
// Example: |
|
// |
|
// Cord MakeCord(BlockPool* pool) { |
|
// Block* block = pool->NewBlock(); |
|
// FillBlock(block); |
|
// return absl::MakeCordFromExternal( |
|
// block->ToStringView(), |
|
// [pool, block](absl::string_view v) { |
|
// pool->FreeBlock(block, v); |
|
// }); |
|
// } |
|
// |
|
// WARNING: Because a Cord can be reference-counted, it's likely a bug if your |
|
// releaser doesn't do anything. For example, consider the following: |
|
// |
|
// void Foo(const char* buffer, int len) { |
|
// auto c = absl::MakeCordFromExternal(absl::string_view(buffer, len), |
|
// [](absl::string_view) {}); |
|
// |
|
// // BUG: If Bar() copies its cord for any reason, including keeping a |
|
// // substring of it, the lifetime of buffer might be extended beyond |
|
// // when Foo() returns. |
|
// Bar(c); |
|
// } |
|
template <typename Releaser> |
|
friend Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser); |
|
|
|
// Cord::Clear() |
|
// |
|
// Releases the Cord data. Any nodes that share data with other Cords, if |
|
// applicable, will have their reference counts reduced by 1. |
|
void Clear(); |
|
|
|
// Cord::Append() |
|
// |
|
// Appends data to the Cord, which may come from another Cord or other string |
|
// data. |
|
void Append(const Cord& src); |
|
void Append(Cord&& src); |
|
void Append(absl::string_view src); |
|
template <typename T, EnableIfString<T> = 0> |
|
void Append(T&& src); |
|
|
|
// Cord::Prepend() |
|
// |
|
// Prepends data to the Cord, which may come from another Cord or other string |
|
// data. |
|
void Prepend(const Cord& src); |
|
void Prepend(absl::string_view src); |
|
template <typename T, EnableIfString<T> = 0> |
|
void Prepend(T&& src); |
|
|
|
// Cord::RemovePrefix() |
|
// |
|
// Removes the first `n` bytes of a Cord. |
|
void RemovePrefix(size_t n); |
|
void RemoveSuffix(size_t n); |
|
|
|
// Cord::Subcord() |
|
// |
|
// Returns a new Cord representing the subrange [pos, pos + new_size) of |
|
// *this. If pos >= size(), the result is empty(). If |
|
// (pos + new_size) >= size(), the result is the subrange [pos, size()). |
|
Cord Subcord(size_t pos, size_t new_size) const; |
|
|
|
// swap() |
|
// |
|
// Swaps the data of Cord `x` with Cord `y`. |
|
friend void swap(Cord& x, Cord& y) noexcept; |
|
|
|
// Cord::size() |
|
// |
|
// Returns the size of the Cord. |
|
size_t size() const; |
|
|
|
// Cord::empty() |
|
// |
|
// Determines whether the given Cord is empty, returning `true` is so. |
|
bool empty() const; |
|
|
|
// Cord::EstimatedMemoryUsage() |
|
// |
|
// Returns the *approximate* number of bytes held in full or in part by this |
|
// Cord (which may not remain the same between invocations). Note that Cords |
|
// that share memory could each be "charged" independently for the same shared |
|
// memory. |
|
size_t EstimatedMemoryUsage() const; |
|
|
|
// Cord::Compare() |
|
// |
|
// Compares 'this' Cord with rhs. This function and its relatives treat Cords |
|
// as sequences of unsigned bytes. The comparison is a straightforward |
|
// lexicographic comparison. `Cord::Compare()` returns values as follows: |
|
// |
|
// -1 'this' Cord is smaller |
|
// 0 two Cords are equal |
|
// 1 'this' Cord is larger |
|
int Compare(absl::string_view rhs) const; |
|
int Compare(const Cord& rhs) const; |
|
|
|
// Cord::StartsWith() |
|
// |
|
// Determines whether the Cord starts with the passed string data `rhs`. |
|
bool StartsWith(const Cord& rhs) const; |
|
bool StartsWith(absl::string_view rhs) const; |
|
|
|
// Cord::EndsWidth() |
|
// |
|
// Determines whether the Cord ends with the passed string data `rhs`. |
|
bool EndsWith(absl::string_view rhs) const; |
|
bool EndsWith(const Cord& rhs) const; |
|
|
|
// Cord::operator std::string() |
|
// |
|
// Converts a Cord into a `std::string()`. This operator is marked explicit to |
|
// prevent unintended Cord usage in functions that take a string. |
|
explicit operator std::string() const; |
|
|
|
// CopyCordToString() |
|
// |
|
// Copies the contents of a `src` Cord into a `*dst` string. |
|
// |
|
// This function optimizes the case of reusing the destination string since it |
|
// can reuse previously allocated capacity. However, this function does not |
|
// guarantee that pointers previously returned by `dst->data()` remain valid |
|
// even if `*dst` had enough capacity to hold `src`. If `*dst` is a new |
|
// object, prefer to simply use the conversion operator to `std::string`. |
|
friend void CopyCordToString(const Cord& src, std::string* dst); |
|
|
|
class CharIterator; |
|
|
|
//---------------------------------------------------------------------------- |
|
// Cord::ChunkIterator |
|
//---------------------------------------------------------------------------- |
|
// |
|
// A `Cord::ChunkIterator` allows iteration over the constituent chunks of its |
|
// Cord. Such iteration allows you to perform non-const operatons on the data |
|
// of a Cord without modifying it. |
|
// |
|
// Generally, you do not instantiate a `Cord::ChunkIterator` directly; |
