Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
243 lines
9.0 KiB
243 lines
9.0 KiB
// |
|
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: optimization.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file defines portable macros for performance optimization. |
|
|
|
#ifndef ABSL_BASE_OPTIMIZATION_H_ |
|
#define ABSL_BASE_OPTIMIZATION_H_ |
|
|
|
#include <assert.h> |
|
|
|
#include "absl/base/config.h" |
|
|
|
// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION |
|
// |
|
// Instructs the compiler to avoid optimizing tail-call recursion. This macro is |
|
// useful when you wish to preserve the existing function order within a stack |
|
// trace for logging, debugging, or profiling purposes. |
|
// |
|
// Example: |
|
// |
|
// int f() { |
|
// int result = g(); |
|
// ABSL_BLOCK_TAIL_CALL_OPTIMIZATION(); |
|
// return result; |
|
// } |
|
#if defined(__pnacl__) |
|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; } |
|
#elif defined(__clang__) |
|
// Clang will not tail call given inline volatile assembly. |
|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("") |
|
#elif defined(__GNUC__) |
|
// GCC will not tail call given inline volatile assembly. |
|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __asm__ __volatile__("") |
|
#elif defined(_MSC_VER) |
|
#include <intrin.h> |
|
// The __nop() intrinsic blocks the optimisation. |
|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() __nop() |
|
#else |
|
#define ABSL_BLOCK_TAIL_CALL_OPTIMIZATION() if (volatile int x = 0) { (void)x; } |
|
#endif |
|
|
|
// ABSL_CACHELINE_SIZE |
|
// |
|
// Explicitly defines the size of the L1 cache for purposes of alignment. |
|
// Setting the cacheline size allows you to specify that certain objects be |
|
// aligned on a cacheline boundary with `ABSL_CACHELINE_ALIGNED` declarations. |
|
// (See below.) |
|
// |
|
// NOTE: this macro should be replaced with the following C++17 features, when |
|
// those are generally available: |
|
// |
|
// * `std::hardware_constructive_interference_size` |
|
// * `std::hardware_destructive_interference_size` |
|
// |
|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html |
|
// for more information. |
|
#if defined(__GNUC__) |
|
// Cache line alignment |
|
#if defined(__i386__) || defined(__x86_64__) |
|
#define ABSL_CACHELINE_SIZE 64 |
|
#elif defined(__powerpc64__) |
|
#define ABSL_CACHELINE_SIZE 128 |
|
#elif defined(__aarch64__) |
|
// We would need to read special register ctr_el0 to find out L1 dcache size. |
|
// This value is a good estimate based on a real aarch64 machine. |
|
#define ABSL_CACHELINE_SIZE 64 |
|
#elif defined(__arm__) |
|
// Cache line sizes for ARM: These values are not strictly correct since |
|
// cache line sizes depend on implementations, not architectures. There |
|
// are even implementations with cache line sizes configurable at boot |
|
// time. |
|
#if defined(__ARM_ARCH_5T__) |
|
#define ABSL_CACHELINE_SIZE 32 |
|
#elif defined(__ARM_ARCH_7A__) |
|
#define ABSL_CACHELINE_SIZE 64 |
|
#endif |
|
#endif |
|
|
|
#ifndef ABSL_CACHELINE_SIZE |
|
// A reasonable default guess. Note that overestimates tend to waste more |
|
// space, while underestimates tend to waste more time. |
|
#define ABSL_CACHELINE_SIZE 64 |
|
#endif |
|
|
|
// ABSL_CACHELINE_ALIGNED |
|
// |
|
// Indicates that the declared object be cache aligned using |
|
// `ABSL_CACHELINE_SIZE` (see above). Cacheline aligning objects allows you to |
|
// load a set of related objects in the L1 cache for performance improvements. |
|
// Cacheline aligning objects properly allows constructive memory sharing and |
|
// prevents destructive (or "false") memory sharing. |
|
// |
|
// NOTE: this macro should be replaced with usage of `alignas()` using |
|
// `std::hardware_constructive_interference_size` and/or |
|
// `std::hardware_destructive_interference_size` when available within C++17. |
|
// |
|
// See http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2016/p0154r1.html |
|
// for more information. |
|
// |
|
// On some compilers, `ABSL_CACHELINE_ALIGNED` expands to an `__attribute__` |
|
// or `__declspec` attribute. For compilers where this is not known to work, |
|
// the macro expands to nothing. |
|
// |
|
// No further guarantees are made here. The result of applying the macro |
|
// to variables and types is always implementation-defined. |
|
// |
|
// WARNING: It is easy to use this attribute incorrectly, even to the point |
|
// of causing bugs that are difficult to diagnose, crash, etc. It does not |
|
// of itself guarantee that objects are aligned to a cache line. |
|
// |
|
