Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
342 lines
13 KiB
342 lines
13 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// Produce stack trace |
|
|
|
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
|
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_ |
|
|
|
#if defined(__linux__) && (defined(__i386__) || defined(__x86_64__)) |
|
#include <ucontext.h> // for ucontext_t |
|
#endif |
|
|
|
#if !defined(_WIN32) |
|
#include <unistd.h> |
|
#endif |
|
|
|
#include <cassert> |
|
#include <cstdint> |
|
|
|
#include "absl/base/macros.h" |
|
#include "absl/base/port.h" |
|
#include "absl/debugging/internal/address_is_readable.h" |
|
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems |
|
#include "absl/debugging/stacktrace.h" |
|
|
|
#include "absl/base/internal/raw_logging.h" |
|
|
|
using absl::debugging_internal::AddressIsReadable; |
|
|
|
#if defined(__linux__) && defined(__i386__) |
|
// Count "push %reg" instructions in VDSO __kernel_vsyscall(), |
|
// preceeding "syscall" or "sysenter". |
|
// If __kernel_vsyscall uses frame pointer, answer 0. |
|
// |
|
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall |
|
// to analyze before giving up. Up to kMaxBytes+1 bytes of |
|
// instructions could be accessed. |
|
// |
|
// Here are known __kernel_vsyscall instruction sequences: |
|
// |
|
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S). |
|
// Used on Intel. |
|
// 0xffffe400 <__kernel_vsyscall+0>: push %ecx |
|
// 0xffffe401 <__kernel_vsyscall+1>: push %edx |
|
// 0xffffe402 <__kernel_vsyscall+2>: push %ebp |
|
// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp |
|
// 0xffffe405 <__kernel_vsyscall+5>: sysenter |
|
// |
|
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S). |
|
// Used on AMD. |
|
// 0xffffe400 <__kernel_vsyscall+0>: push %ebp |
|
// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp |
|
// 0xffffe403 <__kernel_vsyscall+3>: syscall |
|
// |
|
|
|
// The sequence below isn't actually expected in Google fleet, |
|
// here only for completeness. Remove this comment from OSS release. |
|
|
|
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S) |
|
// 0xffffe400 <__kernel_vsyscall+0>: int $0x80 |
|
// 0xffffe401 <__kernel_vsyscall+1>: ret |
|
// |
|
static const int kMaxBytes = 10; |
|
|
|
// We use assert()s instead of DCHECK()s -- this is too low level |
|
// for DCHECK(). |
|
|
|
static int CountPushInstructions(const unsigned char *const addr) { |
|
int result = 0; |
|
for (int i = 0; i < kMaxBytes; ++i) { |
|
if (addr[i] == 0x89) { |
|
// "mov reg,reg" |
|
if (addr[i + 1] == 0xE5) { |
|
// Found "mov %esp,%ebp". |
|
return 0; |
|
} |
|
++i; // Skip register encoding byte. |
|
} else if (addr[i] == 0x0F && |
|
(addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) { |
|
// Found "sysenter" or "syscall". |
|
return result; |
|
} else if ((addr[i] & 0xF0) == 0x50) { |
|
// Found "push %reg". |
|
++result; |
|
} else if (addr[i] == 0xCD && addr[i + 1] == 0x80) { |
|
// Found "int $0x80" |
|
assert(result == 0); |
|
return 0; |
|
} else { |
|
// Unexpected instruction. |
|
assert(false && "unexpected instruction in __kernel_vsyscall"); |
|
return 0; |
|
} |
|
} |
|
// Unexpected: didn't find SYSENTER or SYSCALL in |
|
// [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval. |
|
assert(false && "did not find SYSENTER or SYSCALL in __kernel_vsyscall"); |
|
return 0; |
|
} |
|
#endif |
|
|
|
// Assume stack frames larger than 100,000 bytes are bogus. |
|
static const int kMaxFrameBytes = 100000; |
|
|
|
// Returns the stack frame pointer from signal context, 0 if unknown. |
|
// vuc is a ucontext_t *. We use void* to avoid the use |
|
// of ucontext_t on non-POSIX systems. |
|
static uintptr_t GetFP(const void *vuc) { |
|
#if !defined(__linux__) |
|
static_cast<void>(vuc); // Avoid an unused argument compiler warning. |
|
#else |
|
if (vuc != nullptr) { |
|
auto *uc = reinterpret_cast<const ucontext_t *>(vuc); |
|
#if defined(__i386__) |
|
const auto bp = uc->uc_mcontext.gregs[REG_EBP]; |
|
const auto sp = uc->uc_mcontext.gregs[REG_ESP]; |
|
#elif defined(__x86_64__) |
|
const auto bp = uc->uc_mcontext.gregs[REG_RBP]; |
|
const auto sp = uc->uc_mcontext.gregs[REG_RSP]; |
|
#else |
|
