Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
989 lines
37 KiB
989 lines
37 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: hash.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
#ifndef ABSL_HASH_INTERNAL_HASH_H_ |
|
#define ABSL_HASH_INTERNAL_HASH_H_ |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <cmath> |
|
#include <cstring> |
|
#include <deque> |
|
#include <forward_list> |
|
#include <functional> |
|
#include <iterator> |
|
#include <limits> |
|
#include <list> |
|
#include <map> |
|
#include <memory> |
|
#include <set> |
|
#include <string> |
|
#include <tuple> |
|
#include <type_traits> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "absl/base/internal/endian.h" |
|
#include "absl/base/port.h" |
|
#include "absl/container/fixed_array.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/strings/string_view.h" |
|
#include "absl/types/optional.h" |
|
#include "absl/types/variant.h" |
|
#include "absl/utility/utility.h" |
|
#include "absl/hash/internal/city.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace hash_internal { |
|
|
|
// Internal detail: Large buffers are hashed in smaller chunks. This function |
|
// returns the size of these chunks. |
|
constexpr size_t PiecewiseChunkSize() { return 1024; } |
|
|
|
// PiecewiseCombiner |
|
// |
|
// PiecewiseCombiner is an internal-only helper class for hashing a piecewise |
|
// buffer of `char` or `unsigned char` as though it were contiguous. This class |
|
// provides two methods: |
|
// |
|
// H add_buffer(state, data, size) |
|
// H finalize(state) |
|
// |
|
// `add_buffer` can be called zero or more times, followed by a single call to |
|
// `finalize`. This will produce the same hash expansion as concatenating each |
|
// buffer piece into a single contiguous buffer, and passing this to |
|
// `H::combine_contiguous`. |
|
// |
|
// Example usage: |
|
// PiecewiseCombiner combiner; |
|
// for (const auto& piece : pieces) { |
|
// state = combiner.add_buffer(std::move(state), piece.data, piece.size); |
|
// } |
|
// return combiner.finalize(std::move(state)); |
|
class PiecewiseCombiner { |
|
public: |
|
PiecewiseCombiner() : position_(0) {} |
|
PiecewiseCombiner(const PiecewiseCombiner&) = delete; |
|
PiecewiseCombiner& operator=(const PiecewiseCombiner&) = delete; |
|
|
|
// PiecewiseCombiner::add_buffer() |
|
// |
|
// Appends the given range of bytes to the sequence to be hashed, which may |
|
// modify the provided hash state. |
|
template <typename H> |
|
H add_buffer(H state, const unsigned char* data, size_t size); |
|
template <typename H> |
|
H add_buffer(H state, const char* data, size_t size) { |
|
return add_buffer(std::move(state), |
|
reinterpret_cast<const unsigned char*>(data), size); |
|
} |
|
|
|
// PiecewiseCombiner::finalize() |
|
// |
|
// Finishes combining the hash sequence, which may may modify the provided |
|
// hash state. |
|
// |
|
// Once finalize() is called, add_buffer() may no longer be called. The |
|
// resulting hash state will be the same as if the pieces passed to |
|
// add_buffer() were concatenated into a single flat buffer, and then provided |
|
// to H::combine_contiguous(). |
|
template <typename H> |
|
H finalize(H state); |
|
|
|
private: |
|
unsigned char buf_[PiecewiseChunkSize()]; |
|
size_t position_; |
|
}; |
|
|
|
// HashStateBase |
|
// |
|
// A hash state object represents an intermediate state in the computation |
|
// of an unspecified hash algorithm. `HashStateBase` provides a CRTP style |
|
// base class for hash state implementations. Developers adding type support |
|
// for `absl::Hash` should not rely on any parts of the state object other than |
|
// the following member functions: |
|
// |
|
// * HashStateBase::combine() |
|
// * HashStateBase::combine_contiguous() |
|
// |
|
// A derived hash state class of type `H` must provide a static member function |
|
// with a signature similar to the following: |
|
// |
|
// `static H combine_contiguous(H state, const unsigned char*, size_t)`. |
|
// |
|
// `HashStateBase` will provide a complete implementation for a hash state |
|
// object in terms of this method. |
|
// |
|
// Example: |
|
// |
|
// // Use CRTP to define your derived class. |
|
// struct MyHashState : HashStateBase<MyHashState> { |
|
// static H combine_contiguous(H state, const unsigned char*, size_t); |
|
// using MyHashState::HashStateBase::combine; |
|
// using MyHashState::HashStateBase::combine_contiguous; |
|
// }; |
|
template <typename H> |
|
class HashStateBase { |
|
public: |
|
// HashStateBase::combine() |
|
// |
|
// Combines an arbitrary number of values into a hash state, returning the |
