Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
427 lines
14 KiB
427 lines
14 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/zipf_distribution.h" |
|
|
|
#include <algorithm> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <iterator> |
|
#include <random> |
|
#include <string> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/random/internal/chi_square.h" |
|
#include "absl/random/internal/pcg_engine.h" |
|
#include "absl/random/internal/sequence_urbg.h" |
|
#include "absl/random/random.h" |
|
#include "absl/strings/str_cat.h" |
|
#include "absl/strings/str_replace.h" |
|
#include "absl/strings/strip.h" |
|
|
|
namespace { |
|
|
|
using ::absl::random_internal::kChiSquared; |
|
using ::testing::ElementsAre; |
|
|
|
template <typename IntType> |
|
class ZipfDistributionTypedTest : public ::testing::Test {}; |
|
|
|
using IntTypes = ::testing::Types<int, int8_t, int16_t, int32_t, int64_t, |
|
uint8_t, uint16_t, uint32_t, uint64_t>; |
|
TYPED_TEST_SUITE(ZipfDistributionTypedTest, IntTypes); |
|
|
|
TYPED_TEST(ZipfDistributionTypedTest, SerializeTest) { |
|
using param_type = typename absl::zipf_distribution<TypeParam>::param_type; |
|
|
|
constexpr int kCount = 1000; |
|
absl::InsecureBitGen gen; |
|
for (const auto& param : { |
|
param_type(), |
|
param_type(32), |
|
param_type(100, 3, 2), |
|
param_type(std::numeric_limits<TypeParam>::max(), 4, 3), |
|
param_type(std::numeric_limits<TypeParam>::max() / 2), |
|
}) { |
|
// Validate parameters. |
|
const auto k = param.k(); |
|
const auto q = param.q(); |
|
const auto v = param.v(); |
|
|
|
absl::zipf_distribution<TypeParam> before(k, q, v); |
|
EXPECT_EQ(before.k(), param.k()); |
|
EXPECT_EQ(before.q(), param.q()); |
|
EXPECT_EQ(before.v(), param.v()); |
|
|
|
{ |
|
absl::zipf_distribution<TypeParam> via_param(param); |
|
EXPECT_EQ(via_param, before); |
|
} |
|
|
|
// Validate stream serialization. |
|
std::stringstream ss; |
|
ss << before; |
|
absl::zipf_distribution<TypeParam> after(4, 5.5, 4.4); |
|
|
|
EXPECT_NE(before.k(), after.k()); |
|
EXPECT_NE(before.q(), after.q()); |
|
EXPECT_NE(before.v(), after.v()); |
|
EXPECT_NE(before.param(), after.param()); |
|
EXPECT_NE(before, after); |
|
|
|
ss >> after; |
|
|
|
EXPECT_EQ(before.k(), after.k()); |
|
EXPECT_EQ(before.q(), after.q()); |
|
EXPECT_EQ(before.v(), after.v()); |
|
EXPECT_EQ(before.param(), after.param()); |
|
EXPECT_EQ(before, after); |
|
|
|
// Smoke test. |
|
auto sample_min = after.max(); |
|
auto sample_max = after.min(); |
|
for (int i = 0; i < kCount; i++) { |
|
auto sample = after(gen); |
|
EXPECT_GE(sample, after.min()); |
|
EXPECT_LE(sample, after.max()); |
|
if (sample > sample_max) sample_max = sample; |
|
if (sample < sample_min) sample_min = sample; |
|
} |
|
ABSL_INTERNAL_LOG(INFO, |
|
absl::StrCat("Range: ", +sample_min, ", ", +sample_max)); |
|
} |
|
} |
|
|
|
class ZipfModel { |
|
public: |
|
ZipfModel(size_t k, double q, double v) : k_(k), q_(q), v_(v) {} |
|
|
|
double mean() const { return mean_; } |
|
|
|
// For the other moments of the Zipf distribution, see, for example, |
|
// http://mathworld.wolfram.com/ZipfDistribution.html |
|
|
|
// PMF(k) = (1 / k^s) / H(N,s) |
|
// Returns the probability that any single invocation returns k. |
|
double PMF(size_t i) { return i >= hnq_.size() ? 0.0 : hnq_[i] / sum_hnq_; } |
|
|
|
// CDF = H(k, s) / H(N,s) |
|
double CDF(size_t i) { |
|
if (i >= hnq_.size()) { |
