Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
692 lines
25 KiB
692 lines
25 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: memory.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// This header file contains utility functions for managing the creation and |
|
// conversion of smart pointers. This file is an extension to the C++ |
|
// standard <memory> library header file. |
|
|
|
#ifndef ABSL_MEMORY_MEMORY_H_ |
|
#define ABSL_MEMORY_MEMORY_H_ |
|
|
|
#include <cstddef> |
|
#include <limits> |
|
#include <memory> |
|
#include <new> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/base/macros.h" |
|
#include "absl/meta/type_traits.h" |
|
|
|
namespace absl { |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Function Template: WrapUnique() |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Adopts ownership from a raw pointer and transfers it to the returned |
|
// `std::unique_ptr`, whose type is deduced. Because of this deduction, *do not* |
|
// specify the template type `T` when calling `WrapUnique`. |
|
// |
|
// Example: |
|
// X* NewX(int, int); |
|
// auto x = WrapUnique(NewX(1, 2)); // 'x' is std::unique_ptr<X>. |
|
// |
|
// Do not call WrapUnique with an explicit type, as in |
|
// `WrapUnique<X>(NewX(1, 2))`. The purpose of WrapUnique is to automatically |
|
// deduce the pointer type. If you wish to make the type explicit, just use |
|
// `std::unique_ptr` directly. |
|
// |
|
// auto x = std::unique_ptr<X>(NewX(1, 2)); |
|
// - or - |
|
// std::unique_ptr<X> x(NewX(1, 2)); |
|
// |
|
// While `absl::WrapUnique` is useful for capturing the output of a raw |
|
// pointer factory, prefer 'absl::make_unique<T>(args...)' over |
|
// 'absl::WrapUnique(new T(args...))'. |
|
// |
|
// auto x = WrapUnique(new X(1, 2)); // works, but nonideal. |
|
// auto x = make_unique<X>(1, 2); // safer, standard, avoids raw 'new'. |
|
// |
|
// Note that `absl::WrapUnique(p)` is valid only if `delete p` is a valid |
|
// expression. In particular, `absl::WrapUnique()` cannot wrap pointers to |
|
// arrays, functions or void, and it must not be used to capture pointers |
|
// obtained from array-new expressions (even though that would compile!). |
|
template <typename T> |
|
std::unique_ptr<T> WrapUnique(T* ptr) { |
|
static_assert(!std::is_array<T>::value, "array types are unsupported"); |
|
static_assert(std::is_object<T>::value, "non-object types are unsupported"); |
|
return std::unique_ptr<T>(ptr); |
|
} |
|
|
|
namespace memory_internal { |
|
|
|
// Traits to select proper overload and return type for `absl::make_unique<>`. |
|
template <typename T> |
|
struct MakeUniqueResult { |
|
using scalar = std::unique_ptr<T>; |
|
}; |
|
template <typename T> |
|
struct MakeUniqueResult<T[]> { |
|
using array = std::unique_ptr<T[]>; |
|
}; |
|
template <typename T, size_t N> |
|
struct MakeUniqueResult<T[N]> { |
|
using invalid = void; |
|
}; |
|
|
|
} // namespace memory_internal |
|
|
|
// gcc 4.8 has __cplusplus at 201301 but doesn't define make_unique. Other |
|
// supported compilers either just define __cplusplus as 201103 but have |
|
// make_unique (msvc), or have make_unique whenever __cplusplus > 201103 (clang) |
|
#if (__cplusplus > 201103L || defined(_MSC_VER)) && \ |
|
!(defined(__GNUC__) && __GNUC__ == 4 && __GNUC_MINOR__ == 8) |
|
using std::make_unique; |
|
#else |
|
// ----------------------------------------------------------------------------- |
|
// Function Template: make_unique<T>() |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Creates a `std::unique_ptr<>`, while avoiding issues creating temporaries |