|
// updated state. |
|
// |
|
// Each of the value types `T` must be separately hashable by the Abseil |
|
// hashing framework. |
|
// |
|
// NOTE: |
|
// |
|
// state = H::combine(std::move(state), value1, value2, value3); |
|
// |
|
// is guaranteed to produce the same hash expansion as: |
|
// |
|
// state = H::combine(std::move(state), value1); |
|
// state = H::combine(std::move(state), value2); |
|
// state = H::combine(std::move(state), value3); |
|
template <typename T, typename... Ts> |
|
static H combine(H state, const T& value, const Ts&... values); |
|
static H combine(H state) { return state; } |
|
|
|
// HashStateBase::combine_contiguous() |
|
// |
|
// Combines a contiguous array of `size` elements into a hash state, returning |
|
// the updated state. |
|
// |
|
// NOTE: |
|
// |
|
// state = H::combine_contiguous(std::move(state), data, size); |
|
// |
|
// is NOT guaranteed to produce the same hash expansion as a for-loop (it may |
|
// perform internal optimizations). If you need this guarantee, use the |
|
// for-loop instead. |
|
template <typename T> |
|
static H combine_contiguous(H state, const T* data, size_t size); |
|
|
|
using AbslInternalPiecewiseCombiner = PiecewiseCombiner; |
|
}; |
|
|
|
// is_uniquely_represented |
|
// |
|
// `is_uniquely_represented<T>` is a trait class that indicates whether `T` |
|
// is uniquely represented. |
|
// |
|
// A type is "uniquely represented" if two equal values of that type are |
|
// guaranteed to have the same bytes in their underlying storage. In other |
|
// words, if `a == b`, then `memcmp(&a, &b, sizeof(T))` is guaranteed to be |
|
// zero. This property cannot be detected automatically, so this trait is false |
|
// by default, but can be specialized by types that wish to assert that they are |
|
// uniquely represented. This makes them eligible for certain optimizations. |
|
// |
|
// If you have any doubt whatsoever, do not specialize this template. |
|
// The default is completely safe, and merely disables some optimizations |
|
// that will not matter for most types. Specializing this template, |
|
// on the other hand, can be very hazardous. |
|
// |
|
// To be uniquely represented, a type must not have multiple ways of |
|
// representing the same value; for example, float and double are not |
|
// uniquely represented, because they have distinct representations for |
|
// +0 and -0. Furthermore, the type's byte representation must consist |
|
// solely of user-controlled data, with no padding bits and no compiler- |
|
// controlled data such as vptrs or sanitizer metadata. This is usually |
|
// very difficult to guarantee, because in most cases the compiler can |
|
// insert data and padding bits at its own discretion. |
|
// |
|
// If you specialize this template for a type `T`, you must do so in the file |
|
// that defines that type (or in this file). If you define that specialization |
|
// anywhere else, `is_uniquely_represented<T>` could have different meanings |
|
// in different places. |
|
// |
|
// The Enable parameter is meaningless; it is provided as a convenience, |
|
// to support certain SFINAE techniques when defining specializations. |
|
template <typename T, typename Enable = void> |
|
struct is_uniquely_represented : std::false_type {}; |
|
|
|
// is_uniquely_represented<unsigned char> |
|
// |
|
// unsigned char is a synonym for "byte", so it is guaranteed to be |
|
// uniquely represented. |
|
template <> |
|
struct is_uniquely_represented<unsigned char> : std::true_type {}; |
|
|
|
// is_uniquely_represented for non-standard integral types |
|
// |
|
// Integral types other than bool should be uniquely represented on any |
|
// platform that this will plausibly be ported to. |
|
template <typename Integral> |
|
struct is_uniquely_represented< |
|
Integral, typename std::enable_if<std::is_integral<Integral>::value>::type> |
|
: std::true_type {}; |
|
|
|
// is_uniquely_represented<bool> |
|
// |
|
// |
|
template <> |
|
struct is_uniquely_represented<bool> : std::false_type {}; |
|
|
|
// hash_bytes() |
|
// |
|
// Convenience function that combines `hash_state` with the byte representation |
|
// of `value`. |
|
template <typename H, typename T> |
|
H hash_bytes(H hash_state, const T& value) { |
|
const unsigned char* start = reinterpret_cast<const unsigned char*>(&value); |
|
return H::combine_contiguous(std::move(hash_state), start, sizeof(value)); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Basic Types |
|
// ----------------------------------------------------------------------------- |
|
|
|
// Note: Default `AbslHashValue` implementations live in `hash_internal`. This |
