Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
651 lines
20 KiB
651 lines
20 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// Tests for pointer utilities. |
|
|
|
#include "absl/memory/memory.h" |
|
|
|
#include <sys/types.h> |
|
|
|
#include <cstddef> |
|
#include <memory> |
|
#include <string> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
|
|
namespace { |
|
|
|
using ::testing::ElementsAre; |
|
using ::testing::Return; |
|
|
|
// This class creates observable behavior to verify that a destructor has |
|
// been called, via the instance_count variable. |
|
class DestructorVerifier { |
|
public: |
|
DestructorVerifier() { ++instance_count_; } |
|
DestructorVerifier(const DestructorVerifier&) = delete; |
|
DestructorVerifier& operator=(const DestructorVerifier&) = delete; |
|
~DestructorVerifier() { --instance_count_; } |
|
|
|
// The number of instances of this class currently active. |
|
static int instance_count() { return instance_count_; } |
|
|
|
private: |
|
// The number of instances of this class currently active. |
|
static int instance_count_; |
|
}; |
|
|
|
int DestructorVerifier::instance_count_ = 0; |
|
|
|
TEST(WrapUniqueTest, WrapUnique) { |
|
// Test that the unique_ptr is constructed properly by verifying that the |
|
// destructor for its payload gets called at the proper time. |
|
{ |
|
auto dv = new DestructorVerifier; |
|
EXPECT_EQ(1, DestructorVerifier::instance_count()); |
|
std::unique_ptr<DestructorVerifier> ptr = absl::WrapUnique(dv); |
|
EXPECT_EQ(1, DestructorVerifier::instance_count()); |
|
} |
|
EXPECT_EQ(0, DestructorVerifier::instance_count()); |
|
} |
|
TEST(MakeUniqueTest, Basic) { |
|
std::unique_ptr<std::string> p = absl::make_unique<std::string>(); |
|
EXPECT_EQ("", *p); |
|
p = absl::make_unique<std::string>("hi"); |
|
EXPECT_EQ("hi", *p); |
|
} |
|
|
|
// InitializationVerifier fills in a pattern when allocated so we can |
|
// distinguish between its default and value initialized states (without |
|
// accessing truly uninitialized memory). |
|
struct InitializationVerifier { |
|
static constexpr int kDefaultScalar = 0x43; |
|
static constexpr int kDefaultArray = 0x4B; |
|
|
|
static void* operator new(size_t n) { |
|
void* ret = ::operator new(n); |
|
memset(ret, kDefaultScalar, n); |
|
return ret; |
|
} |
|
|
|
static void* operator new[](size_t n) { |
|
void* ret = ::operator new[](n); |
|
memset(ret, kDefaultArray, n); |
|
return ret; |
|
} |
|
|
|
int a; |
|
int b; |
|
}; |
|
|
|
TEST(Initialization, MakeUnique) { |
|
auto p = absl::make_unique<InitializationVerifier>(); |
|
|
|
EXPECT_EQ(0, p->a); |
|
EXPECT_EQ(0, p->b); |
|
} |
|
|
|
TEST(Initialization, MakeUniqueArray) { |
|
auto p = absl::make_unique<InitializationVerifier[]>(2); |
|
|
|
EXPECT_EQ(0, p[0].a); |
|
EXPECT_EQ(0, p[0].b); |
|
EXPECT_EQ(0, p[1].a); |
|
EXPECT_EQ(0, p[1].b); |
|
} |
|
|
|
struct MoveOnly { |
|
MoveOnly() = default; |
|
explicit MoveOnly(int i1) : ip1{new int{i1}} {} |
|
MoveOnly(int i1, int i2) : ip1{new int{i1}}, ip2{new int{i2}} {} |
|
std::unique_ptr<int> ip1; |
|
std::unique_ptr<int> ip2; |
|
}; |
|
|
|
struct AcceptMoveOnly { |
|
explicit AcceptMoveOnly(MoveOnly m) : m_(std::move(m)) {} |
|
MoveOnly m_; |
|
}; |
|
|
|
TEST(MakeUniqueTest, MoveOnlyTypeAndValue) { |
|
using ExpectedType = std::unique_ptr<MoveOnly>; |
|
{ |
|
