Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
573 lines
20 KiB
573 lines
20 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/gaussian_distribution.h" |
|
|
|
#include <algorithm> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <ios> |
|
#include <iterator> |
|
#include <random> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/random/internal/chi_square.h" |
|
#include "absl/random/internal/distribution_test_util.h" |
|
#include "absl/random/internal/sequence_urbg.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_format.h" |
|
#include "absl/strings/str_replace.h" |
|
#include "absl/strings/strip.h" |
|
|
|
namespace { |
|
|
|
using absl::random_internal::kChiSquared; |
|
|
|
template <typename RealType> |
|
class GaussianDistributionInterfaceTest : public ::testing::Test {}; |
|
|
|
using RealTypes = ::testing::Types<float, double, long double>; |
|
TYPED_TEST_CASE(GaussianDistributionInterfaceTest, RealTypes); |
|
|
|
TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) { |
|
using param_type = |
|
typename absl::gaussian_distribution<TypeParam>::param_type; |
|
|
|
const TypeParam kParams[] = { |
|
// Cases around 1. |
|
1, // |
|
std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon |
|
std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon |
|
// Arbitrary values. |
|
TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4), |
|
TypeParam(1e8), TypeParam(1e20), TypeParam(2.5), |
|
// Boundary cases. |
|
std::numeric_limits<TypeParam>::infinity(), |
|
std::numeric_limits<TypeParam>::max(), |
|
std::numeric_limits<TypeParam>::epsilon(), |
|
std::nextafter(std::numeric_limits<TypeParam>::min(), |
|
TypeParam(1)), // min + epsilon |
|
std::numeric_limits<TypeParam>::min(), // smallest normal |
|
// There are some errors dealing with denorms on apple platforms. |
|
std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm |
|
std::numeric_limits<TypeParam>::min() / 2, |
|
std::nextafter(std::numeric_limits<TypeParam>::min(), |
|
TypeParam(0)), // denorm_max |
|
}; |
|
|
|
constexpr int kCount = 1000; |
|
absl::InsecureBitGen gen; |
|
|
|
// Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to |
|
// all values in kParams, |
|
for (const auto mod : {0, 1, 2, 3}) { |
|
for (const auto x : kParams) { |
|
if (!std::isfinite(x)) continue; |
|
for (const auto y : kParams) { |
|
const TypeParam mean = (mod & 0x1) ? -x : x; |
|
const TypeParam stddev = (mod & 0x2) ? -y : y; |
|
const param_type param(mean, stddev); |
|
|
|
absl::gaussian_distribution<TypeParam> before(mean, stddev); |
|
EXPECT_EQ(before.mean(), param.mean()); |
|
EXPECT_EQ(before.stddev(), param.stddev()); |
|
|
|
{ |
|
absl::gaussian_distribution<TypeParam> via_param(param); |
|
EXPECT_EQ(via_param, before); |
|
EXPECT_EQ(via_param.param(), before.param()); |
|
} |
|
|
|
// Smoke test. |
|
auto sample_min = before.max(); |
|
auto sample_max = before.min(); |
|
for (int i = 0; i < kCount; i++) { |
|
auto sample = before(gen); |
|
if (sample > sample_max) sample_max = sample; |
|
if (sample < sample_min) sample_min = sample; |
|
EXPECT_GE(sample, before.min()) << before; |
|
EXPECT_LE(sample, before.max()) << before; |
|
} |
|
if (!std::is_same<TypeParam, long double>::value) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrFormat("Range{%f, %f}: %f, %f", mean, stddev, |
|
sample_min, sample_max)); |
|
} |
|
|
|
std::stringstream ss; |
|
ss << before; |
|
|
|
if (!std::isfinite(mean) || !std::isfinite(stddev)) { |
|
// Streams do not parse inf/nan. |
|
continue; |
|
} |
|
|
|
// Validate stream serialization. |
|
absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f); |
|
|
|
EXPECT_NE(before.mean(), after.mean()); |
|