|
// allows us to block lexical scope lookup when doing an unqualified call to |
|
// `AbslHashValue` below. User-defined implementations of `AbslHashValue` can |
|
// only be found via ADL. |
|
|
|
// AbslHashValue() for hashing bool values |
|
// |
|
// We use SFINAE to ensure that this overload only accepts bool, not types that |
|
// are convertible to bool. |
|
template <typename H, typename B> |
|
typename std::enable_if<std::is_same<B, bool>::value, H>::type AbslHashValue( |
|
H hash_state, B value) { |
|
return H::combine(std::move(hash_state), |
|
static_cast<unsigned char>(value ? 1 : 0)); |
|
} |
|
|
|
// AbslHashValue() for hashing enum values |
|
template <typename H, typename Enum> |
|
typename std::enable_if<std::is_enum<Enum>::value, H>::type AbslHashValue( |
|
H hash_state, Enum e) { |
|
// In practice, we could almost certainly just invoke hash_bytes directly, |
|
// but it's possible that a sanitizer might one day want to |
|
// store data in the unused bits of an enum. To avoid that risk, we |
|
// convert to the underlying type before hashing. Hopefully this will get |
|
// optimized away; if not, we can reopen discussion with c-toolchain-team. |
|
return H::combine(std::move(hash_state), |
|
static_cast<typename std::underlying_type<Enum>::type>(e)); |
|
} |
|
// AbslHashValue() for hashing floating-point values |
|
template <typename H, typename Float> |
|
typename std::enable_if<std::is_same<Float, float>::value || |
|
std::is_same<Float, double>::value, |
|
H>::type |
|
AbslHashValue(H hash_state, Float value) { |
|
return hash_internal::hash_bytes(std::move(hash_state), |
|
value == 0 ? 0 : value); |
|
} |
|
|
|
// Long double has the property that it might have extra unused bytes in it. |
|
// For example, in x86 sizeof(long double)==16 but it only really uses 80-bits |
|
// of it. This means we can't use hash_bytes on a long double and have to |
|
// convert it to something else first. |
|
template <typename H, typename LongDouble> |
|
typename std::enable_if<std::is_same<LongDouble, long double>::value, H>::type |
|
AbslHashValue(H hash_state, LongDouble value) { |
|
const int category = std::fpclassify(value); |
|
switch (category) { |
|
case FP_INFINITE: |
|
// Add the sign bit to differentiate between +Inf and -Inf |
|
hash_state = H::combine(std::move(hash_state), std::signbit(value)); |
|
break; |
|
|
|
case FP_NAN: |
|
case FP_ZERO: |
|
default: |
|
// Category is enough for these. |
|
break; |
|
|
|
case FP_NORMAL: |
|
case FP_SUBNORMAL: |
|
// We can't convert `value` directly to double because this would have |
|
// undefined behavior if the value is out of range. |
|
// std::frexp gives us a value in the range (-1, -.5] or [.5, 1) that is |
|
// guaranteed to be in range for `double`. The truncation is |
|
// implementation defined, but that works as long as it is deterministic. |
|
int exp; |
|
auto mantissa = static_cast<double>(std::frexp(value, &exp)); |
|
hash_state = H::combine(std::move(hash_state), mantissa, exp); |
|
} |
|
|
|
return H::combine(std::move(hash_state), category); |
|
} |
|
|
|
// AbslHashValue() for hashing pointers |
|
template <typename H, typename T> |
|
H AbslHashValue(H hash_state, T* ptr) { |
|
auto v = reinterpret_cast<uintptr_t>(ptr); |
|
// Due to alignment, pointers tend to have low bits as zero, and the next few |
|
// bits follow a pattern since they are also multiples of some base value. |
|
// Mixing the pointer twice helps prevent stuck low bits for certain alignment |
|
// values. |
|
return H::combine(std::move(hash_state), v, v); |
|
} |
|
|
|
// AbslHashValue() for hashing nullptr_t |
|
template <typename H> |
|
H AbslHashValue(H hash_state, std::nullptr_t) { |
|
return H::combine(std::move(hash_state), static_cast<void*>(nullptr)); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Composite Types |
|
// ----------------------------------------------------------------------------- |
|
|
|
// is_hashable() |
|
// |
|
// Trait class which returns true if T is hashable by the absl::Hash framework. |
|
// Used for the AbslHashValue implementations for composite types below. |
|
template <typename T> |
|
struct is_hashable; |
|
|
|
// AbslHashValue() for hashing pairs |
|
template <typename H, typename T1, typename T2> |
|
typename std::enable_if<is_hashable<T1>::value && is_hashable<T2>::value, |
|
H>::type |
|
AbslHashValue(H hash_state, const std::pair<T1, T2>& p) { |
|
return H::combine(std::move(hash_state), p.first, p.second); |
|
} |
|
|
|
// hash_tuple() |
|
// |
|
// Helper function for hashing a tuple. The third argument should |
|