|
// during the construction process. `absl::make_unique<>` also avoids redundant |
|
// type declarations, by avoiding the need to explicitly use the `new` operator. |
|
// |
|
// This implementation of `absl::make_unique<>` is designed for C++11 code and |
|
// will be replaced in C++14 by the equivalent `std::make_unique<>` abstraction. |
|
// `absl::make_unique<>` is designed to be 100% compatible with |
|
// `std::make_unique<>` so that the eventual migration will involve a simple |
|
// rename operation. |
|
// |
|
// For more background on why `std::unique_ptr<T>(new T(a,b))` is problematic, |
|
// see Herb Sutter's explanation on |
|
// (Exception-Safe Function Calls)[https://herbsutter.com/gotw/_102/]. |
|
// (In general, reviewers should treat `new T(a,b)` with scrutiny.) |
|
// |
|
// Example usage: |
|
// |
|
// auto p = make_unique<X>(args...); // 'p' is a std::unique_ptr<X> |
|
// auto pa = make_unique<X[]>(5); // 'pa' is a std::unique_ptr<X[]> |
|
// |
|
// Three overloads of `absl::make_unique` are required: |
|
// |
|
// - For non-array T: |
|
// |
|
// Allocates a T with `new T(std::forward<Args> args...)`, |
|
// forwarding all `args` to T's constructor. |
|
// Returns a `std::unique_ptr<T>` owning that object. |
|
// |
|
// - For an array of unknown bounds T[]: |
|
// |
|
// `absl::make_unique<>` will allocate an array T of type U[] with |
|
// `new U[n]()` and return a `std::unique_ptr<U[]>` owning that array. |
|
// |
|
// Note that 'U[n]()' is different from 'U[n]', and elements will be |
|
// value-initialized. Note as well that `std::unique_ptr` will perform its |
|
// own destruction of the array elements upon leaving scope, even though |
|
// the array [] does not have a default destructor. |
|
// |
|
// NOTE: an array of unknown bounds T[] may still be (and often will be) |
|
// initialized to have a size, and will still use this overload. E.g: |
|
// |
|
// auto my_array = absl::make_unique<int[]>(10); |
|
// |
|
// - For an array of known bounds T[N]: |
|
// |
|
// `absl::make_unique<>` is deleted (like with `std::make_unique<>`) as |
|
// this overload is not useful. |
|
// |
|
// NOTE: an array of known bounds T[N] is not considered a useful |
|
// construction, and may cause undefined behavior in templates. E.g: |
|
// |
|
// auto my_array = absl::make_unique<int[10]>(); |
|
// |
|
// In those cases, of course, you can still use the overload above and |
|
// simply initialize it to its desired size: |
|
// |
|
// auto my_array = absl::make_unique<int[]>(10); |
|
|
|
// `absl::make_unique` overload for non-array types. |
|
template <typename T, typename... Args> |
|
typename memory_internal::MakeUniqueResult<T>::scalar make_unique( |
|
Args&&... args) { |
|
return std::unique_ptr<T>(new T(std::forward<Args>(args)...)); |
|
} |
|
|
|
// `absl::make_unique` overload for an array T[] of unknown bounds. |
|
// The array allocation needs to use the `new T[size]` form and cannot take |
|
// element constructor arguments. The `std::unique_ptr` will manage destructing |
|
// these array elements. |
|
template <typename T> |
|
typename memory_internal::MakeUniqueResult<T>::array make_unique(size_t n) { |
|
return std::unique_ptr<T>(new typename absl::remove_extent_t<T>[n]()); |
|
} |
|
|
|
// `absl::make_unique` overload for an array T[N] of known bounds. |
|
// This construction will be rejected. |
|
template <typename T, typename... Args> |
|
typename memory_internal::MakeUniqueResult<T>::invalid make_unique( |
|
Args&&... /* args */) = delete; |
|