EXPECT_NE(before.stddev(), after.stddev()); |
|
EXPECT_NE(before.param(), after.param()); |
|
EXPECT_NE(before, after); |
|
|
|
ss >> after; |
|
|
|
#if defined(__powerpc64__) || defined(__PPC64__) || defined(__powerpc__) || \ |
|
defined(__ppc__) || defined(__PPC__) |
|
if (std::is_same<TypeParam, long double>::value) { |
|
// Roundtripping floating point values requires sufficient precision |
|
// to reconstruct the exact value. It turns out that long double |
|
// has some errors doing this on ppc, particularly for values |
|
// near {1.0 +/- epsilon}. |
|
if (mean <= std::numeric_limits<double>::max() && |
|
mean >= std::numeric_limits<double>::lowest()) { |
|
EXPECT_EQ(static_cast<double>(before.mean()), |
|
static_cast<double>(after.mean())) |
|
<< ss.str(); |
|
} |
|
if (stddev <= std::numeric_limits<double>::max() && |
|
stddev >= std::numeric_limits<double>::lowest()) { |
|
EXPECT_EQ(static_cast<double>(before.stddev()), |
|
static_cast<double>(after.stddev())) |
|
<< ss.str(); |
|
} |
|
continue; |
|
} |
|
#endif |
|
|
|
EXPECT_EQ(before.mean(), after.mean()); |
|
EXPECT_EQ(before.stddev(), after.stddev()) // |
|
<< ss.str() << " " // |
|
<< (ss.good() ? "good " : "") // |
|
<< (ss.bad() ? "bad " : "") // |
|
<< (ss.eof() ? "eof " : "") // |
|
<< (ss.fail() ? "fail " : ""); |
|
} |
|
} |
|
} |
|
} |
|
|
|
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm |
|
|
|
class GaussianModel { |
|
public: |
|
GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {} |
|
|
|
double mean() const { return mean_; } |
|
double variance() const { return stddev() * stddev(); } |
|
double stddev() const { return stddev_; } |
|
double skew() const { return 0; } |
|
double kurtosis() const { return 3.0; } |
|
|
|
// The inverse CDF, or PercentPoint function. |
|
double InverseCDF(double p) { |
|
ABSL_ASSERT(p >= 0.0); |
|
ABSL_ASSERT(p < 1.0); |
|
return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p); |
|
} |
|
|
|
private: |
|
const double mean_; |
|
const double stddev_; |
|
}; |
|
|
|
struct Param { |
|
double mean; |
|
double stddev; |
|
double p_fail; // Z-Test probability of failure. |
|
int trials; // Z-Test trials. |
|
}; |
|
|
|
// GaussianDistributionTests implements a z-test for the gaussian |
|
// distribution. |
|
class GaussianDistributionTests : public testing::TestWithParam<Param>, |
|
public GaussianModel { |
|
public: |
|
GaussianDistributionTests() |
|
: GaussianModel(GetParam().mean, GetParam().stddev) {} |
|
|
|
// SingleZTest provides a basic z-squared test of the mean vs. expected |
|
// mean for data generated by the poisson distribution. |
|
template <typename D> |
|
bool SingleZTest(const double p, const size_t samples); |
|
|
|
// SingleChiSquaredTest provides a basic chi-squared test of the normal |
|
// distribution. |
|
template <typename D> |
|
double SingleChiSquaredTest(); |
|
|
|
absl::InsecureBitGen rng_; |
|
}; |
|
|
|
template <typename D> |
|
bool GaussianDistributionTests::SingleZTest(const double p, |
|
const size_t samples) { |
|
D dis(mean(), stddev()); |
|
|
|
std::vector<double> data; |
|
data.reserve(samples); |
|
for (size_t i = 0; i < samples; i++) { |
|
const double x = dis(rng_); |
|
data.push_back(x); |
|
} |
|
|
|
const double max_err = absl::random_internal::MaxErrorTolerance(p); |
|
const auto m = absl::random_internal::ComputeDistributionMoments(data); |
|
const double z = absl::random_internal::ZScore(mean(), m); |
|
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err); |
|
|
|
// NOTE: Informational statistical test: |
|
// |
|
// Compute the Jarque-Bera test statistic given the excess skewness |
|
// and kurtosis. The statistic is drawn from a chi-square(2) distribution. |