// be an index_sequence running from 0 to tuple_size<Tuple> - 1. |
|
template <typename H, typename Tuple, size_t... Is> |
|
H hash_tuple(H hash_state, const Tuple& t, absl::index_sequence<Is...>) { |
|
return H::combine(std::move(hash_state), std::get<Is>(t)...); |
|
} |
|
|
|
// AbslHashValue for hashing tuples |
|
template <typename H, typename... Ts> |
|
#if defined(_MSC_VER) |
|
// This SFINAE gets MSVC confused under some conditions. Let's just disable it |
|
// for now. |
|
H |
|
#else // _MSC_VER |
|
typename std::enable_if<absl::conjunction<is_hashable<Ts>...>::value, H>::type |
|
#endif // _MSC_VER |
|
AbslHashValue(H hash_state, const std::tuple<Ts...>& t) { |
|
return hash_internal::hash_tuple(std::move(hash_state), t, |
|
absl::make_index_sequence<sizeof...(Ts)>()); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Pointers |
|
// ----------------------------------------------------------------------------- |
|
|
|
// AbslHashValue for hashing unique_ptr |
|
template <typename H, typename T, typename D> |
|
H AbslHashValue(H hash_state, const std::unique_ptr<T, D>& ptr) { |
|
return H::combine(std::move(hash_state), ptr.get()); |
|
} |
|
|
|
// AbslHashValue for hashing shared_ptr |
|
template <typename H, typename T> |
|
H AbslHashValue(H hash_state, const std::shared_ptr<T>& ptr) { |
|
return H::combine(std::move(hash_state), ptr.get()); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for String-Like Types |
|
// ----------------------------------------------------------------------------- |
|
|
|
// AbslHashValue for hashing strings |
|
// |
|
// All the string-like types supported here provide the same hash expansion for |
|
// the same character sequence. These types are: |
|
// |
|
// - `absl::Cord` |
|
// - `std::string` (and std::basic_string<char, std::char_traits<char>, A> for |
|
// any allocator A) |
|
// - `absl::string_view` and `std::string_view` |
|
// |
|
// For simplicity, we currently support only `char` strings. This support may |
|
// be broadened, if necessary, but with some caution - this overload would |
|
// misbehave in cases where the traits' `eq()` member isn't equivalent to `==` |
|
// on the underlying character type. |
|
template <typename H> |
|
H AbslHashValue(H hash_state, absl::string_view str) { |
|
return H::combine( |
|
H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
|
str.size()); |
|
} |
|
|
|
// Support std::wstring, std::u16string and std::u32string. |
|
template <typename Char, typename Alloc, typename H, |
|
typename = absl::enable_if_t<std::is_same<Char, wchar_t>::value || |
|
std::is_same<Char, char16_t>::value || |
|
std::is_same<Char, char32_t>::value>> |
|
H AbslHashValue( |
|
H hash_state, |
|
const std::basic_string<Char, std::char_traits<Char>, Alloc>& str) { |
|
return H::combine( |
|
H::combine_contiguous(std::move(hash_state), str.data(), str.size()), |
|
str.size()); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Sequence Containers |
|
// ----------------------------------------------------------------------------- |
|
|
|
// AbslHashValue for hashing std::array |
|
template <typename H, typename T, size_t N> |
|
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
|
H hash_state, const std::array<T, N>& array) { |
|
return H::combine_contiguous(std::move(hash_state), array.data(), |
|
array.size()); |
|
} |
|
|
|
// AbslHashValue for hashing std::deque |
|
template <typename H, typename T, typename Allocator> |
|
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
|
H hash_state, const std::deque<T, Allocator>& deque) { |
|
// TODO(gromer): investigate a more efficient implementation taking |
|
// advantage of the chunk structure. |
|
for (const auto& t : deque) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
} |
|
return H::combine(std::move(hash_state), deque.size()); |
|
} |
|
|
|
// AbslHashValue for hashing std::forward_list |
|
template <typename H, typename T, typename Allocator> |
|
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
|
H hash_state, const std::forward_list<T, Allocator>& list) { |
|
size_t size = 0; |
|
for (const T& t : list) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
++size; |
|
} |
|
return H::combine(std::move(hash_state), size); |
|
} |
|
|
|
// AbslHashValue for hashing std::list |
|
template <typename H, typename T, typename Allocator> |
|
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
|
H hash_state, const std::list<T, Allocator>& list) { |
|
for (const auto& t : list) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
} |
|
return H::combine(std::move(hash_state), list.size()); |
|
} |
|
|
|
// AbslHashValue for hashing std::vector |
|
// |