#endif |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Function Template: RawPtr() |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Extracts the raw pointer from a pointer-like value `ptr`. `absl::RawPtr` is |
|
// useful within templates that need to handle a complement of raw pointers, |
|
// `std::nullptr_t`, and smart pointers. |
|
template <typename T> |
|
auto RawPtr(T&& ptr) -> decltype(std::addressof(*ptr)) { |
|
// ptr is a forwarding reference to support Ts with non-const operators. |
|
return (ptr != nullptr) ? std::addressof(*ptr) : nullptr; |
|
} |
|
inline std::nullptr_t RawPtr(std::nullptr_t) { return nullptr; } |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Function Template: ShareUniquePtr() |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Adopts a `std::unique_ptr` rvalue and returns a `std::shared_ptr` of deduced |
|
// type. Ownership (if any) of the held value is transferred to the returned |
|
// shared pointer. |
|
// |
|
// Example: |
|
// |
|
// auto up = absl::make_unique<int>(10); |
|
// auto sp = absl::ShareUniquePtr(std::move(up)); // shared_ptr<int> |
|
// CHECK_EQ(*sp, 10); |
|
// CHECK(up == nullptr); |
|
// |
|
// Note that this conversion is correct even when T is an array type, and more |
|
// generally it works for *any* deleter of the `unique_ptr` (single-object |
|
// deleter, array deleter, or any custom deleter), since the deleter is adopted |
|
// by the shared pointer as well. The deleter is copied (unless it is a |
|
// reference). |
|
// |
|
// Implements the resolution of [LWG 2415](http://wg21.link/lwg2415), by which a |
|
// null shared pointer does not attempt to call the deleter. |
|
template <typename T, typename D> |
|
std::shared_ptr<T> ShareUniquePtr(std::unique_ptr<T, D>&& ptr) { |
|
return ptr ? std::shared_ptr<T>(std::move(ptr)) : std::shared_ptr<T>(); |
|
} |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Function Template: WeakenPtr() |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// Creates a weak pointer associated with a given shared pointer. The returned |
|
// value is a `std::weak_ptr` of deduced type. |
|
// |
|
// Example: |
|
// |
|
// auto sp = std::make_shared<int>(10); |
|
// auto wp = absl::WeakenPtr(sp); |
|
// CHECK_EQ(sp.get(), wp.lock().get()); |
|
// sp.reset(); |
|
// CHECK(wp.lock() == nullptr); |
|
// |
|
template <typename T> |
|
std::weak_ptr<T> WeakenPtr(const std::shared_ptr<T>& ptr) { |
|
return std::weak_ptr<T>(ptr); |
|
} |
|
|
|
namespace memory_internal { |
|
|
|
// ExtractOr<E, O, D>::type evaluates to E<O> if possible. Otherwise, D. |
|
template <template <typename> class Extract, typename Obj, typename Default, |
|
typename> |
|
struct ExtractOr { |
|
using type = Default; |
|
}; |
|
|
|
template <template <typename> class Extract, typename Obj, typename Default> |
|
struct ExtractOr<Extract, Obj, Default, void_t<Extract<Obj>>> { |
|
using type = Extract<Obj>; |
|
}; |
|
|
|
template <template <typename> class Extract, typename Obj, typename Default> |
|
using ExtractOrT = typename ExtractOr<Extract, Obj, Default, void>::type; |
|
|
|
// Extractors for the features of allocators. |
|
template <typename T> |
|
using GetPointer = typename T::pointer; |
|
|
|
template <typename T> |
|
using GetConstPointer = typename T::const_pointer; |
|
|
|
template <typename T> |
|
using GetVoidPointer = typename T::void_pointer; |
|
|
|
template <typename T> |
|
using GetConstVoidPointer = typename T::const_void_pointer; |
|
|
|
template <typename T> |
|
using GetDifferenceType = typename T::difference_type; |
|
|
|
template <typename T> |
|
using GetSizeType = typename T::size_type; |
|
|
|
template <typename T> |