|
// instead, you create one implicitly through use of the `Cord::Chunks()` |
|
// member function. |
|
// |
|
// The `Cord::ChunkIterator` has the following properties: |
|
// |
|
// * The iterator is invalidated after any non-const operation on the |
|
// Cord object over which it iterates. |
|
// * The `string_view` returned by dereferencing a valid, non-`end()` |
|
// iterator is guaranteed to be non-empty. |
|
// * Two `ChunkIterator` objects can be compared equal if and only if they |
|
// remain valid and iterate over the same Cord. |
|
// * The iterator in this case is a proxy iterator; the `string_view` |
|
// returned by the iterator does not live inside the Cord, and its |
|
// lifetime is limited to the lifetime of the iterator itself. To help |
|
// prevent lifetime issues, `ChunkIterator::reference` is not a true |
|
// reference type and is equivalent to `value_type`. |
|
// * The iterator keeps state that can grow for Cords that contain many |
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by |
|
// const reference instead of by value. |
|
class ChunkIterator { |
|
public: |
|
using iterator_category = std::input_iterator_tag; |
|
using value_type = absl::string_view; |
|
using difference_type = ptrdiff_t; |
|
using pointer = const value_type*; |
|
using reference = value_type; |
|
|
|
ChunkIterator() = default; |
|
|
|
ChunkIterator& operator++(); |
|
ChunkIterator operator++(int); |
|
bool operator==(const ChunkIterator& other) const; |
|
bool operator!=(const ChunkIterator& other) const; |
|
reference operator*() const; |
|
pointer operator->() const; |
|
|
|
friend class Cord; |
|
friend class CharIterator; |
|
|
|
private: |
|
// Constructs a `begin()` iterator from `cord`. |
|
explicit ChunkIterator(const Cord* cord); |
|
|
|
// Removes `n` bytes from `current_chunk_`. Expects `n` to be smaller than |
|
// `current_chunk_.size()`. |
|
void RemoveChunkPrefix(size_t n); |
|
Cord AdvanceAndReadBytes(size_t n); |
|
void AdvanceBytes(size_t n); |
|
// Iterates `n` bytes, where `n` is expected to be greater than or equal to |
|
// `current_chunk_.size()`. |
|
void AdvanceBytesSlowPath(size_t n); |
|
|
|
// A view into bytes of the current `CordRep`. It may only be a view to a |
|
// suffix of bytes if this is being used by `CharIterator`. |
|
absl::string_view current_chunk_; |
|
// The current leaf, or `nullptr` if the iterator points to short data. |
|
// If the current chunk is a substring node, current_leaf_ points to the |
|
// underlying flat or external node. |
|
absl::cord_internal::CordRep* current_leaf_ = nullptr; |
|
// The number of bytes left in the `Cord` over which we are iterating. |
|
size_t bytes_remaining_ = 0; |
|
absl::InlinedVector<absl::cord_internal::CordRep*, 4> |
|
stack_of_right_children_; |
|
}; |
|
|
|
// Cord::ChunkIterator::chunk_begin() |
|
// |
|
// Returns an iterator to the first chunk of the `Cord`. |
|
// |
|
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for |
|
// iterating over the chunks of a Cord. This method may be useful for getting |
|
// a `ChunkIterator` where range-based for-loops are not useful. |
|
// |
|
// Example: |
|
// |
|
// absl::Cord::ChunkIterator FindAsChunk(const absl::Cord& c, |
|
// absl::string_view s) { |
|
// return std::find(c.chunk_begin(), c.chunk_end(), s); |
|
// } |
|
ChunkIterator chunk_begin() const; |
|
|
|
// Cord::ChunkItertator::chunk_end() |
|
// |
|
// Returns an iterator one increment past the last chunk of the `Cord`. |
|
// |
|
// Generally, prefer using `Cord::Chunks()` within a range-based for loop for |
|
// iterating over the chunks of a Cord. This method may be useful for getting |
|
// a `ChunkIterator` where range-based for-loops may not be available. |
|
ChunkIterator chunk_end() const; |
|
|
|
//---------------------------------------------------------------------------- |
|
// Cord::ChunkIterator::ChunkRange |
|
//---------------------------------------------------------------------------- |
|
// |
|
// `ChunkRange` is a helper class for iterating over the chunks of the `Cord`, |
|
// producing an iterator which can be used within a range-based for loop. |
|
// Construction of a `ChunkRange` will return an iterator pointing to the |
|
// first chunk of the Cord. Generally, do not construct a `ChunkRange` |
|
// directly; instead, prefer to use the `Cord::Chunks()` method. |
|
// |
|
// Implementation note: `ChunkRange` is simply a convenience wrapper over |
|
// `Cord::chunk_begin()` and `Cord::chunk_end()`. |
|
class ChunkRange { |
|
public: |
|
explicit ChunkRange(const Cord* cord) : cord_(cord) {} |
|
|
|
ChunkIterator begin() const; |
|
ChunkIterator end() const; |
|
|
|
private: |
|
const Cord* cord_; |
|
}; |
|
|
|
// Cord::Chunks() |
|
// |
|
// Returns a `Cord::ChunkIterator::ChunkRange` for iterating over the chunks |
|
// of a `Cord` with a range-based for-loop. For most iteration tasks on a |
|
// Cord, use `Cord::Chunks()` to retrieve this iterator. |
|
// |
|
// Example: |
|
// |
|