|
// Do not use this for vector<bool>. It does not have a .data(), and a fallback |
|
// for std::hash<> is most likely faster. |
|
template <typename H, typename T, typename Allocator> |
|
typename std::enable_if<is_hashable<T>::value && !std::is_same<T, bool>::value, |
|
H>::type |
|
AbslHashValue(H hash_state, const std::vector<T, Allocator>& vector) { |
|
return H::combine(H::combine_contiguous(std::move(hash_state), vector.data(), |
|
vector.size()), |
|
vector.size()); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Ordered Associative Containers |
|
// ----------------------------------------------------------------------------- |
|
|
|
// AbslHashValue for hashing std::map |
|
template <typename H, typename Key, typename T, typename Compare, |
|
typename Allocator> |
|
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
|
H>::type |
|
AbslHashValue(H hash_state, const std::map<Key, T, Compare, Allocator>& map) { |
|
for (const auto& t : map) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
} |
|
return H::combine(std::move(hash_state), map.size()); |
|
} |
|
|
|
// AbslHashValue for hashing std::multimap |
|
template <typename H, typename Key, typename T, typename Compare, |
|
typename Allocator> |
|
typename std::enable_if<is_hashable<Key>::value && is_hashable<T>::value, |
|
H>::type |
|
AbslHashValue(H hash_state, |
|
const std::multimap<Key, T, Compare, Allocator>& map) { |
|
for (const auto& t : map) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
} |
|
return H::combine(std::move(hash_state), map.size()); |
|
} |
|
|
|
// AbslHashValue for hashing std::set |
|
template <typename H, typename Key, typename Compare, typename Allocator> |
|
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
|
H hash_state, const std::set<Key, Compare, Allocator>& set) { |
|
for (const auto& t : set) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
} |
|
return H::combine(std::move(hash_state), set.size()); |
|
} |
|
|
|
// AbslHashValue for hashing std::multiset |
|
template <typename H, typename Key, typename Compare, typename Allocator> |
|
typename std::enable_if<is_hashable<Key>::value, H>::type AbslHashValue( |
|
H hash_state, const std::multiset<Key, Compare, Allocator>& set) { |
|
for (const auto& t : set) { |
|
hash_state = H::combine(std::move(hash_state), t); |
|
} |
|
return H::combine(std::move(hash_state), set.size()); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Wrapper Types |
|
// ----------------------------------------------------------------------------- |
|
|
|
// AbslHashValue for hashing absl::optional |
|
template <typename H, typename T> |
|
typename std::enable_if<is_hashable<T>::value, H>::type AbslHashValue( |
|
H hash_state, const absl::optional<T>& opt) { |
|
if (opt) hash_state = H::combine(std::move(hash_state), *opt); |
|
return H::combine(std::move(hash_state), opt.has_value()); |
|
} |
|
|
|
// VariantVisitor |
|
template <typename H> |
|
struct VariantVisitor { |
|
H&& hash_state; |
|
template <typename T> |
|
H operator()(const T& t) const { |
|
return H::combine(std::move(hash_state), t); |
|
} |
|
}; |
|
|
|
// AbslHashValue for hashing absl::variant |
|
template <typename H, typename... T> |
|
typename std::enable_if<conjunction<is_hashable<T>...>::value, H>::type |
|
AbslHashValue(H hash_state, const absl::variant<T...>& v) { |
|
if (!v.valueless_by_exception()) { |
|
hash_state = absl::visit(VariantVisitor<H>{std::move(hash_state)}, v); |
|
} |
|
return H::combine(std::move(hash_state), v.index()); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// AbslHashValue for Other Types |
|
// ----------------------------------------------------------------------------- |
|
|
|
// AbslHashValue for hashing std::bitset is not defined, for the same reason as |
|
// for vector<bool> (see std::vector above): It does not expose the raw bytes, |
|
// and a fallback to std::hash<> is most likely faster. |
|
|
|
// ----------------------------------------------------------------------------- |
|
|
|
// hash_range_or_bytes() |
|
// |
|
// Mixes all values in the range [data, data+size) into the hash state. |
|
// This overload accepts only uniquely-represented types, and hashes them by |
|
// hashing the entire range of bytes. |
|
template <typename H, typename T> |
|
typename std::enable_if<is_uniquely_represented<T>::value, H>::type |
|
hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
|
const auto* bytes = reinterpret_cast<const unsigned char*>(data); |
|
return H::combine_contiguous(std::move(hash_state), bytes, sizeof(T) * size); |
|
} |
|
|
|
// hash_range_or_bytes() |
|
template <typename H, typename T> |
|