|
// https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test |
|
// |
|
// The null-hypothesis (normal distribution) is rejected when |
|
// (p = 0.05 => jb > 5.99) |
|
// (p = 0.01 => jb > 9.21) |
|
// NOTE: JB has a large type-I error rate, so it will reject the |
|
// null-hypothesis even when it is true more often than the z-test. |
|
// |
|
const double jb = |
|
static_cast<double>(m.n) / 6.0 * |
|
(std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0); |
|
|
|
if (!pass || jb > 9.21) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrFormat("p=%f max_err=%f\n" |
|
" mean=%f vs. %f\n" |
|
" stddev=%f vs. %f\n" |
|
" skewness=%f vs. %f\n" |
|
" kurtosis=%f vs. %f\n" |
|
" z=%f vs. 0\n" |
|
" jb=%f vs. 9.21", |
|
p, max_err, m.mean, mean(), std::sqrt(m.variance), |
|
stddev(), m.skewness, skew(), m.kurtosis, |
|
kurtosis(), z, jb)); |
|
} |
|
return pass; |
|
} |
|
|
|
template <typename D> |
|
double GaussianDistributionTests::SingleChiSquaredTest() { |
|
const size_t kSamples = 10000; |
|
const int kBuckets = 50; |
|
|
|
// The InverseCDF is the percent point function of the |
|
// distribution, and can be used to assign buckets |
|
// roughly uniformly. |
|
std::vector<double> cutoffs; |
|
const double kInc = 1.0 / static_cast<double>(kBuckets); |
|
for (double p = kInc; p < 1.0; p += kInc) { |
|
cutoffs.push_back(InverseCDF(p)); |
|
} |
|
if (cutoffs.back() != std::numeric_limits<double>::infinity()) { |
|
cutoffs.push_back(std::numeric_limits<double>::infinity()); |
|
} |
|
|
|
D dis(mean(), stddev()); |
|
|
|
std::vector<int32_t> counts(cutoffs.size(), 0); |
|
for (int j = 0; j < kSamples; j++) { |
|
const double x = dis(rng_); |
|
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x); |
|
counts[std::distance(cutoffs.begin(), it)]++; |
|
} |
|
|
|
// Null-hypothesis is that the distribution is a gaussian distribution |
|
// with the provided mean and stddev (not estimated from the data). |
|
const int dof = static_cast<int>(counts.size()) - 1; |
|
|
|
// Our threshold for logging is 1-in-50. |
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98); |
|
|
|
const double expected = |
|
static_cast<double>(kSamples) / static_cast<double>(counts.size()); |
|
|
|
double chi_square = absl::random_internal::ChiSquareWithExpected( |
|
std::begin(counts), std::end(counts), expected); |
|
double p = absl::random_internal::ChiSquarePValue(chi_square, dof); |
|
|
|
// Log if the chi_square value is above the threshold. |
|
if (chi_square > threshold) { |
|
for (int i = 0; i < cutoffs.size(); i++) { |
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrFormat("%d : (%f) = %d", i, cutoffs[i], counts[i])); |
|
} |
|
|
|
ABSL_INTERNAL_LOG( |
|
INFO, absl::StrCat("mean=", mean(), " stddev=", stddev(), "\n", // |
|
" expected ", expected, "\n", // |
|
kChiSquared, " ", chi_square, " (", p, ")\n", // |
|
kChiSquared, " @ 0.98 = ", threshold)); |
|
} |
|
return p; |
|
} |
|
|
|
TEST_P(GaussianDistributionTests, ZTest) { |
|
// TODO(absl-team): Run these tests against std::normal_distribution<double> |
|
// to validate outcomes are similar. |
|
const size_t kSamples = 10000; |
|
const auto& param = GetParam(); |
|
const int expected_failures = |
|
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail))); |
|
const double p = absl::random_internal::RequiredSuccessProbability( |
|
param.p_fail, param.trials); |
|
|
|
int failures = 0; |
|
for (int i = 0; i < param.trials; i++) { |
|
failures += |
|
SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1; |
|
} |
|
EXPECT_LE(failures, expected_failures); |
|
} |
|
|
|
TEST_P(GaussianDistributionTests, ChiSquaredTest) { |
|
const int kTrials = 20; |
|
int failures = 0; |