auto p = absl::make_unique<MoveOnly>(); |
|
static_assert(std::is_same<decltype(p), ExpectedType>::value, |
|
"unexpected return type"); |
|
EXPECT_TRUE(!p->ip1); |
|
EXPECT_TRUE(!p->ip2); |
|
} |
|
{ |
|
auto p = absl::make_unique<MoveOnly>(1); |
|
static_assert(std::is_same<decltype(p), ExpectedType>::value, |
|
"unexpected return type"); |
|
EXPECT_TRUE(p->ip1 && *p->ip1 == 1); |
|
EXPECT_TRUE(!p->ip2); |
|
} |
|
{ |
|
auto p = absl::make_unique<MoveOnly>(1, 2); |
|
static_assert(std::is_same<decltype(p), ExpectedType>::value, |
|
"unexpected return type"); |
|
EXPECT_TRUE(p->ip1 && *p->ip1 == 1); |
|
EXPECT_TRUE(p->ip2 && *p->ip2 == 2); |
|
} |
|
} |
|
|
|
TEST(MakeUniqueTest, AcceptMoveOnly) { |
|
auto p = absl::make_unique<AcceptMoveOnly>(MoveOnly()); |
|
p = std::unique_ptr<AcceptMoveOnly>(new AcceptMoveOnly(MoveOnly())); |
|
} |
|
|
|
struct ArrayWatch { |
|
void* operator new[](size_t n) { |
|
allocs().push_back(n); |
|
return ::operator new[](n); |
|
} |
|
void operator delete[](void* p) { return ::operator delete[](p); } |
|
static std::vector<size_t>& allocs() { |
|
static auto& v = *new std::vector<size_t>; |
|
return v; |
|
} |
|
}; |
|
|
|
TEST(Make_UniqueTest, Array) { |
|
// Ensure state is clean before we start so that these tests |
|
// are order-agnostic. |
|
ArrayWatch::allocs().clear(); |
|
|
|
auto p = absl::make_unique<ArrayWatch[]>(5); |
|
static_assert(std::is_same<decltype(p), std::unique_ptr<ArrayWatch[]>>::value, |
|
"unexpected return type"); |
|
EXPECT_THAT(ArrayWatch::allocs(), ElementsAre(5 * sizeof(ArrayWatch))); |
|
} |
|
|
|
TEST(Make_UniqueTest, NotAmbiguousWithStdMakeUnique) { |
|
// Ensure that absl::make_unique is not ambiguous with std::make_unique. |
|
// In C++14 mode, the below call to make_unique has both types as candidates. |
|
struct TakesStdType { |
|
explicit TakesStdType(const std::vector<int>& vec) {} |
|
}; |
|
using absl::make_unique; |
|
(void)make_unique<TakesStdType>(std::vector<int>()); |
|
} |
|
|
|
#if 0 |
|
// These tests shouldn't compile. |
|
TEST(MakeUniqueTestNC, AcceptMoveOnlyLvalue) { |
|
auto m = MoveOnly(); |
|
auto p = absl::make_unique<AcceptMoveOnly>(m); |
|
} |
|
TEST(MakeUniqueTestNC, KnownBoundArray) { |
|
auto p = absl::make_unique<ArrayWatch[5]>(); |
|
} |
|
#endif |
|
|
|
TEST(RawPtrTest, RawPointer) { |
|
int i = 5; |
|
EXPECT_EQ(&i, absl::RawPtr(&i)); |
|
} |
|
|
|
TEST(RawPtrTest, SmartPointer) { |
|
int* o = new int(5); |
|
std::unique_ptr<int> p(o); |
|
EXPECT_EQ(o, absl::RawPtr(p)); |
|
} |
|
|
|
class IntPointerNonConstDeref { |
|
public: |
|
explicit IntPointerNonConstDeref(int* p) : p_(p) {} |
|
friend bool operator!=(const IntPointerNonConstDeref& a, std::nullptr_t) { |
|
return a.p_ != nullptr; |
|
} |
|
int& operator*() { return *p_; } |
|
|
|
private: |
|
std::unique_ptr<int> p_; |
|
}; |
|
|
|
TEST(RawPtrTest, SmartPointerNonConstDereference) { |
|
int* o = new int(5); |
|
IntPointerNonConstDeref p(o); |
|
EXPECT_EQ(o, absl::RawPtr(p)); |
|
} |
|
|
|
TEST(RawPtrTest, NullValuedRawPointer) { |
|
int* p = nullptr; |
|
EXPECT_EQ(nullptr, absl::RawPtr(p)); |
|
} |
|
|
|
TEST(RawPtrTest, NullValuedSmartPointer) { |
|
std::unique_ptr<int> p; |
|
EXPECT_EQ(nullptr, absl::RawPtr(p)); |
|
} |
|
|
|
TEST(RawPtrTest, Nullptr) { |
|
auto p = absl::RawPtr(nullptr); |
|
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); |