// void ProcessChunks(const Cord& cord) { |
|
// for (absl::string_view chunk : cord.Chunks()) { ... } |
|
// } |
|
// |
|
// Note that the ordinary caveats of temporary lifetime extension apply: |
|
// |
|
// void Process() { |
|
// for (absl::string_view chunk : CordFactory().Chunks()) { |
|
// // The temporary Cord returned by CordFactory has been destroyed! |
|
// } |
|
// } |
|
ChunkRange Chunks() const; |
|
|
|
//---------------------------------------------------------------------------- |
|
// Cord::CharIterator |
|
//---------------------------------------------------------------------------- |
|
// |
|
// A `Cord::CharIterator` allows iteration over the constituent characters of |
|
// a `Cord`. |
|
// |
|
// Generally, you do not instantiate a `Cord::CharIterator` directly; instead, |
|
// you create one implicitly through use of the `Cord::Chars()` member |
|
// function. |
|
// |
|
// A `Cord::CharIterator` has the following properties: |
|
// |
|
// * The iterator is invalidated after any non-const operation on the |
|
// Cord object over which it iterates. |
|
// * Two `CharIterator` objects can be compared equal if and only if they |
|
// remain valid and iterate over the same Cord. |
|
// * The iterator keeps state that can grow for Cords that contain many |
|
// nodes and are imbalanced due to sharing. Prefer to pass this type by |
|
// const reference instead of by value. |
|
// * This type cannot act as a forward iterator because a `Cord` can reuse |
|
// sections of memory. This fact violates the requirement for forward |
|
// iterators to compare equal if dereferencing them returns the same |
|
// object. |
|
class CharIterator { |
|
public: |
|
using iterator_category = std::input_iterator_tag; |
|
using value_type = char; |
|
using difference_type = ptrdiff_t; |
|
using pointer = const char*; |
|
using reference = const char&; |
|
|
|
CharIterator() = default; |
|
|
|
CharIterator& operator++(); |
|
CharIterator operator++(int); |
|
bool operator==(const CharIterator& other) const; |
|
bool operator!=(const CharIterator& other) const; |
|
reference operator*() const; |
|
pointer operator->() const; |
|
|
|
friend Cord; |
|
|
|
private: |
|
explicit CharIterator(const Cord* cord) : chunk_iterator_(cord) {} |
|
|
|
ChunkIterator chunk_iterator_; |
|
}; |
|
|
|
// Cord::CharIterator::AdvanceAndRead() |
|
// |
|
// Advances the `Cord::CharIterator` by `n_bytes` and returns the bytes |
|
// advanced as a separate `Cord`. `n_bytes` must be less than or equal to the |
|
// number of bytes within the Cord; otherwise, behavior is undefined. It is |
|
// valid to pass `char_end()` and `0`. |
|
static Cord AdvanceAndRead(CharIterator* it, size_t n_bytes); |
|
|
|
// Cord::CharIterator::Advance() |
|
// |
|
// Advances the `Cord::CharIterator` by `n_bytes`. `n_bytes` must be less than |
|
// or equal to the number of bytes remaining within the Cord; otherwise, |
|
// behavior is undefined. It is valid to pass `char_end()` and `0`. |
|
static void Advance(CharIterator* it, size_t n_bytes); |
|
|
|
// Cord::CharIterator::ChunkRemaining() |
|
// |
|
// Returns the longest contiguous view starting at the iterator's position. |
|
// |
|
// `it` must be dereferenceable. |
|
static absl::string_view ChunkRemaining(const CharIterator& it); |
|
|
|
// Cord::CharIterator::char_begin() |
|
// |
|
// Returns an iterator to the first character of the `Cord`. |
|
// |
|
// Generally, prefer using `Cord::Chars()` within a range-based for loop for |
|
// iterating over the chunks of a Cord. This method may be useful for getting |
|
// a `CharIterator` where range-based for-loops may not be available. |
|
CharIterator char_begin() const; |
|
|
|
// Cord::CharIterator::char_end() |
|
// |
|
// Returns an iterator to one past the last character of the `Cord`. |
|
// |
|
// Generally, prefer using `Cord::Chars()` within a range-based for loop for |
|
// iterating over the chunks of a Cord. This method may be useful for getting |
|
// a `CharIterator` where range-based for-loops are not useful. |
|
CharIterator char_end() const; |
|
|
|
// Cord::CharIterator::CharRange |
|
// |
|
// `CharRange` is a helper class for iterating over the characters of a |
|
// producing an iterator which can be used within a range-based for loop. |
|
// Construction of a `CharRange` will return an iterator pointing to the first |
|
// character of the Cord. Generally, do not construct a `CharRange` directly; |
|
// instead, prefer to use the `Cord::Chars()` method show below. |
|
// |
|
// Implementation note: `CharRange` is simply a convenience wrapper over |
|
// `Cord::char_begin()` and `Cord::char_end()`. |
|
class CharRange { |
|
public: |
|
explicit CharRange(const Cord* cord) : cord_(cord) {} |
|
|
|
CharIterator begin() const; |
|
CharIterator end() const; |
|
|
|
private: |
|
const Cord* cord_; |
|
}; |
|
|
|
// Cord::CharIterator::Chars() |
|
// |
|
// Returns a `Cord::CharIterator` for iterating over the characters of a |
|
// `Cord` with a range-based for-loop. For most character-based iteration |