|
|
|
for (int i = 0; i < kTrials; i++) { |
|
double p_value = |
|
SingleChiSquaredTest<absl::gaussian_distribution<double>>(); |
|
if (p_value < 0.0025) { // 1/400 |
|
failures++; |
|
} |
|
} |
|
// There is a 0.05% chance of producing at least one failure, so raise the |
|
// failure threshold high enough to allow for a flake rate of less than one in |
|
// 10,000. |
|
EXPECT_LE(failures, 4); |
|
} |
|
|
|
std::vector<Param> GenParams() { |
|
return { |
|
// Mean around 0. |
|
Param{0.0, 1.0, 0.01, 100}, |
|
Param{0.0, 1e2, 0.01, 100}, |
|
Param{0.0, 1e4, 0.01, 100}, |
|
Param{0.0, 1e8, 0.01, 100}, |
|
Param{0.0, 1e16, 0.01, 100}, |
|
Param{0.0, 1e-3, 0.01, 100}, |
|
Param{0.0, 1e-5, 0.01, 100}, |
|
Param{0.0, 1e-9, 0.01, 100}, |
|
Param{0.0, 1e-17, 0.01, 100}, |
|
|
|
// Mean around 1. |
|
Param{1.0, 1.0, 0.01, 100}, |
|
Param{1.0, 1e2, 0.01, 100}, |
|
Param{1.0, 1e-2, 0.01, 100}, |
|
|
|
// Mean around 100 / -100 |
|
Param{1e2, 1.0, 0.01, 100}, |
|
Param{-1e2, 1.0, 0.01, 100}, |
|
Param{1e2, 1e6, 0.01, 100}, |
|
Param{-1e2, 1e6, 0.01, 100}, |
|
|
|
// More extreme |
|
Param{1e4, 1e4, 0.01, 100}, |
|
Param{1e8, 1e4, 0.01, 100}, |
|
Param{1e12, 1e4, 0.01, 100}, |
|
}; |
|
} |
|
|
|
std::string ParamName(const ::testing::TestParamInfo<Param>& info) { |
|
const auto& p = info.param; |
|
std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_", |
|
absl::SixDigits(p.stddev)); |
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(, GaussianDistributionTests, |
|
::testing::ValuesIn(GenParams()), ParamName); |
|
|
|
// NOTE: absl::gaussian_distribution is not guaranteed to be stable. |
|
TEST(GaussianDistributionTest, StabilityTest) { |
|
// absl::gaussian_distribution stability relies on the underlying zignor |
|
// data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and |
|
// std::abs. |
|
absl::random_internal::sequence_urbg urbg( |
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
|
|
|
std::vector<int> output(11); |
|
|
|
{ |
|
absl::gaussian_distribution<double> dist; |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return static_cast<int>(10000000.0 * dist(urbg)); }); |
|
|
|
EXPECT_EQ(13, urbg.invocations()); |
|
EXPECT_THAT(output, // |
|
testing::ElementsAre(1494, 25518841, 9991550, 1351856, |
|
-20373238, 3456682, 333530, -6804981, |
|
-15279580, -16459654, 1494)); |
|
} |
|
|
|
urbg.reset(); |
|
{ |
|
absl::gaussian_distribution<float> dist; |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return static_cast<int>(1000000.0f * dist(urbg)); }); |
|
|
|
EXPECT_EQ(13, urbg.invocations()); |
|
EXPECT_THAT( |
|
output, // |
|
testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668, |
|
33353, -680498, -1527958, -1645965, 149)); |
|
} |
|
} |
|
|
|
// This is an implementation-specific test. If any part of the implementation |
|
// changes, then it is likely that this test will change as well. |
|
// Also, if dependencies of the distribution change, such as RandU64ToDouble, |
|
// then this is also likely to change. |
|
TEST(GaussianDistributionTest, AlgorithmBounds) { |
|
absl::gaussian_distribution<double> dist; |
|
|
|
// In ~95% of cases, a single value is used to generate the output. |
|
// for all inputs where |x| < 0.750461021389 this should be the case. |
|
// |
|
// The exact constraints are based on the ziggurat tables, and any |
|
// changes to the ziggurat tables may require adjusting these bounds. |
|
// |
|
// for i in range(0, len(X)-1): |
|
// print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375) |
|
// |
|
// 0.125 <= |values| <= 0.75 |
|
const uint64_t kValues[] = { |
|
0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull, |
|
0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull, |