|
using GetPropagateOnContainerCopyAssignment = |
|
typename T::propagate_on_container_copy_assignment; |
|
|
|
template <typename T> |
|
using GetPropagateOnContainerMoveAssignment = |
|
typename T::propagate_on_container_move_assignment; |
|
|
|
template <typename T> |
|
using GetPropagateOnContainerSwap = typename T::propagate_on_container_swap; |
|
|
|
template <typename T> |
|
using GetIsAlwaysEqual = typename T::is_always_equal; |
|
|
|
template <typename T> |
|
struct GetFirstArg; |
|
|
|
template <template <typename...> class Class, typename T, typename... Args> |
|
struct GetFirstArg<Class<T, Args...>> { |
|
using type = T; |
|
}; |
|
|
|
template <typename Ptr, typename = void> |
|
struct ElementType { |
|
using type = typename GetFirstArg<Ptr>::type; |
|
}; |
|
|
|
template <typename T> |
|
struct ElementType<T, void_t<typename T::element_type>> { |
|
using type = typename T::element_type; |
|
}; |
|
|
|
template <typename T, typename U> |
|
struct RebindFirstArg; |
|
|
|
template <template <typename...> class Class, typename T, typename... Args, |
|
typename U> |
|
struct RebindFirstArg<Class<T, Args...>, U> { |
|
using type = Class<U, Args...>; |
|
}; |
|
|
|
template <typename T, typename U, typename = void> |
|
struct RebindPtr { |
|
using type = typename RebindFirstArg<T, U>::type; |
|
}; |
|
|
|
template <typename T, typename U> |
|
struct RebindPtr<T, U, void_t<typename T::template rebind<U>>> { |
|
using type = typename T::template rebind<U>; |
|
}; |
|
|
|
template <typename T, typename U> |
|
constexpr bool HasRebindAlloc(...) { |
|
return false; |
|
} |
|
|
|
template <typename T, typename U> |
|
constexpr bool HasRebindAlloc(typename T::template rebind<U>::other*) { |
|
return true; |
|
} |
|
|
|
template <typename T, typename U, bool = HasRebindAlloc<T, U>(nullptr)> |
|
struct RebindAlloc { |
|
using type = typename RebindFirstArg<T, U>::type; |
|
}; |
|
|
|
template <typename T, typename U> |
|
struct RebindAlloc<T, U, true> { |
|
using type = typename T::template rebind<U>::other; |
|
}; |
|
|
|
} // namespace memory_internal |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Class Template: pointer_traits |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// An implementation of C++11's std::pointer_traits. |
|
// |
|
// Provided for portability on toolchains that have a working C++11 compiler, |
|
// but the standard library is lacking in C++11 support. For example, some |
|
// version of the Android NDK. |
|
// |
|
|
|
template <typename Ptr> |
|
struct pointer_traits { |
|
using pointer = Ptr; |
|
|
|
// element_type: |
|
// Ptr::element_type if present. Otherwise T if Ptr is a template |
|
// instantiation Template<T, Args...> |
|
using element_type = typename memory_internal::ElementType<Ptr>::type; |
|
|
|
// difference_type: |
|
// Ptr::difference_type if present, otherwise std::ptrdiff_t |
|
using difference_type = |
|
memory_internal::ExtractOrT<memory_internal::GetDifferenceType, Ptr, |
|
std::ptrdiff_t>; |
|
|
|
// rebind: |
|
// Ptr::rebind<U> if exists, otherwise Template<U, Args...> if Ptr is a |
|
// template instantiation Template<T, Args...> |
|
template <typename U> |
|
using rebind = typename memory_internal::RebindPtr<Ptr, U>::type; |
|
|
|
// pointer_to: |
|
// Calls Ptr::pointer_to(r) |
|
static pointer pointer_to(element_type& r) { // NOLINT(runtime/references) |
|
return Ptr::pointer_to(r); |
|
} |
|
}; |
|
|
|
// Specialization for T*. |
|
template <typename T> |
|
struct pointer_traits<T*> { |
|
using pointer = T*; |
|
using element_type = T; |
|
using difference_type = std::ptrdiff_t; |
