Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

288 lines
10 KiB

// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#define ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <type_traits>
#include "absl/base/internal/invoke.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace cord_internal {
// Wraps std::atomic for reference counting.
class Refcount {
public:
constexpr Refcount() : count_{kRefIncrement} {}
struct Immortal {};
explicit constexpr Refcount(Immortal) : count_(kImmortalTag) {}
// Increments the reference count. Imposes no memory ordering.
inline void Increment() {
count_.fetch_add(kRefIncrement, std::memory_order_relaxed);
}
// Asserts that the current refcount is greater than 0. If the refcount is
// greater than 1, decrements the reference count.
//
// Returns false if there are no references outstanding; true otherwise.
// Inserts barriers to ensure that state written before this method returns
// false will be visible to a thread that just observed this method returning
// false.
inline bool Decrement() {
int32_t refcount = count_.load(std::memory_order_acquire);
assert(refcount > 0 || refcount & kImmortalTag);
return refcount != kRefIncrement &&
count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel) !=
kRefIncrement;
}
// Same as Decrement but expect that refcount is greater than 1.
inline bool DecrementExpectHighRefcount() {
int32_t refcount =
count_.fetch_sub(kRefIncrement, std::memory_order_acq_rel);
assert(refcount > 0 || refcount & kImmortalTag);
return refcount != kRefIncrement;
}
// Returns the current reference count using acquire semantics.
inline int32_t Get() const {
return count_.load(std::memory_order_acquire) >> kImmortalShift;
}
// Returns whether the atomic integer is 1.
// If the reference count is used in the conventional way, a
// reference count of 1 implies that the current thread owns the
// reference and no other thread shares it.
// This call performs the test for a reference count of one, and
// performs the memory barrier needed for the owning thread
// to act on the object, knowing that it has exclusive access to the
// object.
inline bool IsOne() {
return count_.load(std::memory_order_acquire) == kRefIncrement;
}
bool IsImmortal() const {
return (count_.load(std::memory_order_relaxed) & kImmortalTag) != 0;
}
private:
// We reserve the bottom bit to tag a reference count as immortal.
// By making it `1` we ensure that we never reach `0` when adding/subtracting
// `2`, thus it never looks as if it should be destroyed.
// These are used for the StringConstant constructor where we do not increase
// the refcount at construction time (due to constinit requirements) but we
// will still decrease it at destruction time to avoid branching on Unref.
enum {
kImmortalShift = 1,
kRefIncrement = 1 << kImmortalShift,
kImmortalTag = kRefIncrement - 1
};
std::atomic<int32_t> count_;
};
// The overhead of a vtable is too much for Cord, so we roll our own subclasses
// using only a single byte to differentiate classes from each other - the "tag"
// byte. Define the subclasses first so we can provide downcasting helper
// functions in the base class.
struct CordRepConcat;
struct CordRepExternal;
struct CordRepFlat;
struct CordRepSubstring;
// Various representations that we allow
enum CordRepKind {
CONCAT = 0,
EXTERNAL = 1,
SUBSTRING = 2,
RING = 3,
// We have different tags for different sized flat arrays,
// starting with FLAT, and limited to MAX_FLAT_TAG. The 224 value is based on
// the current 'size to tag' encoding of 8 / 32 bytes. If a new tag is needed
// in the future, then 'FLAT' and 'MAX_FLAT_TAG' should be adjusted as well
// as the Tag <---> Size logic so that FLAT stil represents the minimum flat
// allocation size. (32 bytes as of now).
FLAT = 4,
MAX_FLAT_TAG = 224,
};
struct CordRep {
CordRep() = default;
constexpr CordRep(Refcount::Immortal immortal, size_t l)
: length(l), refcount(immortal), tag(EXTERNAL), data{} {}
// The following three fields have to be less than 32 bytes since
// that is the smallest supported flat node size.
size_t length;
Refcount refcount;
// If tag < FLAT, it represents CordRepKind and indicates the type of node.
// Otherwise, the node type is CordRepFlat and the tag is the encoded size.
uint8_t tag;
char data[1]; // Starting point for flat array: MUST BE LAST FIELD of CordRep
inline CordRepConcat* concat();
inline const CordRepConcat* concat() const;
inline CordRepSubstring* substring();
inline const CordRepSubstring* substring() const;
inline CordRepExternal* external();
inline const CordRepExternal* external() const;
};
struct CordRepConcat : public CordRep {
CordRep* left;
CordRep* right;
uint8_t depth() const { return static_cast<uint8_t>(data[0]); }
void set_depth(uint8_t depth) { data[0] = static_cast<char>(depth); }
};
struct CordRepSubstring : public CordRep {
size_t start; // Starting offset of substring in child
CordRep* child;
};
// Type for function pointer that will invoke the releaser function and also
// delete the `CordRepExternalImpl` corresponding to the passed in
// `CordRepExternal`.
using ExternalReleaserInvoker = void (*)(CordRepExternal*);
// External CordReps are allocated together with a type erased releaser. The
// releaser is stored in the memory directly following the CordRepExternal.
struct CordRepExternal : public CordRep {
CordRepExternal() = default;
explicit constexpr CordRepExternal(absl::string_view str)
: CordRep(Refcount::Immortal{}, str.size()),
base(str.data()),
releaser_invoker(nullptr) {}
const char* base;
// Pointer to function that knows how to call and destroy the releaser.