|
EXPECT_EQ(nullptr, p); |
|
} |
|
|
|
TEST(RawPtrTest, Null) { |
|
auto p = absl::RawPtr(nullptr); |
|
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); |
|
EXPECT_EQ(nullptr, p); |
|
} |
|
|
|
TEST(RawPtrTest, Zero) { |
|
auto p = absl::RawPtr(nullptr); |
|
EXPECT_TRUE((std::is_same<std::nullptr_t, decltype(p)>::value)); |
|
EXPECT_EQ(nullptr, p); |
|
} |
|
|
|
TEST(ShareUniquePtrTest, Share) { |
|
auto up = absl::make_unique<int>(); |
|
int* rp = up.get(); |
|
auto sp = absl::ShareUniquePtr(std::move(up)); |
|
EXPECT_EQ(sp.get(), rp); |
|
} |
|
|
|
TEST(ShareUniquePtrTest, ShareNull) { |
|
struct NeverDie { |
|
using pointer = void*; |
|
void operator()(pointer) { |
|
ASSERT_TRUE(false) << "Deleter should not have been called."; |
|
} |
|
}; |
|
|
|
std::unique_ptr<void, NeverDie> up; |
|
auto sp = absl::ShareUniquePtr(std::move(up)); |
|
} |
|
|
|
TEST(WeakenPtrTest, Weak) { |
|
auto sp = std::make_shared<int>(); |
|
auto wp = absl::WeakenPtr(sp); |
|
EXPECT_EQ(sp.get(), wp.lock().get()); |
|
sp.reset(); |
|
EXPECT_TRUE(wp.expired()); |
|
} |
|
|
|
// Should not compile. |
|
/* |
|
TEST(RawPtrTest, NotAPointer) { |
|
absl::RawPtr(1.5); |
|
} |
|
*/ |
|
|
|
template <typename T> |
|
struct SmartPointer { |
|
using difference_type = char; |
|
}; |
|
|
|
struct PointerWith { |
|
using element_type = int32_t; |
|
using difference_type = int16_t; |
|
template <typename U> |
|
using rebind = SmartPointer<U>; |
|
|
|
static PointerWith pointer_to( |
|
element_type& r) { // NOLINT(runtime/references) |
|
return PointerWith{&r}; |
|
} |
|
|
|
element_type* ptr; |
|
}; |
|
|
|
template <typename... Args> |
|
struct PointerWithout {}; |
|
|
|
TEST(PointerTraits, Types) { |
|
using TraitsWith = absl::pointer_traits<PointerWith>; |
|
EXPECT_TRUE((std::is_same<TraitsWith::pointer, PointerWith>::value)); |
|
EXPECT_TRUE((std::is_same<TraitsWith::element_type, int32_t>::value)); |
|
EXPECT_TRUE((std::is_same<TraitsWith::difference_type, int16_t>::value)); |
|
EXPECT_TRUE(( |
|
std::is_same<TraitsWith::rebind<int64_t>, SmartPointer<int64_t>>::value)); |
|
|
|
using TraitsWithout = absl::pointer_traits<PointerWithout<double, int>>; |
|
EXPECT_TRUE((std::is_same<TraitsWithout::pointer, |
|
PointerWithout<double, int>>::value)); |
|
EXPECT_TRUE((std::is_same<TraitsWithout::element_type, double>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<TraitsWithout ::difference_type, std::ptrdiff_t>::value)); |
|
EXPECT_TRUE((std::is_same<TraitsWithout::rebind<int64_t>, |
|
PointerWithout<int64_t, int>>::value)); |
|
|
|
using TraitsRawPtr = absl::pointer_traits<char*>; |
|
EXPECT_TRUE((std::is_same<TraitsRawPtr::pointer, char*>::value)); |
|
EXPECT_TRUE((std::is_same<TraitsRawPtr::element_type, char>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<TraitsRawPtr::difference_type, std::ptrdiff_t>::value)); |
|
EXPECT_TRUE((std::is_same<TraitsRawPtr::rebind<int64_t>, int64_t*>::value)); |
|
} |
|
|
|
TEST(PointerTraits, Functions) { |
|
int i; |
|
EXPECT_EQ(&i, absl::pointer_traits<PointerWith>::pointer_to(i).ptr); |
|
EXPECT_EQ(&i, absl::pointer_traits<int*>::pointer_to(i)); |
|
} |
|
|
|
TEST(AllocatorTraits, Typedefs) { |
|
struct A { |
|
struct value_type {}; |
|
}; |
|
EXPECT_TRUE(( |
|
std::is_same<A, |
|
typename absl::allocator_traits<A>::allocator_type>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<A::value_type, |