|
return 1.0; |
|
} |
|
auto it = std::begin(hnq_); |
|
double h = 0.0; |
|
for (const auto end = it; it != end; it++) { |
|
h += *it; |
|
} |
|
return h / sum_hnq_; |
|
} |
|
|
|
// The InverseCDF returns the k values which bound p on the upper and lower |
|
// bound. Since there is no closed-form solution, this is implemented as a |
|
// bisction of the cdf. |
|
std::pair<size_t, size_t> InverseCDF(double p) { |
|
size_t min = 0; |
|
size_t max = hnq_.size(); |
|
while (max > min + 1) { |
|
size_t target = (max + min) >> 1; |
|
double x = CDF(target); |
|
if (x > p) { |
|
max = target; |
|
} else { |
|
min = target; |
|
} |
|
} |
|
return {min, max}; |
|
} |
|
|
|
// Compute the probability totals, which are based on the generalized harmonic |
|
// number, H(N,s). |
|
// H(N,s) == SUM(k=1..N, 1 / k^s) |
|
// |
|
// In the limit, H(N,s) == zetac(s) + 1. |
|
// |
|
// NOTE: The mean of a zipf distribution could be computed here as well. |
|
// Mean := H(N, s-1) / H(N,s). |
|
// Given the parameter v = 1, this gives the following function: |
|
// (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944 |
|
// |
|
void Init() { |
|
if (!hnq_.empty()) { |
|
return; |
|
} |
|
hnq_.clear(); |
|
hnq_.reserve(std::min(k_, size_t{1000})); |
|
|
|
sum_hnq_ = 0; |
|
double qm1 = q_ - 1.0; |
|
double sum_hnq_m1 = 0; |
|
for (size_t i = 0; i < k_; i++) { |
|
// Partial n-th generalized harmonic number |
|
const double x = v_ + i; |
|
|
|
// H(n, q-1) |
|
const double hnqm1 = |
|
(q_ == 2.0) ? (1.0 / x) |
|
: (q_ == 3.0) ? (1.0 / (x * x)) : std::pow(x, -qm1); |
|
sum_hnq_m1 += hnqm1; |
|
|
|
// H(n, q) |
|
const double hnq = |
|
(q_ == 2.0) ? (1.0 / (x * x)) |
|
: (q_ == 3.0) ? (1.0 / (x * x * x)) : std::pow(x, -q_); |
|
sum_hnq_ += hnq; |
|
hnq_.push_back(hnq); |
|
if (i > 1000 && hnq <= 1e-10) { |
|
// The harmonic number is too small. |
|
break; |
|
} |
|
} |
|
assert(sum_hnq_ > 0); |
|
mean_ = sum_hnq_m1 / sum_hnq_; |
|
} |
|
|
|
private: |
|
const size_t k_; |
|
const double q_; |
|
const double v_; |
|
|
|
double mean_; |
|
std::vector<double> hnq_; |
|
double sum_hnq_; |
|
}; |
|
|
|
using zipf_u64 = absl::zipf_distribution<uint64_t>; |
|
|
|
class ZipfTest : public testing::TestWithParam<zipf_u64::param_type>, |
|
public ZipfModel { |
|
public: |
|
ZipfTest() : ZipfModel(GetParam().k(), GetParam().q(), GetParam().v()) {} |
|
|
|
// We use a fixed bit generator for distribution accuracy tests. This allows |
|
// these tests to be deterministic, while still testing the qualify of the |
|
// implementation. |
|
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6}; |
|
}; |
|
|
|
TEST_P(ZipfTest, ChiSquaredTest) { |
|
const auto& param = GetParam(); |
|
Init(); |
|
|
|
size_t trials = 10000; |
|
|
|
// Find the split-points for the buckets. |
|
std::vector<size_t> points; |
|
std::vector<double> expected; |
|
{ |
|
double last_cdf = 0.0; |
|
double min_p = 1.0; |
|
for (double p = 0.01; p < 1.0; p += 0.01) { |
|
auto x = InverseCDF(p); |
|
if (points.empty() || points.back() < x.second) { |
|
const double p = CDF(x.second); |
|
points.push_back(x.second); |
|
double q = p - last_cdf; |
|
expected.push_back(q); |
|
last_cdf = p; |
|
if (q < min_p) { |
|
min_p = q; |
|
} |
|
} |
|
} |
|
if (last_cdf < 0.999) { |
|
points.push_back(std::numeric_limits<size_t>::max()); |
|
double q = 1.0 - last_cdf; |
|
expected.push_back(q); |
|
if (q < min_p) { |
|
min_p = q; |