ExternalReleaserInvoker releaser_invoker;
// Deletes (releases) the external rep.
// Requires rep != nullptr and rep->tag == EXTERNAL
static void Delete(CordRep* rep);
};
struct Rank1 {};
struct Rank0 : Rank1 {};
template <typename Releaser, typename = ::absl::base_internal::invoke_result_t<
Releaser, absl::string_view>>
void InvokeReleaser(Rank0, Releaser&& releaser, absl::string_view data) {
::absl::base_internal::invoke(std::forward<Releaser>(releaser), data);
}
template <typename Releaser,
typename = ::absl::base_internal::invoke_result_t<Releaser>>
void InvokeReleaser(Rank1, Releaser&& releaser, absl::string_view) {
::absl::base_internal::invoke(std::forward<Releaser>(releaser));
}
// We use CompressedTuple so that we can benefit from EBCO.
template <typename Releaser>
struct CordRepExternalImpl
: public CordRepExternal,
public ::absl::container_internal::CompressedTuple<Releaser> {
// The extra int arg is so that we can avoid interfering with copy/move
// constructors while still benefitting from perfect forwarding.
template <typename T>
CordRepExternalImpl(T&& releaser, int)
: CordRepExternalImpl::CompressedTuple(std::forward<T>(releaser)) {
this->releaser_invoker = &Release;
}
~CordRepExternalImpl() {
InvokeReleaser(Rank0{}, std::move(this->template get<0>()),
absl::string_view(base, length));
}
static void Release(CordRepExternal* rep) {
delete static_cast<CordRepExternalImpl*>(rep);
}
};
inline void CordRepExternal::Delete(CordRep* rep) {
assert(rep != nullptr && rep->tag == EXTERNAL);
auto* rep_external = static_cast<CordRepExternal*>(rep);
assert(rep_external->releaser_invoker != nullptr);
rep_external->releaser_invoker(rep_external);
}
template <typename Str>
struct ConstInitExternalStorage {
ABSL_CONST_INIT static CordRepExternal value;
};
template <typename Str>
CordRepExternal ConstInitExternalStorage<Str>::value(Str::value);
enum {
kMaxInline = 15,
// Tag byte & kMaxInline means we are storing a pointer.
kTreeFlag = 1 << 4,
// Tag byte & kProfiledFlag means we are profiling the Cord.
kProfiledFlag = 1 << 5
};
// If the data has length <= kMaxInline, we store it in `as_chars`, and
// store the size in `tagged_size`.
// Else we store it in a tree and store a pointer to that tree in
// `as_tree.rep` and store a tag in `tagged_size`.
struct AsTree {
absl::cord_internal::CordRep* rep;
char padding[kMaxInline + 1 - sizeof(absl::cord_internal::CordRep*) - 1];
char tagged_size;
};
constexpr char GetOrNull(absl::string_view data, size_t pos) {
return pos < data.size() ? data[pos] : '\0';
}
union InlineData {
constexpr InlineData() : as_chars{} {}
explicit constexpr InlineData(AsTree tree) : as_tree(tree) {}
explicit constexpr InlineData(absl::string_view chars)
: as_chars{GetOrNull(chars, 0), GetOrNull(chars, 1),
GetOrNull(chars, 2), GetOrNull(chars, 3),
GetOrNull(chars, 4), GetOrNull(chars, 5),
GetOrNull(chars, 6), GetOrNull(chars, 7),
GetOrNull(chars, 8), GetOrNull(chars, 9),
GetOrNull(chars, 10), GetOrNull(chars, 11),
GetOrNull(chars, 12), GetOrNull(chars, 13),
GetOrNull(chars, 14), static_cast<char>(chars.size())} {}
AsTree as_tree;
char as_chars[kMaxInline + 1];
};
static_assert(sizeof(InlineData) == kMaxInline + 1, "");
static_assert(sizeof(AsTree) == sizeof(InlineData), "");
static_assert(offsetof(AsTree, tagged_size) == kMaxInline, "");
} // namespace cord_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_INTERNAL_CORD_INTERNAL_H_