|
typename absl::allocator_traits<A>::value_type>::value)); |
|
|
|
struct X {}; |
|
struct HasPointer { |
|
using value_type = X; |
|
using pointer = SmartPointer<X>; |
|
}; |
|
EXPECT_TRUE((std::is_same<SmartPointer<X>, typename absl::allocator_traits< |
|
HasPointer>::pointer>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<A::value_type*, |
|
typename absl::allocator_traits<A>::pointer>::value)); |
|
|
|
EXPECT_TRUE( |
|
(std::is_same< |
|
SmartPointer<const X>, |
|
typename absl::allocator_traits<HasPointer>::const_pointer>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<const A::value_type*, |
|
typename absl::allocator_traits<A>::const_pointer>::value)); |
|
|
|
struct HasVoidPointer { |
|
using value_type = X; |
|
struct void_pointer {}; |
|
}; |
|
|
|
EXPECT_TRUE((std::is_same<HasVoidPointer::void_pointer, |
|
typename absl::allocator_traits< |
|
HasVoidPointer>::void_pointer>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<SmartPointer<void>, typename absl::allocator_traits< |
|
HasPointer>::void_pointer>::value)); |
|
|
|
struct HasConstVoidPointer { |
|
using value_type = X; |
|
struct const_void_pointer {}; |
|
}; |
|
|
|
EXPECT_TRUE( |
|
(std::is_same<HasConstVoidPointer::const_void_pointer, |
|
typename absl::allocator_traits< |
|
HasConstVoidPointer>::const_void_pointer>::value)); |
|
EXPECT_TRUE((std::is_same<SmartPointer<const void>, |
|
typename absl::allocator_traits< |
|
HasPointer>::const_void_pointer>::value)); |
|
|
|
struct HasDifferenceType { |
|
using value_type = X; |
|
using difference_type = int; |
|
}; |
|
EXPECT_TRUE( |
|
(std::is_same<int, typename absl::allocator_traits< |
|
HasDifferenceType>::difference_type>::value)); |
|
EXPECT_TRUE((std::is_same<char, typename absl::allocator_traits< |
|
HasPointer>::difference_type>::value)); |
|
|
|
struct HasSizeType { |
|
using value_type = X; |
|
using size_type = unsigned int; |
|
}; |
|
EXPECT_TRUE((std::is_same<unsigned int, typename absl::allocator_traits< |
|
HasSizeType>::size_type>::value)); |
|
EXPECT_TRUE((std::is_same<unsigned char, typename absl::allocator_traits< |
|
HasPointer>::size_type>::value)); |
|
|
|
struct HasPropagateOnCopy { |
|
using value_type = X; |
|
struct propagate_on_container_copy_assignment {}; |
|
}; |
|
|
|
EXPECT_TRUE( |
|
(std::is_same<HasPropagateOnCopy::propagate_on_container_copy_assignment, |
|
typename absl::allocator_traits<HasPropagateOnCopy>:: |
|
propagate_on_container_copy_assignment>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<std::false_type, |
|
typename absl::allocator_traits< |
|
A>::propagate_on_container_copy_assignment>::value)); |
|
|
|
struct HasPropagateOnMove { |
|
using value_type = X; |
|
struct propagate_on_container_move_assignment {}; |
|
}; |
|
|
|
EXPECT_TRUE( |
|
(std::is_same<HasPropagateOnMove::propagate_on_container_move_assignment, |
|
typename absl::allocator_traits<HasPropagateOnMove>:: |
|
propagate_on_container_move_assignment>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<std::false_type, |
|
typename absl::allocator_traits< |
|
A>::propagate_on_container_move_assignment>::value)); |
|
|
|
struct HasPropagateOnSwap { |
|
using value_type = X; |
|
struct propagate_on_container_swap {}; |
|
}; |
|
|
|
EXPECT_TRUE( |
|
(std::is_same<HasPropagateOnSwap::propagate_on_container_swap, |