|
|
|
template <typename U> |
|
using rebind = U*; |
|
|
|
// pointer_to: |
|
// Calls std::addressof(r) |
|
static pointer pointer_to( |
|
element_type& r) noexcept { // NOLINT(runtime/references) |
|
return std::addressof(r); |
|
} |
|
}; |
|
|
|
// ----------------------------------------------------------------------------- |
|
// Class Template: allocator_traits |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// A C++11 compatible implementation of C++17's std::allocator_traits. |
|
// |
|
template <typename Alloc> |
|
struct allocator_traits { |
|
using allocator_type = Alloc; |
|
|
|
// value_type: |
|
// Alloc::value_type |
|
using value_type = typename Alloc::value_type; |
|
|
|
// pointer: |
|
// Alloc::pointer if present, otherwise value_type* |
|
using pointer = memory_internal::ExtractOrT<memory_internal::GetPointer, |
|
Alloc, value_type*>; |
|
|
|
// const_pointer: |
|
// Alloc::const_pointer if present, otherwise |
|
// absl::pointer_traits<pointer>::rebind<const value_type> |
|
using const_pointer = |
|
memory_internal::ExtractOrT<memory_internal::GetConstPointer, Alloc, |
|
typename absl::pointer_traits<pointer>:: |
|
template rebind<const value_type>>; |
|
|
|
// void_pointer: |
|
// Alloc::void_pointer if present, otherwise |
|
// absl::pointer_traits<pointer>::rebind<void> |
|
using void_pointer = memory_internal::ExtractOrT< |
|
memory_internal::GetVoidPointer, Alloc, |
|
typename absl::pointer_traits<pointer>::template rebind<void>>; |
|
|
|
// const_void_pointer: |
|
// Alloc::const_void_pointer if present, otherwise |
|
// absl::pointer_traits<pointer>::rebind<const void> |
|
using const_void_pointer = memory_internal::ExtractOrT< |
|
memory_internal::GetConstVoidPointer, Alloc, |
|
typename absl::pointer_traits<pointer>::template rebind<const void>>; |
|
|
|
// difference_type: |
|
// Alloc::difference_type if present, otherwise |
|
// absl::pointer_traits<pointer>::difference_type |
|
using difference_type = memory_internal::ExtractOrT< |
|
memory_internal::GetDifferenceType, Alloc, |
|
typename absl::pointer_traits<pointer>::difference_type>; |
|
|
|
// size_type: |
|
// Alloc::size_type if present, otherwise |
|
// std::make_unsigned<difference_type>::type |
|
using size_type = memory_internal::ExtractOrT< |
|
memory_internal::GetSizeType, Alloc, |
|
typename std::make_unsigned<difference_type>::type>; |
|
|
|
// propagate_on_container_copy_assignment: |
|
// Alloc::propagate_on_container_copy_assignment if present, otherwise |
|
// std::false_type |
|
using propagate_on_container_copy_assignment = memory_internal::ExtractOrT< |
|
memory_internal::GetPropagateOnContainerCopyAssignment, Alloc, |
|
std::false_type>; |
|
|
|
// propagate_on_container_move_assignment: |
|
// Alloc::propagate_on_container_move_assignment if present, otherwise |
|
// std::false_type |
|
using propagate_on_container_move_assignment = memory_internal::ExtractOrT< |
|
memory_internal::GetPropagateOnContainerMoveAssignment, Alloc, |
|
std::false_type>; |
|
|
|
// propagate_on_container_swap: |
|
// Alloc::propagate_on_container_swap if present, otherwise std::false_type |
|
using propagate_on_container_swap = |
|
memory_internal::ExtractOrT<memory_internal::GetPropagateOnContainerSwap, |
|
Alloc, std::false_type>; |
|
|
|
// is_always_equal: |
|
// Alloc::is_always_equal if present, otherwise std::is_empty<Alloc>::type |
|
using is_always_equal = |
|
memory_internal::ExtractOrT<memory_internal::GetIsAlwaysEqual, Alloc, |
|
typename std::is_empty<Alloc>::type>; |
|
|
|
// rebind_alloc: |
|