|
// tasks on a Cord, use `Cord::Chars()` to retrieve this iterator. |
|
// |
|
// Example: |
|
// |
|
// void ProcessCord(const Cord& cord) { |
|
// for (char c : cord.Chars()) { ... } |
|
// } |
|
// |
|
// Note that the ordinary caveats of temporary lifetime extension apply: |
|
// |
|
// void Process() { |
|
// for (char c : CordFactory().Chars()) { |
|
// // The temporary Cord returned by CordFactory has been destroyed! |
|
// } |
|
// } |
|
CharRange Chars() const; |
|
|
|
// Cord::operator[] |
|
// |
|
// Get the "i"th character of the Cord and returns it, provided that |
|
// 0 <= i < Cord.size(). |
|
// |
|
// NOTE: This routine is reasonably efficient. It is roughly |
|
// logarithmic based on the number of chunks that make up the cord. Still, |
|
// if you need to iterate over the contents of a cord, you should |
|
// use a CharIterator/ChunkIterator rather than call operator[] or Get() |
|
// repeatedly in a loop. |
|
char operator[](size_t i) const; |
|
|
|
// Cord::TryFlat() |
|
// |
|
// If this cord's representation is a single flat array, return a |
|
// string_view referencing that array. Otherwise return nullopt. |
|
absl::optional<absl::string_view> TryFlat() const; |
|
|
|
// Cord::Flatten() |
|
// |
|
// Flattens the cord into a single array and returns a view of the data. |
|
// |
|
// If the cord was already flat, the contents are not modified. |
|
absl::string_view Flatten(); |
|
|
|
private: |
|
friend class CordTestPeer; |
|
template <typename H> |
|
friend H absl::hash_internal::HashFragmentedCord(H, const Cord&); |
|
friend bool operator==(const Cord& lhs, const Cord& rhs); |
|
friend bool operator==(const Cord& lhs, absl::string_view rhs); |
|
|
|
// Call the provided function once for each cord chunk, in order. Unlike |
|
// Chunks(), this API will not allocate memory. |
|
void ForEachChunk(absl::FunctionRef<void(absl::string_view)>) const; |
|
|
|
// Allocates new contiguous storage for the contents of the cord. This is |
|
// called by Flatten() when the cord was not already flat. |
|
absl::string_view FlattenSlowPath(); |
|
|
|
// Actual cord contents are hidden inside the following simple |
|
// class so that we can isolate the bulk of cord.cc from changes |
|
// to the representation. |
|
// |
|
// InlineRep holds either a tree pointer, or an array of kMaxInline bytes. |
|
class InlineRep { |
|
public: |
|
static const unsigned char kMaxInline = 15; |
|
static_assert(kMaxInline >= sizeof(absl::cord_internal::CordRep*), ""); |
|
// Tag byte & kMaxInline means we are storing a pointer. |
|
static const unsigned char kTreeFlag = 1 << 4; |
|
// Tag byte & kProfiledFlag means we are profiling the Cord. |
|
static const unsigned char kProfiledFlag = 1 << 5; |
|
|
|
constexpr InlineRep() : data_{} {} |
|
InlineRep(const InlineRep& src); |
|
InlineRep(InlineRep&& src); |
|
InlineRep& operator=(const InlineRep& src); |
|
InlineRep& operator=(InlineRep&& src) noexcept; |
|
|
|
void Swap(InlineRep* rhs); |
|
bool empty() const; |
|
size_t size() const; |
|
const char* data() const; // Returns nullptr if holding pointer |
|
void set_data(const char* data, size_t n, |
|
bool nullify_tail); // Discards pointer, if any |
|
char* set_data(size_t n); // Write data to the result |
|
// Returns nullptr if holding bytes |
|
absl::cord_internal::CordRep* tree() const; |
|
// Discards old pointer, if any |
|
void set_tree(absl::cord_internal::CordRep* rep); |
|
// Replaces a tree with a new root. This is faster than set_tree, but it |
|
// should only be used when it's clear that the old rep was a tree. |
|
void replace_tree(absl::cord_internal::CordRep* rep); |
|
// Returns non-null iff was holding a pointer |
|
absl::cord_internal::CordRep* clear(); |
|
// Convert to pointer if necessary |
|
absl::cord_internal::CordRep* force_tree(size_t extra_hint); |
|
void reduce_size(size_t n); // REQUIRES: holding data |
|
void remove_prefix(size_t n); // REQUIRES: holding data |
|
void AppendArray(const char* src_data, size_t src_size); |
|
absl::string_view FindFlatStartPiece() const; |
|
void AppendTree(absl::cord_internal::CordRep* tree); |
|
void PrependTree(absl::cord_internal::CordRep* tree); |
|
void GetAppendRegion(char** region, size_t* size, size_t max_length); |
|
void GetAppendRegion(char** region, size_t* size); |
|
bool IsSame(const InlineRep& other) const { |
|
return memcmp(data_, other.data_, sizeof(data_)) == 0; |
|
} |
|
int BitwiseCompare(const InlineRep& other) const { |
|
uint64_t x, y; |
|
// Use memcpy to avoid anti-aliasing issues. |
|
memcpy(&x, data_, sizeof(x)); |
|
memcpy(&y, other.data_, sizeof(y)); |
|
if (x == y) { |
|
memcpy(&x, data_ + 8, sizeof(x)); |
|
memcpy(&y, other.data_ + 8, sizeof(y)); |
|
if (x == y) return 0; |
|
} |
|
return absl::big_endian::FromHost64(x) < absl::big_endian::FromHost64(y) |
|
? -1 |
|
: 1; |
|
} |
|
void CopyTo(std::string* dst) const { |
|
// memcpy is much faster when operating on a known size. On most supported |
|