|
typename absl::allocator_traits<HasPropagateOnSwap>:: |
|
propagate_on_container_swap>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<std::false_type, typename absl::allocator_traits<A>:: |
|
propagate_on_container_swap>::value)); |
|
|
|
struct HasIsAlwaysEqual { |
|
using value_type = X; |
|
struct is_always_equal {}; |
|
}; |
|
|
|
EXPECT_TRUE((std::is_same<HasIsAlwaysEqual::is_always_equal, |
|
typename absl::allocator_traits< |
|
HasIsAlwaysEqual>::is_always_equal>::value)); |
|
EXPECT_TRUE((std::is_same<std::true_type, typename absl::allocator_traits< |
|
A>::is_always_equal>::value)); |
|
struct NonEmpty { |
|
using value_type = X; |
|
int i; |
|
}; |
|
EXPECT_TRUE( |
|
(std::is_same<std::false_type, |
|
absl::allocator_traits<NonEmpty>::is_always_equal>::value)); |
|
} |
|
|
|
template <typename T> |
|
struct AllocWithPrivateInheritance : private std::allocator<T> { |
|
using value_type = T; |
|
}; |
|
|
|
TEST(AllocatorTraits, RebindWithPrivateInheritance) { |
|
// Regression test for some versions of gcc that do not like the sfinae we |
|
// used in combination with private inheritance. |
|
EXPECT_TRUE( |
|
(std::is_same<AllocWithPrivateInheritance<int>, |
|
absl::allocator_traits<AllocWithPrivateInheritance<char>>:: |
|
rebind_alloc<int>>::value)); |
|
} |
|
|
|
template <typename T> |
|
struct Rebound {}; |
|
|
|
struct AllocWithRebind { |
|
using value_type = int; |
|
template <typename T> |
|
struct rebind { |
|
using other = Rebound<T>; |
|
}; |
|
}; |
|
|
|
template <typename T, typename U> |
|
struct AllocWithoutRebind { |
|
using value_type = int; |
|
}; |
|
|
|
TEST(AllocatorTraits, Rebind) { |
|
EXPECT_TRUE( |
|
(std::is_same<Rebound<int>, |
|
typename absl::allocator_traits< |
|
AllocWithRebind>::template rebind_alloc<int>>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<absl::allocator_traits<Rebound<int>>, |
|
typename absl::allocator_traits< |
|
AllocWithRebind>::template rebind_traits<int>>::value)); |
|
|
|
EXPECT_TRUE( |
|
(std::is_same<AllocWithoutRebind<double, char>, |
|
typename absl::allocator_traits<AllocWithoutRebind< |
|
int, char>>::template rebind_alloc<double>>::value)); |
|
EXPECT_TRUE( |
|
(std::is_same<absl::allocator_traits<AllocWithoutRebind<double, char>>, |
|
typename absl::allocator_traits<AllocWithoutRebind< |
|
int, char>>::template rebind_traits<double>>::value)); |
|
} |
|
|
|
struct TestValue { |
|
TestValue() {} |
|
explicit TestValue(int* trace) : trace(trace) { ++*trace; } |
|
~TestValue() { |
|
if (trace) --*trace; |
|
} |
|
int* trace = nullptr; |
|
}; |
|
|
|
struct MinimalMockAllocator { |
|
MinimalMockAllocator() : value(0) {} |
|
explicit MinimalMockAllocator(int value) : value(value) {} |
|
MinimalMockAllocator(const MinimalMockAllocator& other) |
|
: value(other.value) {} |
|
using value_type = TestValue; |
|
MOCK_METHOD(value_type*, allocate, (size_t)); |
|
MOCK_METHOD(void, deallocate, (value_type*, size_t)); |
|
|
|
int value; |
|
}; |
|
|
|
TEST(AllocatorTraits, FunctionsMinimal) { |
|
int trace = 0; |
|
int hint; |
|
alignas(TestValue) char buffer[sizeof(TestValue)]; |
|
auto* x = reinterpret_cast<TestValue*>(buffer); |
|
MinimalMockAllocator mock; |
|
using Traits = absl::allocator_traits<MinimalMockAllocator>; |
|
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(x)); |
|