// Alloc::rebind<T>::other if present, otherwise Alloc<T, Args> if this Alloc |
|
// is Alloc<U, Args> |
|
template <typename T> |
|
using rebind_alloc = typename memory_internal::RebindAlloc<Alloc, T>::type; |
|
|
|
// rebind_traits: |
|
// absl::allocator_traits<rebind_alloc<T>> |
|
template <typename T> |
|
using rebind_traits = absl::allocator_traits<rebind_alloc<T>>; |
|
|
|
// allocate(Alloc& a, size_type n): |
|
// Calls a.allocate(n) |
|
static pointer allocate(Alloc& a, // NOLINT(runtime/references) |
|
size_type n) { |
|
return a.allocate(n); |
|
} |
|
|
|
// allocate(Alloc& a, size_type n, const_void_pointer hint): |
|
// Calls a.allocate(n, hint) if possible. |
|
// If not possible, calls a.allocate(n) |
|
static pointer allocate(Alloc& a, size_type n, // NOLINT(runtime/references) |
|
const_void_pointer hint) { |
|
return allocate_impl(0, a, n, hint); |
|
} |
|
|
|
// deallocate(Alloc& a, pointer p, size_type n): |
|
// Calls a.deallocate(p, n) |
|
static void deallocate(Alloc& a, pointer p, // NOLINT(runtime/references) |
|
size_type n) { |
|
a.deallocate(p, n); |
|
} |
|
|
|
// construct(Alloc& a, T* p, Args&&... args): |
|
// Calls a.construct(p, std::forward<Args>(args)...) if possible. |
|
// If not possible, calls |
|
// ::new (static_cast<void*>(p)) T(std::forward<Args>(args)...) |
|
template <typename T, typename... Args> |
|
static void construct(Alloc& a, T* p, // NOLINT(runtime/references) |
|
Args&&... args) { |
|
construct_impl(0, a, p, std::forward<Args>(args)...); |
|
} |
|
|
|
// destroy(Alloc& a, T* p): |
|
// Calls a.destroy(p) if possible. If not possible, calls p->~T(). |
|
template <typename T> |
|
static void destroy(Alloc& a, T* p) { // NOLINT(runtime/references) |
|
destroy_impl(0, a, p); |
|
} |
|
|
|
// max_size(const Alloc& a): |
|
// Returns a.max_size() if possible. If not possible, returns |
|
// std::numeric_limits<size_type>::max() / sizeof(value_type) |
|
static size_type max_size(const Alloc& a) { return max_size_impl(0, a); } |
|
|
|
// select_on_container_copy_construction(const Alloc& a): |
|
// Returns a.select_on_container_copy_construction() if possible. |
|
// If not possible, returns a. |
|
static Alloc select_on_container_copy_construction(const Alloc& a) { |
|
return select_on_container_copy_construction_impl(0, a); |
|
} |
|
|
|
private: |
|
template <typename A> |
|
static auto allocate_impl(int, A& a, // NOLINT(runtime/references) |
|
size_type n, const_void_pointer hint) |
|
-> decltype(a.allocate(n, hint)) { |
|
return a.allocate(n, hint); |
|
} |
|
static pointer allocate_impl(char, Alloc& a, // NOLINT(runtime/references) |
|
size_type n, const_void_pointer) { |
|
return a.allocate(n); |
|
} |
|
|
|
template <typename A, typename... Args> |
|
static auto construct_impl(int, A& a, // NOLINT(runtime/references) |
|
Args&&... args) |
|
-> decltype(a.construct(std::forward<Args>(args)...)) { |
|
a.construct(std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename T, typename... Args> |
|
static void construct_impl(char, Alloc&, T* p, Args&&... args) { |
|
::new (static_cast<void*>(p)) T(std::forward<Args>(args)...); |
|
} |
|
|
|
template <typename A, typename T> |
|
static auto destroy_impl(int, A& a, // NOLINT(runtime/references) |
|
T* p) -> decltype(a.destroy(p)) { |
|
a.destroy(p); |
|
} |
|
template <typename T> |
|
static void destroy_impl(char, Alloc&, T* p) { |
|
p->~T(); |
|
} |
|
|
|
template <typename A> |
|
static auto max_size_impl(int, const A& a) -> decltype(a.max_size()) { |
|
return a.max_size(); |
|
} |
|
static size_type max_size_impl(char, const Alloc&) { |
|
return (std::numeric_limits<size_type>::max)() / sizeof(value_type); |