const uintptr_t bp = 0; |
|
const uintptr_t sp = 0; |
|
#endif |
|
// Sanity-check that the base pointer is valid. It should be as long as |
|
// SHRINK_WRAP_FRAME_POINTER is not set, but it's possible that some code in |
|
// the process is compiled with --copt=-fomit-frame-pointer or |
|
// --copt=-momit-leaf-frame-pointer. |
|
// |
|
// TODO(bcmills): -momit-leaf-frame-pointer is currently the default |
|
// behavior when building with clang. Talk to the C++ toolchain team about |
|
// fixing that. |
|
if (bp >= sp && bp - sp <= kMaxFrameBytes) return bp; |
|
|
|
// If bp isn't a plausible frame pointer, return the stack pointer instead. |
|
// If we're lucky, it points to the start of a stack frame; otherwise, we'll |
|
// get one frame of garbage in the stack trace and fail the sanity check on |
|
// the next iteration. |
|
return sp; |
|
} |
|
#endif |
|
return 0; |
|
} |
|
|
|
// Given a pointer to a stack frame, locate and return the calling |
|
// stackframe, or return null if no stackframe can be found. Perform sanity |
|
// checks (the strictness of which is controlled by the boolean parameter |
|
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned. |
|
template <bool STRICT_UNWINDING, bool WITH_CONTEXT> |
|
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
|
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
|
static void **NextStackFrame(void **old_fp, const void *uc) { |
|
void **new_fp = (void **)*old_fp; |
|
|
|
#if defined(__linux__) && defined(__i386__) |
|
if (WITH_CONTEXT && uc != nullptr) { |
|
// How many "push %reg" instructions are there at __kernel_vsyscall? |
|
// This is constant for a given kernel and processor, so compute |
|
// it only once. |
|
static int num_push_instructions = -1; // Sentinel: not computed yet. |
|
// Initialize with sentinel value: __kernel_rt_sigreturn can not possibly |
|
// be there. |
|
static const unsigned char *kernel_rt_sigreturn_address = nullptr; |
|
static const unsigned char *kernel_vsyscall_address = nullptr; |
|
if (num_push_instructions == -1) { |
|
absl::debugging_internal::VDSOSupport vdso; |
|
if (vdso.IsPresent()) { |
|
absl::debugging_internal::VDSOSupport::SymbolInfo |
|
rt_sigreturn_symbol_info; |
|
absl::debugging_internal::VDSOSupport::SymbolInfo vsyscall_symbol_info; |
|
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5", STT_FUNC, |
|
&rt_sigreturn_symbol_info) || |
|
!vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5", STT_FUNC, |
|
&vsyscall_symbol_info) || |
|
rt_sigreturn_symbol_info.address == nullptr || |
|
vsyscall_symbol_info.address == nullptr) { |
|
// Unexpected: 32-bit VDSO is present, yet one of the expected |
|
// symbols is missing or null. |
|
assert(false && "VDSO is present, but doesn't have expected symbols"); |
|
num_push_instructions = 0; |
|
} else { |
|
kernel_rt_sigreturn_address = |
|
reinterpret_cast<const unsigned char *>( |
|
rt_sigreturn_symbol_info.address); |
|
kernel_vsyscall_address = |
|
reinterpret_cast<const unsigned char *>( |
|
vsyscall_symbol_info.address); |
|
num_push_instructions = |
|
CountPushInstructions(kernel_vsyscall_address); |
|
} |
|
} else { |
|
num_push_instructions = 0; |
|
} |
|
} |
|
if (num_push_instructions != 0 && kernel_rt_sigreturn_address != nullptr && |
|
old_fp[1] == kernel_rt_sigreturn_address) { |
|
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc); |
|
// This kernel does not use frame pointer in its VDSO code, |
|
// and so %ebp is not suitable for unwinding. |
|
void **const reg_ebp = |
|
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]); |
|
const unsigned char *const reg_eip = |
|
reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]); |
|
if (new_fp == reg_ebp && kernel_vsyscall_address <= reg_eip && |
|
reg_eip - kernel_vsyscall_address < kMaxBytes) { |
|
// We "stepped up" to __kernel_vsyscall, but %ebp is not usable. |
|
// Restore from 'ucv' instead. |
|
void **const reg_esp = |
|
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]); |
|
// Check that alleged %esp is not null and is reasonably aligned. |
|
if (reg_esp && |
|
((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) { |
|
// Check that alleged %esp is actually readable. This is to prevent |
|