// platforms, the small string optimization is large enough that resizing |
|
// to 15 bytes does not cause a memory allocation. |
|
absl::strings_internal::STLStringResizeUninitialized(dst, |
|
sizeof(data_) - 1); |
|
memcpy(&(*dst)[0], data_, sizeof(data_) - 1); |
|
// erase is faster than resize because the logic for memory allocation is |
|
// not needed. |
|
dst->erase(data_[kMaxInline]); |
|
} |
|
|
|
// Copies the inline contents into `dst`. Assumes the cord is not empty. |
|
void CopyToArray(char* dst) const; |
|
|
|
bool is_tree() const { return data_[kMaxInline] > kMaxInline; } |
|
|
|
private: |
|
friend class Cord; |
|
|
|
void AssignSlow(const InlineRep& src); |
|
// Unrefs the tree, stops profiling, and zeroes the contents |
|
void ClearSlow(); |
|
|
|
// If the data has length <= kMaxInline, we store it in data_[0..len-1], |
|
// and store the length in data_[kMaxInline]. Else we store it in a tree |
|
// and store a pointer to that tree in data_[0..sizeof(CordRep*)-1]. |
|
alignas(absl::cord_internal::CordRep*) char data_[kMaxInline + 1]; |
|
}; |
|
InlineRep contents_; |
|
|
|
// Helper for MemoryUsage() |
|
static size_t MemoryUsageAux(const absl::cord_internal::CordRep* rep); |
|
|
|
// Helper for GetFlat() and TryFlat() |
|
static bool GetFlatAux(absl::cord_internal::CordRep* rep, |
|
absl::string_view* fragment); |
|
|
|
// Helper for ForEachChunk() |
|
static void ForEachChunkAux( |
|
absl::cord_internal::CordRep* rep, |
|
absl::FunctionRef<void(absl::string_view)> callback); |
|
|
|
// The destructor for non-empty Cords. |
|
void DestroyCordSlow(); |
|
|
|
// Out-of-line implementation of slower parts of logic. |
|
void CopyToArraySlowPath(char* dst) const; |
|
int CompareSlowPath(absl::string_view rhs, size_t compared_size, |
|
size_t size_to_compare) const; |
|
int CompareSlowPath(const Cord& rhs, size_t compared_size, |
|
size_t size_to_compare) const; |
|
bool EqualsImpl(absl::string_view rhs, size_t size_to_compare) const; |
|
bool EqualsImpl(const Cord& rhs, size_t size_to_compare) const; |
|
int CompareImpl(const Cord& rhs) const; |
|
|
|
template <typename ResultType, typename RHS> |
|
friend ResultType GenericCompare(const Cord& lhs, const RHS& rhs, |
|
size_t size_to_compare); |
|
static absl::string_view GetFirstChunk(const Cord& c); |
|
static absl::string_view GetFirstChunk(absl::string_view sv); |
|
|
|
// Returns a new reference to contents_.tree(), or steals an existing |
|
// reference if called on an rvalue. |
|
absl::cord_internal::CordRep* TakeRep() const&; |
|
absl::cord_internal::CordRep* TakeRep() &&; |
|
|
|
// Helper for Append() |
|
template <typename C> |
|
void AppendImpl(C&& src); |
|
}; |
|
|
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
|
|
// allow a Cord to be logged |
|
extern std::ostream& operator<<(std::ostream& out, const Cord& cord); |
|
|
|
// ------------------------------------------------------------------ |
|
// Internal details follow. Clients should ignore. |
|
|
|
namespace cord_internal { |
|
|
|
// Fast implementation of memmove for up to 15 bytes. This implementation is |
|
// safe for overlapping regions. If nullify_tail is true, the destination is |
|
// padded with '\0' up to 16 bytes. |
|
inline void SmallMemmove(char* dst, const char* src, size_t n, |
|
bool nullify_tail = false) { |
|
if (n >= 8) { |
|
assert(n <= 16); |
|
uint64_t buf1; |
|
uint64_t buf2; |
|
memcpy(&buf1, src, 8); |
|
memcpy(&buf2, src + n - 8, 8); |
|
if (nullify_tail) { |
|
memset(dst + 8, 0, 8); |
|
} |
|
memcpy(dst, &buf1, 8); |
|
memcpy(dst + n - 8, &buf2, 8); |
|
} else if (n >= 4) { |
|
uint32_t buf1; |
|
uint32_t buf2; |
|
memcpy(&buf1, src, 4); |
|
memcpy(&buf2, src + n - 4, 4); |
|
if (nullify_tail) { |
|
memset(dst + 4, 0, 4); |
|
memset(dst + 8, 0, 8); |
|
} |
|
memcpy(dst, &buf1, 4); |
|
memcpy(dst + n - 4, &buf2, 4); |
|
} else { |
|
if (n != 0) { |
|
dst[0] = src[0]; |
|
dst[n / 2] = src[n / 2]; |
|
dst[n - 1] = src[n - 1]; |
|
} |
|
if (nullify_tail) { |
|
memset(dst + 8, 0, 8); |
|
memset(dst + n, 0, 8); |
|
} |
|
} |
|
} |
|
|
|
struct ExternalRepReleaserPair { |
|
CordRep* rep; |
|
void* releaser_address; |
|
}; |
|
|
|
// Allocates a new external `CordRep` and returns a pointer to it and a pointer |
|
// to `releaser_size` bytes where the desired releaser can be constructed. |
|
// Expects `data` to be non-empty. |
|
ExternalRepReleaserPair NewExternalWithUninitializedReleaser( |
|
absl::string_view data, ExternalReleaserInvoker invoker, |
|
size_t releaser_size); |
|
|
|
struct Rank1 {}; |
|
struct Rank0 : Rank1 {}; |
|
|
|
template <typename Releaser, typename = ::absl::base_internal::InvokeT< |
|
Releaser, absl::string_view>> |
|
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) { |
|
::absl::base_internal::Invoke(std::forward<Releaser>(releaser), data); |
|
} |
|
|
|
template <typename Releaser, |
|
typename = ::absl::base_internal::InvokeT<Releaser>> |
|
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) { |
|
::absl::base_internal::Invoke(std::forward<Releaser>(releaser)); |
|
} |
|
|
|