// NOTE: Some compilers are picky about the locations of annotations such as |
|
// this attribute, so prefer to put it at the beginning of your declaration. |
|
// For example, |
|
// |
|
// ABSL_CACHELINE_ALIGNED static Foo* foo = ... |
|
// |
|
// class ABSL_CACHELINE_ALIGNED Bar { ... |
|
// |
|
// Recommendations: |
|
// |
|
// 1) Consult compiler documentation; this comment is not kept in sync as |
|
// toolchains evolve. |
|
// 2) Verify your use has the intended effect. This often requires inspecting |
|
// the generated machine code. |
|
// 3) Prefer applying this attribute to individual variables. Avoid |
|
// applying it to types. This tends to localize the effect. |
|
#define ABSL_CACHELINE_ALIGNED __attribute__((aligned(ABSL_CACHELINE_SIZE))) |
|
#elif defined(_MSC_VER) |
|
#define ABSL_CACHELINE_SIZE 64 |
|
#define ABSL_CACHELINE_ALIGNED __declspec(align(ABSL_CACHELINE_SIZE)) |
|
#else |
|
#define ABSL_CACHELINE_SIZE 64 |
|
#define ABSL_CACHELINE_ALIGNED |
|
#endif |
|
|
|
// ABSL_PREDICT_TRUE, ABSL_PREDICT_FALSE |
|
// |
|
// Enables the compiler to prioritize compilation using static analysis for |
|
// likely paths within a boolean branch. |
|
// |
|
// Example: |
|
// |
|
// if (ABSL_PREDICT_TRUE(expression)) { |
|
// return result; // Faster if more likely |
|
// } else { |
|
// return 0; |
|
// } |
|
// |
|
// Compilers can use the information that a certain branch is not likely to be |
|
// taken (for instance, a CHECK failure) to optimize for the common case in |
|
// the absence of better information (ie. compiling gcc with `-fprofile-arcs`). |
|
// |
|
// Recommendation: Modern CPUs dynamically predict branch execution paths, |
|
// typically with accuracy greater than 97%. As a result, annotating every |
|
// branch in a codebase is likely counterproductive; however, annotating |
|
// specific branches that are both hot and consistently mispredicted is likely |
|
// to yield performance improvements. |
|
#if ABSL_HAVE_BUILTIN(__builtin_expect) || \ |
|
(defined(__GNUC__) && !defined(__clang__)) |
|
#define ABSL_PREDICT_FALSE(x) (__builtin_expect(false || (x), false)) |
|
#define ABSL_PREDICT_TRUE(x) (__builtin_expect(false || (x), true)) |
|
#else |
|
#define ABSL_PREDICT_FALSE(x) (x) |
|
#define ABSL_PREDICT_TRUE(x) (x) |
|
#endif |
|
|
|
// ABSL_INTERNAL_ASSUME(cond) |
|
// Informs the compiler that a condition is always true and that it can assume |
|
// it to be true for optimization purposes. The call has undefined behavior if |
|
// the condition is false. |
|
// In !NDEBUG mode, the condition is checked with an assert(). |
|
// NOTE: The expression must not have side effects, as it will only be evaluated |
|
// in some compilation modes and not others. |
|
// |
|
// Example: |
|
// |
|
// int x = ...; |
|
// ABSL_INTERNAL_ASSUME(x >= 0); |
|
// // The compiler can optimize the division to a simple right shift using the |
|
// // assumption specified above. |
|
// int y = x / 16; |
|
// |
|
#if !defined(NDEBUG) |
|
#define ABSL_INTERNAL_ASSUME(cond) assert(cond) |
|
#elif ABSL_HAVE_BUILTIN(__builtin_assume) |
|
#define ABSL_INTERNAL_ASSUME(cond) __builtin_assume(cond) |
|
#elif defined(__GNUC__) || ABSL_HAVE_BUILTIN(__builtin_unreachable) |
|
#define ABSL_INTERNAL_ASSUME(cond) \ |
|
do { \ |
|
if (!(cond)) __builtin_unreachable(); \ |
|
} while (0) |
|
#elif defined(_MSC_VER) |
|
#define ABSL_INTERNAL_ASSUME(cond) __assume(cond) |
|
#else |
|
#define ABSL_INTERNAL_ASSUME(cond) \ |
|
do { \ |
|
static_cast<void>(false && (cond)); \ |
|
} while (0) |
|
#endif |
|
|
|
// ABSL_INTERNAL_UNIQUE_SMALL_NAME(cond) |
|
// This macro forces small unique name on a static file level symbols like |
|
// static local variables or static functions. This is intended to be used in |
|
// macro definitions to optimize the cost of generated code. Do NOT use it on |
|
// symbols exported from translation unit since it may cause a link time |
|
// conflict. |
|
// |
|
// Example: |
|
// |
|
// #define MY_MACRO(txt) |
|
// namespace { |
|
// char VeryVeryLongVarName[] ABSL_INTERNAL_UNIQUE_SMALL_NAME() = txt; |
|
// const char* VeryVeryLongFuncName() ABSL_INTERNAL_UNIQUE_SMALL_NAME(); |
|
// const char* VeryVeryLongFuncName() { return txt; } |
|
// } |
|
// |
|
|
|
#if defined(__GNUC__) |
|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) #x |
|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME1(x) ABSL_INTERNAL_UNIQUE_SMALL_NAME2(x) |
|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME() \ |
|
asm(ABSL_INTERNAL_UNIQUE_SMALL_NAME1(.absl.__COUNTER__)) |
|
#else |
|
#define ABSL_INTERNAL_UNIQUE_SMALL_NAME() |
|
#endif |
|
|
|
#endif // ABSL_BASE_OPTIMIZATION_H_
|
|
|