|
// negative values |
|
0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull, |
|
0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull}; |
|
|
|
// 0.875 <= |values| <= 0.984375 |
|
const uint64_t kExtraValues[] = { |
|
0x7000000000000100ull, 0x7800000000000100ull, // |
|
0x7c00000000000100ull, 0x7e00000000000100ull, // |
|
// negative values |
|
0xf000000000000100ull, 0xf800000000000100ull, // |
|
0xfc00000000000100ull, 0xfe00000000000100ull}; |
|
|
|
auto make_box = [](uint64_t v, uint64_t box) { |
|
return (v & 0xffffffffffffff80ull) | box; |
|
}; |
|
|
|
// The box is the lower 7 bits of the value. When the box == 0, then |
|
// the algorithm uses an escape hatch to select the result for large |
|
// outputs. |
|
for (uint64_t box = 0; box < 0x7f; box++) { |
|
for (const uint64_t v : kValues) { |
|
// Extra values are added to the sequence to attempt to avoid |
|
// infinite loops from rejection sampling on bugs/errors. |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull}); |
|
|
|
auto a = dist(urbg); |
|
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v; |
|
if (v & 0x8000000000000000ull) { |
|
EXPECT_LT(a, 0.0) << box << " " << std::hex << v; |
|
} else { |
|
EXPECT_GT(a, 0.0) << box << " " << std::hex << v; |
|
} |
|
} |
|
if (box > 10 && box < 100) { |
|
// The center boxes use the fast algorithm for more |
|
// than 98.4375% of values. |
|
for (const uint64_t v : kExtraValues) { |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull}); |
|
|
|
auto a = dist(urbg); |
|
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v; |
|
if (v & 0x8000000000000000ull) { |
|
EXPECT_LT(a, 0.0) << box << " " << std::hex << v; |
|
} else { |
|
EXPECT_GT(a, 0.0) << box << " " << std::hex << v; |
|
} |
|
} |
|
} |
|
} |
|
|
|
// When the box == 0, the fallback algorithm uses a ratio of uniforms, |
|
// which consumes 2 additional values from the urbg. |
|
// Fallback also requires that the initial value be > 0.9271586026096681. |
|
auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); }; |
|
|
|
double tail[2]; |
|
{ |
|
// 0.9375 |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull, |
|
0x00000076f6f7f755ull}); |
|
tail[0] = dist(urbg); |
|
EXPECT_EQ(3, urbg.invocations()); |
|
EXPECT_GT(tail[0], 0); |
|
} |
|
{ |
|
// -0.9375 |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull, |
|
0x00000076f6f7f755ull}); |
|
tail[1] = dist(urbg); |
|
EXPECT_EQ(3, urbg.invocations()); |
|
EXPECT_LT(tail[1], 0); |
|
} |
|
EXPECT_EQ(tail[0], -tail[1]); |
|
EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0)); |
|
|
|
// When the box != 0, the fallback algorithm computes a wedge function. |
|
// Depending on the box, the threshold for varies as high as |
|
// 0.991522480228. |
|
{ |
|
// 0.9921875, 0.875 |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull, |
|
0x13CCA830EB61BD96ull}); |
|
tail[0] = dist(urbg); |
|
EXPECT_EQ(2, urbg.invocations()); |
|
EXPECT_GT(tail[0], 0); |
|
} |
|
{ |
|
// -0.9921875, 0.875 |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_box(0xff00000000000000ull, 120), 0xe000000000000001ull, |
|
0x13CCA830EB61BD96ull}); |
|
tail[1] = dist(urbg); |
|
EXPECT_EQ(2, urbg.invocations()); |
|
EXPECT_LT(tail[1], 0); |
|
} |
|
EXPECT_EQ(tail[0], -tail[1]); |
|
EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0)); |
|
|
|
// Fallback rejected, try again. |
|
{ |
|
// -0.9921875, 0.0625 |
|
absl::random_internal::sequence_urbg urbg( |
|
{make_box(0xff00000000000000ull, 120), 0x1000000000000001, |
|
make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull}); |
|
dist(urbg); |
|
EXPECT_EQ(3, urbg.invocations()); |
|
} |
|
} |
|
|
|
} // namespace
|
|
|