// Creates a new `CordRep` that owns `data` and `releaser` and returns a pointer |
|
// to it, or `nullptr` if `data` was empty. |
|
template <typename Releaser> |
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
|
CordRep* NewExternalRep(absl::string_view data, Releaser&& releaser) { |
|
static_assert( |
|
#if defined(__STDCPP_DEFAULT_NEW_ALIGNMENT__) |
|
alignof(Releaser) <= __STDCPP_DEFAULT_NEW_ALIGNMENT__, |
|
#else |
|
alignof(Releaser) <= alignof(max_align_t), |
|
#endif |
|
"Releasers with alignment requirement greater than what is returned by " |
|
"default `::operator new()` are not supported."); |
|
|
|
using ReleaserType = absl::decay_t<Releaser>; |
|
if (data.empty()) { |
|
// Never create empty external nodes. |
|
InvokeReleaser(Rank0{}, ReleaserType(std::forward<Releaser>(releaser)), |
|
data); |
|
return nullptr; |
|
} |
|
|
|
auto releaser_invoker = [](void* type_erased_releaser, absl::string_view d) { |
|
auto* my_releaser = static_cast<ReleaserType*>(type_erased_releaser); |
|
InvokeReleaser(Rank0{}, std::move(*my_releaser), d); |
|
my_releaser->~ReleaserType(); |
|
return sizeof(Releaser); |
|
}; |
|
|
|
ExternalRepReleaserPair external = NewExternalWithUninitializedReleaser( |
|
data, releaser_invoker, sizeof(releaser)); |
|
::new (external.releaser_address) |
|
ReleaserType(std::forward<Releaser>(releaser)); |
|
return external.rep; |
|
} |
|
|
|
// Overload for function reference types that dispatches using a function |
|
// pointer because there are no `alignof()` or `sizeof()` a function reference. |
|
// NOLINTNEXTLINE - suppress clang-tidy raw pointer return. |
|
inline CordRep* NewExternalRep(absl::string_view data, |
|
void (&releaser)(absl::string_view)) { |
|
return NewExternalRep(data, &releaser); |
|
} |
|
|
|
} // namespace cord_internal |
|
|
|
template <typename Releaser> |
|
Cord MakeCordFromExternal(absl::string_view data, Releaser&& releaser) { |
|
Cord cord; |
|
cord.contents_.set_tree(::absl::cord_internal::NewExternalRep( |
|
data, std::forward<Releaser>(releaser))); |
|
return cord; |
|
} |
|
|
|
inline Cord::InlineRep::InlineRep(const Cord::InlineRep& src) { |
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); |
|
} |
|
|
|
inline Cord::InlineRep::InlineRep(Cord::InlineRep&& src) { |
|
memcpy(data_, src.data_, sizeof(data_)); |
|
memset(src.data_, 0, sizeof(data_)); |
|
} |
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=(const Cord::InlineRep& src) { |
|
if (this == &src) { |
|
return *this; |
|
} |
|
if (!is_tree() && !src.is_tree()) { |
|
cord_internal::SmallMemmove(data_, src.data_, sizeof(data_)); |
|
return *this; |
|
} |
|
AssignSlow(src); |
|
return *this; |
|
} |
|
|
|
inline Cord::InlineRep& Cord::InlineRep::operator=( |
|
Cord::InlineRep&& src) noexcept { |
|
if (is_tree()) { |
|
ClearSlow(); |
|
} |
|
memcpy(data_, src.data_, sizeof(data_)); |
|
memset(src.data_, 0, sizeof(data_)); |
|
return *this; |
|
} |
|
|
|
inline void Cord::InlineRep::Swap(Cord::InlineRep* rhs) { |
|
if (rhs == this) { |
|
return; |
|
} |
|
|
|
Cord::InlineRep tmp; |
|
cord_internal::SmallMemmove(tmp.data_, data_, sizeof(data_)); |
|
cord_internal::SmallMemmove(data_, rhs->data_, sizeof(data_)); |
|
cord_internal::SmallMemmove(rhs->data_, tmp.data_, sizeof(data_)); |
|
} |
|
|
|
inline const char* Cord::InlineRep::data() const { |
|
return is_tree() ? nullptr : data_; |
|
} |
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::tree() const { |
|
if (is_tree()) { |
|
absl::cord_internal::CordRep* rep; |
|
memcpy(&rep, data_, sizeof(rep)); |
|
return rep; |
|
} else { |
|
return nullptr; |
|
} |
|
} |
|
|
|
inline bool Cord::InlineRep::empty() const { return data_[kMaxInline] == 0; } |
|
|
|
inline size_t Cord::InlineRep::size() const { |
|
const char tag = data_[kMaxInline]; |
|
if (tag <= kMaxInline) return tag; |
|
return static_cast<size_t>(tree()->length); |
|
} |
|
|
|
inline void Cord::InlineRep::set_tree(absl::cord_internal::CordRep* rep) { |
|
if (rep == nullptr) { |
|
memset(data_, 0, sizeof(data_)); |
|
} else { |
|
bool was_tree = is_tree(); |
|
memcpy(data_, &rep, sizeof(rep)); |
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); |
|
if (!was_tree) { |
|
data_[kMaxInline] = kTreeFlag; |
|
} |
|
} |
|
} |
|
|
|
inline void Cord::InlineRep::replace_tree(absl::cord_internal::CordRep* rep) { |
|
ABSL_ASSERT(is_tree()); |
|
if (ABSL_PREDICT_FALSE(rep == nullptr)) { |
|
set_tree(rep); |
|
return; |
|
} |
|
memcpy(data_, &rep, sizeof(rep)); |
|
memset(data_ + sizeof(rep), 0, sizeof(data_) - sizeof(rep) - 1); |
|
} |
|
|
|
inline absl::cord_internal::CordRep* Cord::InlineRep::clear() { |
|
const char tag = data_[kMaxInline]; |
|
absl::cord_internal::CordRep* result = nullptr; |
|
if (tag > kMaxInline) { |
|
memcpy(&result, data_, sizeof(result)); |
|
} |
|
memset(data_, 0, sizeof(data_)); // Clear the cord |
|
return result; |
|
} |
|
|
|
inline void Cord::InlineRep::CopyToArray(char* dst) const { |
|
assert(!is_tree()); |
|
size_t n = data_[kMaxInline]; |
|
assert(n != 0); |
|