|
} |
|
|
|
template <typename A> |
|
static auto select_on_container_copy_construction_impl(int, const A& a) |
|
-> decltype(a.select_on_container_copy_construction()) { |
|
return a.select_on_container_copy_construction(); |
|
} |
|
static Alloc select_on_container_copy_construction_impl(char, |
|
const Alloc& a) { |
|
return a; |
|
} |
|
}; |
|
|
|
namespace memory_internal { |
|
|
|
// This template alias transforms Alloc::is_nothrow into a metafunction with |
|
// Alloc as a parameter so it can be used with ExtractOrT<>. |
|
template <typename Alloc> |
|
using GetIsNothrow = typename Alloc::is_nothrow; |
|
|
|
} // namespace memory_internal |
|
|
|
// ABSL_ALLOCATOR_NOTHROW is a build time configuration macro for user to |
|
// specify whether the default allocation function can throw or never throws. |
|
// If the allocation function never throws, user should define it to a non-zero |
|
// value (e.g. via `-DABSL_ALLOCATOR_NOTHROW`). |
|
// If the allocation function can throw, user should leave it undefined or |
|
// define it to zero. |
|
// |
|
// allocator_is_nothrow<Alloc> is a traits class that derives from |
|
// Alloc::is_nothrow if present, otherwise std::false_type. It's specialized |
|
// for Alloc = std::allocator<T> for any type T according to the state of |
|
// ABSL_ALLOCATOR_NOTHROW. |
|
// |
|
// default_allocator_is_nothrow is a class that derives from std::true_type |
|
// when the default allocator (global operator new) never throws, and |
|
// std::false_type when it can throw. It is a convenience shorthand for writing |
|
// allocator_is_nothrow<std::allocator<T>> (T can be any type). |
|
// NOTE: allocator_is_nothrow<std::allocator<T>> is guaranteed to derive from |
|
// the same type for all T, because users should specialize neither |
|
// allocator_is_nothrow nor std::allocator. |
|
template <typename Alloc> |
|
struct allocator_is_nothrow |
|
: memory_internal::ExtractOrT<memory_internal::GetIsNothrow, Alloc, |
|
std::false_type> {}; |
|
|
|
#if defined(ABSL_ALLOCATOR_NOTHROW) && ABSL_ALLOCATOR_NOTHROW |
|
template <typename T> |
|
struct allocator_is_nothrow<std::allocator<T>> : std::true_type {}; |
|
struct default_allocator_is_nothrow : std::true_type {}; |
|
#else |
|
struct default_allocator_is_nothrow : std::false_type {}; |
|
#endif |
|
|
|
namespace memory_internal { |
|
template <typename Allocator, typename Iterator, typename... Args> |
|
void ConstructRange(Allocator& alloc, Iterator first, Iterator last, |
|
const Args&... args) { |
|
for (Iterator cur = first; cur != last; ++cur) { |
|
ABSL_INTERNAL_TRY { |
|
std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
|
args...); |
|
} |
|
ABSL_INTERNAL_CATCH_ANY { |
|
while (cur != first) { |
|
--cur; |
|
std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
|
} |
|
ABSL_INTERNAL_RETHROW; |
|
} |
|
} |
|
} |
|
|
|
template <typename Allocator, typename Iterator, typename InputIterator> |
|
void CopyRange(Allocator& alloc, Iterator destination, InputIterator first, |
|
InputIterator last) { |
|
for (Iterator cur = destination; first != last; |
|
static_cast<void>(++cur), static_cast<void>(++first)) { |
|
ABSL_INTERNAL_TRY { |
|
std::allocator_traits<Allocator>::construct(alloc, std::addressof(*cur), |
|
*first); |
|
} |
|
ABSL_INTERNAL_CATCH_ANY { |
|
while (cur != destination) { |
|
--cur; |
|
std::allocator_traits<Allocator>::destroy(alloc, std::addressof(*cur)); |
|
} |
|
ABSL_INTERNAL_RETHROW; |
|
} |
|
} |
|
} |
|
} // namespace memory_internal |
|
} // namespace absl |
|
|
|
#endif // ABSL_MEMORY_MEMORY_H_
|
|
|