typename std::enable_if<!is_uniquely_represented<T>::value, H>::type |
|
hash_range_or_bytes(H hash_state, const T* data, size_t size) { |
|
for (const auto end = data + size; data < end; ++data) { |
|
hash_state = H::combine(std::move(hash_state), *data); |
|
} |
|
return hash_state; |
|
} |
|
|
|
#if defined(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE) && \ |
|
ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
|
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 1 |
|
#else |
|
#define ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ 0 |
|
#endif |
|
|
|
// HashSelect |
|
// |
|
// Type trait to select the appropriate hash implementation to use. |
|
// HashSelect::type<T> will give the proper hash implementation, to be invoked |
|
// as: |
|
// HashSelect::type<T>::Invoke(state, value) |
|
// Also, HashSelect::type<T>::value is a boolean equal to `true` if there is a |
|
// valid `Invoke` function. Types that are not hashable will have a ::value of |
|
// `false`. |
|
struct HashSelect { |
|
private: |
|
struct State : HashStateBase<State> { |
|
static State combine_contiguous(State hash_state, const unsigned char*, |
|
size_t); |
|
using State::HashStateBase::combine_contiguous; |
|
}; |
|
|
|
struct UniquelyRepresentedProbe { |
|
template <typename H, typename T> |
|
static auto Invoke(H state, const T& value) |
|
-> absl::enable_if_t<is_uniquely_represented<T>::value, H> { |
|
return hash_internal::hash_bytes(std::move(state), value); |
|
} |
|
}; |
|
|
|
struct HashValueProbe { |
|
template <typename H, typename T> |
|
static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
|
std::is_same<H, |
|
decltype(AbslHashValue(std::move(state), value))>::value, |
|
H> { |
|
return AbslHashValue(std::move(state), value); |
|
} |
|
}; |
|
|
|
struct LegacyHashProbe { |
|
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
|
template <typename H, typename T> |
|
static auto Invoke(H state, const T& value) -> absl::enable_if_t< |
|
std::is_convertible< |
|
decltype(ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>()(value)), |
|
size_t>::value, |
|
H> { |
|
return hash_internal::hash_bytes( |
|
std::move(state), |
|
ABSL_INTERNAL_LEGACY_HASH_NAMESPACE::hash<T>{}(value)); |
|
} |
|
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
|
}; |
|
|
|
struct StdHashProbe { |
|
template <typename H, typename T> |
|
static auto Invoke(H state, const T& value) |
|
-> absl::enable_if_t<type_traits_internal::IsHashable<T>::value, H> { |
|
return hash_internal::hash_bytes(std::move(state), std::hash<T>{}(value)); |
|
} |
|
}; |
|
|
|
template <typename Hash, typename T> |
|
struct Probe : Hash { |
|
private: |
|
template <typename H, typename = decltype(H::Invoke( |
|
std::declval<State>(), std::declval<const T&>()))> |
|
static std::true_type Test(int); |
|
template <typename U> |
|
static std::false_type Test(char); |
|
|
|
public: |
|
static constexpr bool value = decltype(Test<Hash>(0))::value; |
|
}; |
|
|
|
public: |
|
// Probe each implementation in order. |
|
// disjunction provides short circuiting wrt instantiation. |
|
template <typename T> |
|
using Apply = absl::disjunction< // |
|
Probe<UniquelyRepresentedProbe, T>, // |
|
Probe<HashValueProbe, T>, // |
|
Probe<LegacyHashProbe, T>, // |
|
Probe<StdHashProbe, T>, // |
|
std::false_type>; |
|
}; |
|
|
|
template <typename T> |
|
struct is_hashable |
|
: std::integral_constant<bool, HashSelect::template Apply<T>::value> {}; |
|
|
|
// CityHashState |
|
class ABSL_DLL CityHashState |
|
: public HashStateBase<CityHashState> { |
|
// absl::uint128 is not an alias or a thin wrapper around the intrinsic. |
|
// We use the intrinsic when available to improve performance. |
|
#ifdef ABSL_HAVE_INTRINSIC_INT128 |
|
using uint128 = __uint128_t; |
|
#else // ABSL_HAVE_INTRINSIC_INT128 |
|
using uint128 = absl::uint128; |
|
#endif // ABSL_HAVE_INTRINSIC_INT128 |
|
|
|
static constexpr uint64_t kMul = |
|
sizeof(size_t) == 4 ? uint64_t{0xcc9e2d51} |
|
: uint64_t{0x9ddfea08eb382d69}; |
|
|
|
template <typename T> |
|
using IntegralFastPath = |
|
conjunction<std::is_integral<T>, is_uniquely_represented<T>>; |
|
|
|
public: |
|
// Move only |
|
CityHashState(CityHashState&&) = default; |
|
CityHashState& operator=(CityHashState&&) = default; |
|
|
|
// CityHashState::combine_contiguous() |
|
// |
|
// Fundamental base case for hash recursion: mixes the given range of bytes |
|
// into the hash state. |
|
static CityHashState combine_contiguous(CityHashState hash_state, |
|
const unsigned char* first, |
|
size_t size) { |
|
return CityHashState( |
|
CombineContiguousImpl(hash_state.state_, first, size, |
|