cord_internal::SmallMemmove(dst, data_, n); |
|
} |
|
|
|
constexpr inline Cord::Cord() noexcept {} |
|
|
|
inline Cord& Cord::operator=(const Cord& x) { |
|
contents_ = x.contents_; |
|
return *this; |
|
} |
|
|
|
inline Cord::Cord(Cord&& src) noexcept : contents_(std::move(src.contents_)) {} |
|
|
|
inline Cord& Cord::operator=(Cord&& x) noexcept { |
|
contents_ = std::move(x.contents_); |
|
return *this; |
|
} |
|
|
|
template <typename T, Cord::EnableIfString<T>> |
|
inline Cord& Cord::operator=(T&& src) { |
|
*this = absl::string_view(src); |
|
return *this; |
|
} |
|
|
|
inline size_t Cord::size() const { |
|
// Length is 1st field in str.rep_ |
|
return contents_.size(); |
|
} |
|
|
|
inline bool Cord::empty() const { return contents_.empty(); } |
|
|
|
inline size_t Cord::EstimatedMemoryUsage() const { |
|
size_t result = sizeof(Cord); |
|
if (const absl::cord_internal::CordRep* rep = contents_.tree()) { |
|
result += MemoryUsageAux(rep); |
|
} |
|
return result; |
|
} |
|
|
|
inline absl::optional<absl::string_view> Cord::TryFlat() const { |
|
absl::cord_internal::CordRep* rep = contents_.tree(); |
|
if (rep == nullptr) { |
|
return absl::string_view(contents_.data(), contents_.size()); |
|
} |
|
absl::string_view fragment; |
|
if (GetFlatAux(rep, &fragment)) { |
|
return fragment; |
|
} |
|
return absl::nullopt; |
|
} |
|
|
|
inline absl::string_view Cord::Flatten() { |
|
absl::cord_internal::CordRep* rep = contents_.tree(); |
|
if (rep == nullptr) { |
|
return absl::string_view(contents_.data(), contents_.size()); |
|
} else { |
|
absl::string_view already_flat_contents; |
|
if (GetFlatAux(rep, &already_flat_contents)) { |
|
return already_flat_contents; |
|
} |
|
} |
|
return FlattenSlowPath(); |
|
} |
|
|
|
inline void Cord::Append(absl::string_view src) { |
|
contents_.AppendArray(src.data(), src.size()); |
|
} |
|
|
|
template <typename T, Cord::EnableIfString<T>> |
|
inline void Cord::Append(T&& src) { |
|
// Note that this function reserves the right to reuse the `string&&`'s |
|
// memory and that it will do so in the future. |
|
Append(absl::string_view(src)); |
|
} |
|
|
|
template <typename T, Cord::EnableIfString<T>> |
|
inline void Cord::Prepend(T&& src) { |
|
// Note that this function reserves the right to reuse the `string&&`'s |
|
// memory and that it will do so in the future. |
|
Prepend(absl::string_view(src)); |
|
} |
|
|
|
inline int Cord::Compare(const Cord& rhs) const { |
|
if (!contents_.is_tree() && !rhs.contents_.is_tree()) { |
|
return contents_.BitwiseCompare(rhs.contents_); |
|
} |
|
|
|
return CompareImpl(rhs); |
|
} |
|
|
|
// Does 'this' cord start/end with rhs |
|
inline bool Cord::StartsWith(const Cord& rhs) const { |
|
if (contents_.IsSame(rhs.contents_)) return true; |
|
size_t rhs_size = rhs.size(); |
|
if (size() < rhs_size) return false; |
|
return EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline bool Cord::StartsWith(absl::string_view rhs) const { |
|
size_t rhs_size = rhs.size(); |
|
if (size() < rhs_size) return false; |
|
return EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline Cord::ChunkIterator::ChunkIterator(const Cord* cord) |
|
: bytes_remaining_(cord->size()) { |
|
if (cord->empty()) return; |
|
if (cord->contents_.is_tree()) { |
|
stack_of_right_children_.push_back(cord->contents_.tree()); |
|
operator++(); |
|
} else { |
|
current_chunk_ = absl::string_view(cord->contents_.data(), cord->size()); |
|
} |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::ChunkIterator::operator++(int) { |
|
ChunkIterator tmp(*this); |
|
operator++(); |
|
return tmp; |
|
} |
|
|
|
inline bool Cord::ChunkIterator::operator==(const ChunkIterator& other) const { |
|
return bytes_remaining_ == other.bytes_remaining_; |
|
} |
|
|
|
inline bool Cord::ChunkIterator::operator!=(const ChunkIterator& other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline Cord::ChunkIterator::reference Cord::ChunkIterator::operator*() const { |
|
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); |
|
return current_chunk_; |
|
} |
|
|
|
inline Cord::ChunkIterator::pointer Cord::ChunkIterator::operator->() const { |
|
ABSL_HARDENING_ASSERT(bytes_remaining_ != 0); |
|
return ¤t_chunk_; |
|
} |
|
|
|
inline void Cord::ChunkIterator::RemoveChunkPrefix(size_t n) { |
|
assert(n < current_chunk_.size()); |
|
current_chunk_.remove_prefix(n); |
|
bytes_remaining_ -= n; |
|
} |
|
|
|
inline void Cord::ChunkIterator::AdvanceBytes(size_t n) { |
|
if (ABSL_PREDICT_TRUE(n < current_chunk_.size())) { |
|
RemoveChunkPrefix(n); |
|
} else if (n != 0) { |
|
AdvanceBytesSlowPath(n); |
|
} |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::chunk_begin() const { |
|
return ChunkIterator(this); |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::chunk_end() const { return ChunkIterator(); } |
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::begin() const { |
|
return cord_->chunk_begin(); |
|
} |
|
|
|
inline Cord::ChunkIterator Cord::ChunkRange::end() const { |
|
return cord_->chunk_end(); |
|
} |
|
|
|