|
} |
|
} else { |
|
points.back() = std::numeric_limits<size_t>::max(); |
|
expected.back() += (1.0 - last_cdf); |
|
} |
|
// The Chi-Squared score is not completely scale-invariant; it works best |
|
// when the small values are in the small digits. |
|
trials = static_cast<size_t>(8.0 / min_p); |
|
} |
|
ASSERT_GT(points.size(), 0); |
|
|
|
// Generate n variates and fill the counts vector with the count of their |
|
// occurrences. |
|
std::vector<int64_t> buckets(points.size(), 0); |
|
double avg = 0; |
|
{ |
|
zipf_u64 dis(param); |
|
for (size_t i = 0; i < trials; i++) { |
|
uint64_t x = dis(rng_); |
|
ASSERT_LE(x, dis.max()); |
|
ASSERT_GE(x, dis.min()); |
|
avg += static_cast<double>(x); |
|
auto it = std::upper_bound(std::begin(points), std::end(points), |
|
static_cast<size_t>(x)); |
|
buckets[std::distance(std::begin(points), it)]++; |
|
} |
|
avg = avg / static_cast<double>(trials); |
|
} |
|
|
|
// Validate the output using the Chi-Squared test. |
|
for (auto& e : expected) { |
|
e *= trials; |
|
} |
|
|
|
// The null-hypothesis is that the distribution is a poisson distribution with |
|
// the provided mean (not estimated from the data). |
|
const int dof = static_cast<int>(expected.size()) - 1; |
|
|
|
// NOTE: This test runs about 15x per invocation, so a value of 0.9995 is |
|
// approximately correct for a test suite failure rate of 1 in 100. In |
|
// practice we see failures slightly higher than that. |
|
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.9999); |
|
|
|
const double chi_square = absl::random_internal::ChiSquare( |
|
std::begin(buckets), std::end(buckets), std::begin(expected), |
|
std::end(expected)); |
|
|
|
const double p_actual = |
|
absl::random_internal::ChiSquarePValue(chi_square, dof); |
|
|
|
// Log if the chi_squared value is above the threshold. |
|
if (chi_square > threshold) { |
|
ABSL_INTERNAL_LOG(INFO, "values"); |
|
for (size_t i = 0; i < expected.size(); i++) { |
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat(points[i], ": ", buckets[i], |
|
" vs. E=", expected[i])); |
|
} |
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat("trials ", trials)); |
|
ABSL_INTERNAL_LOG(INFO, |
|
absl::StrCat("mean ", avg, " vs. expected ", mean())); |
|
ABSL_INTERNAL_LOG(INFO, absl::StrCat(kChiSquared, "(data, ", dof, ") = ", |
|
chi_square, " (", p_actual, ")")); |
|
ABSL_INTERNAL_LOG(INFO, |
|
absl::StrCat(kChiSquared, " @ 0.9995 = ", threshold)); |
|
FAIL() << kChiSquared << " value of " << chi_square |
|
<< " is above the threshold."; |
|
} |
|
} |
|
|
|
std::vector<zipf_u64::param_type> GenParams() { |
|
using param = zipf_u64::param_type; |
|
const auto k = param().k(); |
|
const auto q = param().q(); |
|
const auto v = param().v(); |
|
const uint64_t k2 = 1 << 10; |
|
return std::vector<zipf_u64::param_type>{ |
|
// Default |
|
param(k, q, v), |
|
// vary K |
|
param(4, q, v), param(1 << 4, q, v), param(k2, q, v), |
|
// vary V |
|
param(k2, q, 0.5), param(k2, q, 1.5), param(k2, q, 2.5), param(k2, q, 10), |
|
// vary Q |
|
param(k2, 1.5, v), param(k2, 3, v), param(k2, 5, v), param(k2, 10, v), |
|
// Vary V & Q |
|
param(k2, 1.5, 0.5), param(k2, 3, 1.5), param(k, 10, 10)}; |
|
} |
|
|
|
std::string ParamName( |
|
const ::testing::TestParamInfo<zipf_u64::param_type>& info) { |
|
const auto& p = info.param; |
|
std::string name = absl::StrCat("k_", p.k(), "__q_", absl::SixDigits(p.q()), |
|
