Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
130 lines
4.8 KiB
130 lines
4.8 KiB
// Copyright 2019 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ |
|
#define ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_ |
|
|
|
#include <stdint.h> |
|
|
|
#include "absl/base/config.h" |
|
#include "absl/base/macros.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace profiling_internal { |
|
|
|
// ExponentialBiased provides a small and fast random number generator for a |
|
// rounded exponential distribution. This generator manages very little state, |
|
// and imposes no synchronization overhead. This makes it useful in specialized |
|
// scenarios requiring minimum overhead, such as stride based periodic sampling. |
|
// |
|
// ExponentialBiased provides two closely related functions, GetSkipCount() and |
|
// GetStride(), both returning a rounded integer defining a number of events |
|
// required before some event with a given mean probability occurs. |
|
// |
|
// The distribution is useful to generate a random wait time or some periodic |
|
// event with a given mean probability. For example, if an action is supposed to |
|
// happen on average once every 'N' events, then we can get a random 'stride' |
|
// counting down how long before the event to happen. For example, if we'd want |
|
// to sample one in every 1000 'Frobber' calls, our code could look like this: |
|
// |
|
// Frobber::Frobber() { |
|
// stride_ = exponential_biased_.GetStride(1000); |
|
// } |
|
// |
|
// void Frobber::Frob(int arg) { |
|
// if (--stride == 0) { |
|
// SampleFrob(arg); |
|
// stride_ = exponential_biased_.GetStride(1000); |
|
// } |
|
// ... |
|
// } |
|
// |
|
// The rounding of the return value creates a bias, especially for smaller means |
|
// where the distribution of the fraction is not evenly distributed. We correct |
|
// this bias by tracking the fraction we rounded up or down on each iteration, |
|
// effectively tracking the distance between the cumulative value, and the |
|
// rounded cumulative value. For example, given a mean of 2: |
|
// |
|
// raw = 1.63076, cumulative = 1.63076, rounded = 2, bias = -0.36923 |
|
// raw = 0.14624, cumulative = 1.77701, rounded = 2, bias = 0.14624 |
|
// raw = 4.93194, cumulative = 6.70895, rounded = 7, bias = -0.06805 |
|
// raw = 0.24206, cumulative = 6.95101, rounded = 7, bias = 0.24206 |
|
// etc... |
|
// |
|
// Adjusting with rounding bias is relatively trivial: |
|
// |
|
// double value = bias_ + exponential_distribution(mean)(); |
|
// double rounded_value = std::rint(value); |
|
// bias_ = value - rounded_value; |
|
// return rounded_value; |
|
// |
|
// This class is thread-compatible. |
|
class ExponentialBiased { |
|
public: |
|
// The number of bits set by NextRandom. |
|
static constexpr int kPrngNumBits = 48; |
|
|
|
// `GetSkipCount()` returns the number of events to skip before some chosen |
|
// event happens. For example, randomly tossing a coin, we will on average |
|
// throw heads once before we get tails. We can simulate random coin tosses |
|
// using GetSkipCount() as: |
|
// |
|
// ExponentialBiased eb; |
|
// for (...) { |
|
// int number_of_heads_before_tail = eb.GetSkipCount(1); |
|
// for (int flips = 0; flips < number_of_heads_before_tail; ++flips) { |
|
// printf("head..."); |
|
// } |
|
// printf("tail\n"); |
|
// } |
|
// |
|
int64_t GetSkipCount(int64_t mean); |
|
|
|
// GetStride() returns the number of events required for a specific event to |
|
// happen. See the class comments for a usage example. `GetStride()` is |
|
// equivalent to `GetSkipCount(mean - 1) + 1`. When to use `GetStride()` or |
|
// `GetSkipCount()` depends mostly on what best fits the use case. |
|
int64_t GetStride(int64_t mean); |
|
|
|
// Computes a random number in the range [0, 1<<(kPrngNumBits+1) - 1] |
|
// |
|
// This is public to enable testing. |
|
static uint64_t NextRandom(uint64_t rnd); |
|
|
|
private: |
|
void Initialize(); |
|
|
|
uint64_t rng_{0}; |
|
double bias_{0}; |
|
bool initialized_{false}; |
|
}; |
|
|
|
// Returns the next prng value. |
|
// pRNG is: aX+b mod c with a = 0x5DEECE66D, b = 0xB, c = 1<<48 |
|
// This is the lrand64 generator. |
|
inline uint64_t ExponentialBiased::NextRandom(uint64_t rnd) { |
|
const uint64_t prng_mult = uint64_t{0x5DEECE66D}; |
|
const uint64_t prng_add = 0xB; |
|
const uint64_t prng_mod_power = 48; |
|
const uint64_t prng_mod_mask = |
|
~((~static_cast<uint64_t>(0)) << prng_mod_power); |
|
return (prng_mult * rnd + prng_add) & prng_mod_mask; |
|
} |
|
|
|
} // namespace profiling_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_PROFILING_INTERNAL_EXPONENTIAL_BIASED_H_
|
|
|