EXPECT_CALL(mock, deallocate(x, 7)); |
|
|
|
EXPECT_EQ(x, Traits::allocate(mock, 7)); |
|
static_cast<void>(Traits::allocate(mock, 7, static_cast<const void*>(&hint))); |
|
EXPECT_EQ(x, Traits::allocate(mock, 7, static_cast<const void*>(&hint))); |
|
Traits::deallocate(mock, x, 7); |
|
|
|
EXPECT_EQ(0, trace); |
|
Traits::construct(mock, x, &trace); |
|
EXPECT_EQ(1, trace); |
|
Traits::destroy(mock, x); |
|
EXPECT_EQ(0, trace); |
|
|
|
EXPECT_EQ(std::numeric_limits<size_t>::max() / sizeof(TestValue), |
|
Traits::max_size(mock)); |
|
|
|
EXPECT_EQ(0, mock.value); |
|
EXPECT_EQ(0, Traits::select_on_container_copy_construction(mock).value); |
|
} |
|
|
|
struct FullMockAllocator { |
|
FullMockAllocator() : value(0) {} |
|
explicit FullMockAllocator(int value) : value(value) {} |
|
FullMockAllocator(const FullMockAllocator& other) : value(other.value) {} |
|
using value_type = TestValue; |
|
MOCK_METHOD(value_type*, allocate, (size_t)); |
|
MOCK_METHOD(value_type*, allocate, (size_t, const void*)); |
|
MOCK_METHOD(void, construct, (value_type*, int*)); |
|
MOCK_METHOD(void, destroy, (value_type*)); |
|
MOCK_METHOD(size_t, max_size, (), |
|
(const)); |
|
MOCK_METHOD(FullMockAllocator, select_on_container_copy_construction, (), |
|
(const)); |
|
|
|
int value; |
|
}; |
|
|
|
TEST(AllocatorTraits, FunctionsFull) { |
|
int trace = 0; |
|
int hint; |
|
TestValue x(&trace), y; |
|
FullMockAllocator mock; |
|
using Traits = absl::allocator_traits<FullMockAllocator>; |
|
EXPECT_CALL(mock, allocate(7)).WillRepeatedly(Return(&x)); |
|
EXPECT_CALL(mock, allocate(13, &hint)).WillRepeatedly(Return(&y)); |
|
EXPECT_CALL(mock, construct(&x, &trace)); |
|
EXPECT_CALL(mock, destroy(&x)); |
|
EXPECT_CALL(mock, max_size()).WillRepeatedly(Return(17u)); |
|
EXPECT_CALL(mock, select_on_container_copy_construction()) |
|
.WillRepeatedly(Return(FullMockAllocator(23))); |
|
|
|
EXPECT_EQ(&x, Traits::allocate(mock, 7)); |
|
EXPECT_EQ(&y, Traits::allocate(mock, 13, static_cast<const void*>(&hint))); |
|
|
|
EXPECT_EQ(1, trace); |
|
Traits::construct(mock, &x, &trace); |
|
EXPECT_EQ(1, trace); |
|
Traits::destroy(mock, &x); |
|
EXPECT_EQ(1, trace); |
|
|
|
EXPECT_EQ(17u, Traits::max_size(mock)); |
|
|
|
EXPECT_EQ(0, mock.value); |
|
EXPECT_EQ(23, Traits::select_on_container_copy_construction(mock).value); |
|
} |
|
|
|
TEST(AllocatorNoThrowTest, DefaultAllocator) { |
|
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW |
|
EXPECT_TRUE(absl::default_allocator_is_nothrow::value); |
|
#else |
|
EXPECT_FALSE(absl::default_allocator_is_nothrow::value); |
|
#endif |
|
} |
|
|
|
TEST(AllocatorNoThrowTest, StdAllocator) { |
|
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW |
|
EXPECT_TRUE(absl::allocator_is_nothrow<std::allocator<int>>::value); |
|
#else |
|
EXPECT_FALSE(absl::allocator_is_nothrow<std::allocator<int>>::value); |
|
#endif |
|
} |
|
|
|
TEST(AllocatorNoThrowTest, CustomAllocator) { |
|
struct NoThrowAllocator { |
|
using is_nothrow = std::true_type; |
|
}; |
|
struct CanThrowAllocator { |
|
using is_nothrow = std::false_type; |
|
}; |
|
struct UnspecifiedAllocator {}; |
|
EXPECT_TRUE(absl::allocator_is_nothrow<NoThrowAllocator>::value); |
|
EXPECT_FALSE(absl::allocator_is_nothrow<CanThrowAllocator>::value); |
|
EXPECT_FALSE(absl::allocator_is_nothrow<UnspecifiedAllocator>::value); |
|
} |
|
|
|
} // namespace
|
|
|