// "double fault" in case we hit the first fault due to e.g. stack |
|
// corruption. |
|
void *const reg_esp2 = reg_esp[num_push_instructions - 1]; |
|
if (AddressIsReadable(reg_esp2)) { |
|
// Alleged %esp is readable, use it for further unwinding. |
|
new_fp = reinterpret_cast<void **>(reg_esp2); |
|
} |
|
} |
|
} |
|
} |
|
} |
|
#endif |
|
|
|
const uintptr_t old_fp_u = reinterpret_cast<uintptr_t>(old_fp); |
|
const uintptr_t new_fp_u = reinterpret_cast<uintptr_t>(new_fp); |
|
|
|
// Check that the transition from frame pointer old_fp to frame |
|
// pointer new_fp isn't clearly bogus. Skip the checks if new_fp |
|
// matches the signal context, so that we don't skip out early when |
|
// using an alternate signal stack. |
|
// |
|
// TODO(bcmills): The GetFP call should be completely unnecessary when |
|
// SHRINK_WRAP_FRAME_POINTER is set (because we should be back in the thread's |
|
// stack by this point), but it is empirically still needed (e.g. when the |
|
// stack includes a call to abort). unw_get_reg returns UNW_EBADREG for some |
|
// frames. Figure out why GetValidFrameAddr and/or libunwind isn't doing what |
|
// it's supposed to. |
|
if (STRICT_UNWINDING && |
|
(!WITH_CONTEXT || uc == nullptr || new_fp_u != GetFP(uc))) { |
|
// With the stack growing downwards, older stack frame must be |
|
// at a greater address that the current one. |
|
if (new_fp_u <= old_fp_u) return nullptr; |
|
if (new_fp_u - old_fp_u > kMaxFrameBytes) return nullptr; |
|
} else { |
|
if (new_fp == nullptr) return nullptr; // skip AddressIsReadable() below |
|
// In the non-strict mode, allow discontiguous stack frames. |
|
// (alternate-signal-stacks for example). |
|
if (new_fp == old_fp) return nullptr; |
|
} |
|
|
|
if (new_fp_u & (sizeof(void *) - 1)) return nullptr; |
|
#ifdef __i386__ |
|
// On 32-bit machines, the stack pointer can be very close to |
|
// 0xffffffff, so we explicitly check for a pointer into the |
|
// last two pages in the address space |
|
if (new_fp_u >= 0xffffe000) return nullptr; |
|
#endif |
|
#if !defined(_WIN32) |
|
if (!STRICT_UNWINDING) { |
|
// Lax sanity checks cause a crash in 32-bit tcmalloc/crash_reason_test |
|
// on AMD-based machines with VDSO-enabled kernels. |
|
// Make an extra sanity check to insure new_fp is readable. |
|
// Note: NextStackFrame<false>() is only called while the program |
|
// is already on its last leg, so it's ok to be slow here. |
|
|
|
if (!AddressIsReadable(new_fp)) { |
|
return nullptr; |
|
} |
|
} |
|
#endif |
|
return new_fp; |
|
} |
|
|
|
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT> |
|
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack. |
|
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack. |
|
ABSL_ATTRIBUTE_NOINLINE |
|
static int UnwindImpl(void **result, int *sizes, int max_depth, int skip_count, |
|
const void *ucp, int *min_dropped_frames) { |
|
int n = 0; |
|
void **fp = reinterpret_cast<void **>(__builtin_frame_address(0)); |
|
|
|
while (fp && n < max_depth) { |
|
if (*(fp + 1) == reinterpret_cast<void *>(0)) { |
|
// In 64-bit code, we often see a frame that |
|
// points to itself and has a return address of 0. |
|
break; |
|
} |
|
void **next_fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp); |
|
if (skip_count > 0) { |
|
skip_count--; |
|
} else { |
|
result[n] = *(fp + 1); |
|
if (IS_STACK_FRAMES) { |
|
if (next_fp > fp) { |
|
sizes[n] = (uintptr_t)next_fp - (uintptr_t)fp; |
|
} else { |
|
// A frame-size of 0 is used to indicate unknown frame size. |
|
sizes[n] = 0; |
|
} |
|
} |
|
n++; |
|
} |
|
fp = next_fp; |
|
} |
|
if (min_dropped_frames != nullptr) { |
|
// Implementation detail: we clamp the max of frames we are willing to |
|
// count, so as not to spend too much time in the loop below. |
|
const int kMaxUnwind = 1000; |
|
int j = 0; |
|
for (; fp != nullptr && j < kMaxUnwind; j++) { |
|
fp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(fp, ucp); |
|
} |
|
*min_dropped_frames = j; |
|
} |
|
return n; |
|
} |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace debugging_internal { |
|
bool StackTraceWorksForTest() { |
|
return true; |
|
} |
|
} // namespace debugging_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_X86_INL_INC_
|
|
|