std::integral_constant<int, sizeof(size_t)>{})); |
|
} |
|
using CityHashState::HashStateBase::combine_contiguous; |
|
|
|
// CityHashState::hash() |
|
// |
|
// For performance reasons in non-opt mode, we specialize this for |
|
// integral types. |
|
// Otherwise we would be instantiating and calling dozens of functions for |
|
// something that is just one multiplication and a couple xor's. |
|
// The result should be the same as running the whole algorithm, but faster. |
|
template <typename T, absl::enable_if_t<IntegralFastPath<T>::value, int> = 0> |
|
static size_t hash(T value) { |
|
return static_cast<size_t>(Mix(Seed(), static_cast<uint64_t>(value))); |
|
} |
|
|
|
// Overload of CityHashState::hash() |
|
template <typename T, absl::enable_if_t<!IntegralFastPath<T>::value, int> = 0> |
|
static size_t hash(const T& value) { |
|
return static_cast<size_t>(combine(CityHashState{}, value).state_); |
|
} |
|
|
|
private: |
|
// Invoked only once for a given argument; that plus the fact that this is |
|
// move-only ensures that there is only one non-moved-from object. |
|
CityHashState() : state_(Seed()) {} |
|
|
|
// Workaround for MSVC bug. |
|
// We make the type copyable to fix the calling convention, even though we |
|
// never actually copy it. Keep it private to not affect the public API of the |
|
// type. |
|
CityHashState(const CityHashState&) = default; |
|
|
|
explicit CityHashState(uint64_t state) : state_(state) {} |
|
|
|
// Implementation of the base case for combine_contiguous where we actually |
|
// mix the bytes into the state. |
|
// Dispatch to different implementations of the combine_contiguous depending |
|
// on the value of `sizeof(size_t)`. |
|
static uint64_t CombineContiguousImpl(uint64_t state, |
|
const unsigned char* first, size_t len, |
|
std::integral_constant<int, 4> |
|
/* sizeof_size_t */); |
|
static uint64_t CombineContiguousImpl(uint64_t state, |
|
const unsigned char* first, size_t len, |
|
std::integral_constant<int, 8> |
|
/* sizeof_size_t*/); |
|
|
|
// Slow dispatch path for calls to CombineContiguousImpl with a size argument |
|
// larger than PiecewiseChunkSize(). Has the same effect as calling |
|
// CombineContiguousImpl() repeatedly with the chunk stride size. |
|
static uint64_t CombineLargeContiguousImpl32(uint64_t state, |
|
const unsigned char* first, |
|
size_t len); |
|
static uint64_t CombineLargeContiguousImpl64(uint64_t state, |
|
const unsigned char* first, |
|
size_t len); |
|
|
|
// Reads 9 to 16 bytes from p. |
|
// The first 8 bytes are in .first, the rest (zero padded) bytes are in |
|
// .second. |
|
static std::pair<uint64_t, uint64_t> Read9To16(const unsigned char* p, |
|
size_t len) { |
|
uint64_t high = little_endian::Load64(p + len - 8); |
|
return {little_endian::Load64(p), high >> (128 - len * 8)}; |
|
} |
|
|
|
// Reads 4 to 8 bytes from p. Zero pads to fill uint64_t. |
|
static uint64_t Read4To8(const unsigned char* p, size_t len) { |
|
return (static_cast<uint64_t>(little_endian::Load32(p + len - 4)) |
|
<< (len - 4) * 8) | |
|
little_endian::Load32(p); |
|
} |
|
|
|
// Reads 1 to 3 bytes from p. Zero pads to fill uint32_t. |
|
static uint32_t Read1To3(const unsigned char* p, size_t len) { |
|
return static_cast<uint32_t>((p[0]) | // |
|
(p[len / 2] << (len / 2 * 8)) | // |
|
(p[len - 1] << ((len - 1) * 8))); |
|
} |
|
|
|
ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Mix(uint64_t state, uint64_t v) { |
|
using MultType = |
|
absl::conditional_t<sizeof(size_t) == 4, uint64_t, uint128>; |
|
// We do the addition in 64-bit space to make sure the 128-bit |
|
// multiplication is fast. If we were to do it as MultType the compiler has |
|
// to assume that the high word is non-zero and needs to perform 2 |
|
// multiplications instead of one. |
|
MultType m = state + v; |
|
m *= kMul; |
|
return static_cast<uint64_t>(m ^ (m >> (sizeof(m) * 8 / 2))); |
|
} |
|
|
|
// Seed() |
|
// |
|
// A non-deterministic seed. |
|
// |
|
// The current purpose of this seed is to generate non-deterministic results |
|
// and prevent having users depend on the particular hash values. |
|
// It is not meant as a security feature right now, but it leaves the door |
|
// open to upgrade it to a true per-process random seed. A true random seed |
|
// costs more and we don't need to pay for that right now. |
|
// |
|
// On platforms with ASLR, we take advantage of it to make a per-process |
|
// random value. |
|
// See https://en.wikipedia.org/wiki/Address_space_layout_randomization |
|
// |
|
// On other platforms this is still going to be non-deterministic but most |
|
// probably per-build and not per-process. |