inline Cord::ChunkRange Cord::Chunks() const { return ChunkRange(this); } |
|
|
|
inline Cord::CharIterator& Cord::CharIterator::operator++() { |
|
if (ABSL_PREDICT_TRUE(chunk_iterator_->size() > 1)) { |
|
chunk_iterator_.RemoveChunkPrefix(1); |
|
} else { |
|
++chunk_iterator_; |
|
} |
|
return *this; |
|
} |
|
|
|
inline Cord::CharIterator Cord::CharIterator::operator++(int) { |
|
CharIterator tmp(*this); |
|
operator++(); |
|
return tmp; |
|
} |
|
|
|
inline bool Cord::CharIterator::operator==(const CharIterator& other) const { |
|
return chunk_iterator_ == other.chunk_iterator_; |
|
} |
|
|
|
inline bool Cord::CharIterator::operator!=(const CharIterator& other) const { |
|
return !(*this == other); |
|
} |
|
|
|
inline Cord::CharIterator::reference Cord::CharIterator::operator*() const { |
|
return *chunk_iterator_->data(); |
|
} |
|
|
|
inline Cord::CharIterator::pointer Cord::CharIterator::operator->() const { |
|
return chunk_iterator_->data(); |
|
} |
|
|
|
inline Cord Cord::AdvanceAndRead(CharIterator* it, size_t n_bytes) { |
|
assert(it != nullptr); |
|
return it->chunk_iterator_.AdvanceAndReadBytes(n_bytes); |
|
} |
|
|
|
inline void Cord::Advance(CharIterator* it, size_t n_bytes) { |
|
assert(it != nullptr); |
|
it->chunk_iterator_.AdvanceBytes(n_bytes); |
|
} |
|
|
|
inline absl::string_view Cord::ChunkRemaining(const CharIterator& it) { |
|
return *it.chunk_iterator_; |
|
} |
|
|
|
inline Cord::CharIterator Cord::char_begin() const { |
|
return CharIterator(this); |
|
} |
|
|
|
inline Cord::CharIterator Cord::char_end() const { return CharIterator(); } |
|
|
|
inline Cord::CharIterator Cord::CharRange::begin() const { |
|
return cord_->char_begin(); |
|
} |
|
|
|
inline Cord::CharIterator Cord::CharRange::end() const { |
|
return cord_->char_end(); |
|
} |
|
|
|
inline Cord::CharRange Cord::Chars() const { return CharRange(this); } |
|
|
|
inline void Cord::ForEachChunk( |
|
absl::FunctionRef<void(absl::string_view)> callback) const { |
|
absl::cord_internal::CordRep* rep = contents_.tree(); |
|
if (rep == nullptr) { |
|
callback(absl::string_view(contents_.data(), contents_.size())); |
|
} else { |
|
return ForEachChunkAux(rep, callback); |
|
} |
|
} |
|
|
|
// Nonmember Cord-to-Cord relational operarators. |
|
inline bool operator==(const Cord& lhs, const Cord& rhs) { |
|
if (lhs.contents_.IsSame(rhs.contents_)) return true; |
|
size_t rhs_size = rhs.size(); |
|
if (lhs.size() != rhs_size) return false; |
|
return lhs.EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline bool operator!=(const Cord& x, const Cord& y) { return !(x == y); } |
|
inline bool operator<(const Cord& x, const Cord& y) { |
|
return x.Compare(y) < 0; |
|
} |
|
inline bool operator>(const Cord& x, const Cord& y) { |
|
return x.Compare(y) > 0; |
|
} |
|
inline bool operator<=(const Cord& x, const Cord& y) { |
|
return x.Compare(y) <= 0; |
|
} |
|
inline bool operator>=(const Cord& x, const Cord& y) { |
|
return x.Compare(y) >= 0; |
|
} |
|
|
|
// Nonmember Cord-to-absl::string_view relational operators. |
|
// |
|
// Due to implicit conversions, these also enable comparisons of Cord with |
|
// with std::string, ::string, and const char*. |
|
inline bool operator==(const Cord& lhs, absl::string_view rhs) { |
|
size_t lhs_size = lhs.size(); |
|
size_t rhs_size = rhs.size(); |
|
if (lhs_size != rhs_size) return false; |
|
return lhs.EqualsImpl(rhs, rhs_size); |
|
} |
|
|
|
inline bool operator==(absl::string_view x, const Cord& y) { return y == x; } |
|
inline bool operator!=(const Cord& x, absl::string_view y) { return !(x == y); } |
|
inline bool operator!=(absl::string_view x, const Cord& y) { return !(x == y); } |
|
inline bool operator<(const Cord& x, absl::string_view y) { |
|
return x.Compare(y) < 0; |
|
} |
|
inline bool operator<(absl::string_view x, const Cord& y) { |
|
return y.Compare(x) > 0; |
|
} |
|
inline bool operator>(const Cord& x, absl::string_view y) { return y < x; } |
|
inline bool operator>(absl::string_view x, const Cord& y) { return y < x; } |
|
inline bool operator<=(const Cord& x, absl::string_view y) { return !(y < x); } |
|
inline bool operator<=(absl::string_view x, const Cord& y) { return !(y < x); } |
|
inline bool operator>=(const Cord& x, absl::string_view y) { return !(x < y); } |
|
inline bool operator>=(absl::string_view x, const Cord& y) { return !(x < y); } |
|
|
|
// Overload of swap for Cord. The use of non-const references is |
|
// required. :( |
|
inline void swap(Cord& x, Cord& y) noexcept { y.contents_.Swap(&x.contents_); } |
|
|
|
// Some internals exposed to test code. |
|
namespace strings_internal { |
|
class CordTestAccess { |
|
public: |
|
static size_t FlatOverhead(); |
|
static size_t MaxFlatLength(); |
|
static size_t SizeofCordRepConcat(); |
|
static size_t SizeofCordRepExternal(); |
|
static size_t SizeofCordRepSubstring(); |
|
static size_t FlatTagToLength(uint8_t tag); |
|
static uint8_t LengthToTag(size_t s); |
|
}; |
|
} // namespace strings_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_STRINGS_CORD_H_
|
|
|