"__v_", absl::SixDigits(p.v())); |
|
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}}); |
|
} |
|
|
|
INSTANTIATE_TEST_SUITE_P(All, ZipfTest, ::testing::ValuesIn(GenParams()), |
|
ParamName); |
|
|
|
// NOTE: absl::zipf_distribution is not guaranteed to be stable. |
|
TEST(ZipfDistributionTest, StabilityTest) { |
|
// absl::zipf_distribution stability relies on |
|
// absl::uniform_real_distribution, std::log, std::exp, std::log1p |
|
absl::random_internal::sequence_urbg urbg( |
|
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull, |
|
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, |
|
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, |
|
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull}); |
|
|
|
std::vector<int> output(10); |
|
|
|
{ |
|
absl::zipf_distribution<int32_t> dist; |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return dist(urbg); }); |
|
EXPECT_THAT(output, ElementsAre(10031, 0, 0, 3, 6, 0, 7, 47, 0, 0)); |
|
} |
|
urbg.reset(); |
|
{ |
|
absl::zipf_distribution<int32_t> dist(std::numeric_limits<int32_t>::max(), |
|
3.3); |
|
std::generate(std::begin(output), std::end(output), |
|
[&] { return dist(urbg); }); |
|
EXPECT_THAT(output, ElementsAre(44, 0, 0, 0, 0, 1, 0, 1, 3, 0)); |
|
} |
|
} |
|
|
|
TEST(ZipfDistributionTest, AlgorithmBounds) { |
|
absl::zipf_distribution<int32_t> dist; |
|
|
|
// Small values from absl::uniform_real_distribution map to larger Zipf |
|
// distribution values. |
|
const std::pair<uint64_t, int32_t> kInputs[] = { |
|
{0xffffffffffffffff, 0x0}, {0x7fffffffffffffff, 0x0}, |
|
{0x3ffffffffffffffb, 0x1}, {0x1ffffffffffffffd, 0x4}, |
|
{0xffffffffffffffe, 0x9}, {0x7ffffffffffffff, 0x12}, |
|
{0x3ffffffffffffff, 0x25}, {0x1ffffffffffffff, 0x4c}, |
|
{0xffffffffffffff, 0x99}, {0x7fffffffffffff, 0x132}, |
|
{0x3fffffffffffff, 0x265}, {0x1fffffffffffff, 0x4cc}, |
|
{0xfffffffffffff, 0x999}, {0x7ffffffffffff, 0x1332}, |
|
{0x3ffffffffffff, 0x2665}, {0x1ffffffffffff, 0x4ccc}, |
|
{0xffffffffffff, 0x9998}, {0x7fffffffffff, 0x1332f}, |
|
{0x3fffffffffff, 0x2665a}, {0x1fffffffffff, 0x4cc9e}, |
|
{0xfffffffffff, 0x998e0}, {0x7ffffffffff, 0x133051}, |
|
{0x3ffffffffff, 0x265ae4}, {0x1ffffffffff, 0x4c9ed3}, |
|
{0xffffffffff, 0x98e223}, {0x7fffffffff, 0x13058c4}, |
|
{0x3fffffffff, 0x25b178e}, {0x1fffffffff, 0x4a062b2}, |
|
{0xfffffffff, 0x8ee23b8}, {0x7ffffffff, 0x10b21642}, |
|
{0x3ffffffff, 0x1d89d89d}, {0x1ffffffff, 0x2fffffff}, |
|
{0xffffffff, 0x45d1745d}, {0x7fffffff, 0x5a5a5a5a}, |
|
{0x3fffffff, 0x69ee5846}, {0x1fffffff, 0x73ecade3}, |
|
{0xfffffff, 0x79a9d260}, {0x7ffffff, 0x7cc0532b}, |
|
{0x3ffffff, 0x7e5ad146}, {0x1ffffff, 0x7f2c0bec}, |
|
{0xffffff, 0x7f95adef}, {0x7fffff, 0x7fcac0da}, |
|
{0x3fffff, 0x7fe55ae2}, {0x1fffff, 0x7ff2ac0e}, |
|
{0xfffff, 0x7ff955ae}, {0x7ffff, 0x7ffcaac1}, |
|
{0x3ffff, 0x7ffe555b}, {0x1ffff, 0x7fff2aac}, |
|
{0xffff, 0x7fff9556}, {0x7fff, 0x7fffcaab}, |
|
{0x3fff, 0x7fffe555}, {0x1fff, 0x7ffff2ab}, |
|
{0xfff, 0x7ffff955}, {0x7ff, 0x7ffffcab}, |
|
{0x3ff, 0x7ffffe55}, {0x1ff, 0x7fffff2b}, |
|
{0xff, 0x7fffff95}, {0x7f, 0x7fffffcb}, |
|
{0x3f, 0x7fffffe5}, {0x1f, 0x7ffffff3}, |
|
{0xf, 0x7ffffff9}, {0x7, 0x7ffffffd}, |
|
{0x3, 0x7ffffffe}, {0x1, 0x7fffffff}, |
|
}; |
|
|
|
for (const auto& instance : kInputs) { |
|
absl::random_internal::sequence_urbg urbg({instance.first}); |
|
EXPECT_EQ(instance.second, dist(urbg)); |
|
} |
|
} |
|
|
|
} // namespace
|
|
|