|
ABSL_ATTRIBUTE_ALWAYS_INLINE static uint64_t Seed() { |
|
return static_cast<uint64_t>(reinterpret_cast<uintptr_t>(kSeed)); |
|
} |
|
static const void* const kSeed; |
|
|
|
uint64_t state_; |
|
}; |
|
|
|
// CityHashState::CombineContiguousImpl() |
|
inline uint64_t CityHashState::CombineContiguousImpl( |
|
uint64_t state, const unsigned char* first, size_t len, |
|
std::integral_constant<int, 4> /* sizeof_size_t */) { |
|
// For large values we use CityHash, for small ones we just use a |
|
// multiplicative hash. |
|
uint64_t v; |
|
if (len > 8) { |
|
if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
|
return CombineLargeContiguousImpl32(state, first, len); |
|
} |
|
v = absl::hash_internal::CityHash32(reinterpret_cast<const char*>(first), len); |
|
} else if (len >= 4) { |
|
v = Read4To8(first, len); |
|
} else if (len > 0) { |
|
v = Read1To3(first, len); |
|
} else { |
|
// Empty ranges have no effect. |
|
return state; |
|
} |
|
return Mix(state, v); |
|
} |
|
|
|
// Overload of CityHashState::CombineContiguousImpl() |
|
inline uint64_t CityHashState::CombineContiguousImpl( |
|
uint64_t state, const unsigned char* first, size_t len, |
|
std::integral_constant<int, 8> /* sizeof_size_t */) { |
|
// For large values we use CityHash, for small ones we just use a |
|
// multiplicative hash. |
|
uint64_t v; |
|
if (len > 16) { |
|
if (ABSL_PREDICT_FALSE(len > PiecewiseChunkSize())) { |
|
return CombineLargeContiguousImpl64(state, first, len); |
|
} |
|
v = absl::hash_internal::CityHash64(reinterpret_cast<const char*>(first), len); |
|
} else if (len > 8) { |
|
auto p = Read9To16(first, len); |
|
state = Mix(state, p.first); |
|
v = p.second; |
|
} else if (len >= 4) { |
|
v = Read4To8(first, len); |
|
} else if (len > 0) { |
|
v = Read1To3(first, len); |
|
} else { |
|
// Empty ranges have no effect. |
|
return state; |
|
} |
|
return Mix(state, v); |
|
} |
|
|
|
struct AggregateBarrier {}; |
|
|
|
// HashImpl |
|
|
|
// Add a private base class to make sure this type is not an aggregate. |
|
// Aggregates can be aggregate initialized even if the default constructor is |
|
// deleted. |
|
struct PoisonedHash : private AggregateBarrier { |
|
PoisonedHash() = delete; |
|
PoisonedHash(const PoisonedHash&) = delete; |
|
PoisonedHash& operator=(const PoisonedHash&) = delete; |
|
}; |
|
|
|
template <typename T> |
|
struct HashImpl { |
|
size_t operator()(const T& value) const { return CityHashState::hash(value); } |
|
}; |
|
|
|
template <typename T> |
|
struct Hash |
|
: absl::conditional_t<is_hashable<T>::value, HashImpl<T>, PoisonedHash> {}; |
|
|
|
template <typename H> |
|
template <typename T, typename... Ts> |
|
H HashStateBase<H>::combine(H state, const T& value, const Ts&... values) { |
|
return H::combine(hash_internal::HashSelect::template Apply<T>::Invoke( |
|
std::move(state), value), |
|
values...); |
|
} |
|
|
|
// HashStateBase::combine_contiguous() |
|
template <typename H> |
|
template <typename T> |
|
H HashStateBase<H>::combine_contiguous(H state, const T* data, size_t size) { |
|
return hash_internal::hash_range_or_bytes(std::move(state), data, size); |
|
} |
|
|
|
// HashStateBase::PiecewiseCombiner::add_buffer() |
|
template <typename H> |
|
H PiecewiseCombiner::add_buffer(H state, const unsigned char* data, |
|
size_t size) { |
|
if (position_ + size < PiecewiseChunkSize()) { |
|
// This partial chunk does not fill our existing buffer |
|
memcpy(buf_ + position_, data, size); |
|
position_ += size; |
|
return state; |
|
} |
|
|
|
// If the buffer is partially filled we need to complete the buffer |
|
// and hash it. |
|
if (position_ != 0) { |
|
const size_t bytes_needed = PiecewiseChunkSize() - position_; |
|
memcpy(buf_ + position_, data, bytes_needed); |
|
state = H::combine_contiguous(std::move(state), buf_, PiecewiseChunkSize()); |
|
data += bytes_needed; |
|
size -= bytes_needed; |
|
} |
|
|
|
// Hash whatever chunks we can without copying |
|
while (size >= PiecewiseChunkSize()) { |
|
state = H::combine_contiguous(std::move(state), data, PiecewiseChunkSize()); |
|
data += PiecewiseChunkSize(); |
|
size -= PiecewiseChunkSize(); |
|
} |
|
// Fill the buffer with the remainder |
|
memcpy(buf_, data, size); |
|
position_ = size; |
|
return state; |
|
} |
|
|
|
// HashStateBase::PiecewiseCombiner::finalize() |
|
template <typename H> |
|
H PiecewiseCombiner::finalize(H state) { |
|
// Hash the remainder left in the buffer, which may be empty |
|
return H::combine_contiguous(std::move(state), buf_, position_); |
|
} |
|
|
|
} // namespace hash_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#endif // ABSL_HASH_INTERNAL_HASH_H_
|
|
|