Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
233 lines
7.0 KiB
233 lines
7.0 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/random/internal/chi_square.h" |
|
|
|
#include <cmath> |
|
|
|
#include "absl/random/internal/distribution_test_util.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace random_internal { |
|
namespace { |
|
|
|
#if defined(__EMSCRIPTEN__) |
|
// Workaround __EMSCRIPTEN__ error: llvm_fma_f64 not found. |
|
inline double fma(double x, double y, double z) { |
|
return (x * y) + z; |
|
} |
|
#endif |
|
|
|
// Use Horner's method to evaluate a polynomial. |
|
template <typename T, unsigned N> |
|
inline T EvaluatePolynomial(T x, const T (&poly)[N]) { |
|
#if !defined(__EMSCRIPTEN__) |
|
using std::fma; |
|
#endif |
|
T p = poly[N - 1]; |
|
for (unsigned i = 2; i <= N; i++) { |
|
p = fma(p, x, poly[N - i]); |
|
} |
|
return p; |
|
} |
|
|
|
static constexpr int kLargeDOF = 150; |
|
|
|
// Returns the probability of a normal z-value. |
|
// |
|
// Adapted from the POZ function in: |
|
// Ibbetson D, Algorithm 209 |
|
// Collected Algorithms of the CACM 1963 p. 616 |
|
// |
|
double POZ(double z) { |
|
static constexpr double kP1[] = { |
|
0.797884560593, -0.531923007300, 0.319152932694, |
|
-0.151968751364, 0.059054035642, -0.019198292004, |
|
0.005198775019, -0.001075204047, 0.000124818987, |
|
}; |
|
static constexpr double kP2[] = { |
|
0.999936657524, 0.000535310849, -0.002141268741, 0.005353579108, |
|
-0.009279453341, 0.011630447319, -0.010557625006, 0.006549791214, |
|
-0.002034254874, -0.000794620820, 0.001390604284, -0.000676904986, |
|
-0.000019538132, 0.000152529290, -0.000045255659, |
|
}; |
|
|
|
const double kZMax = 6.0; // Maximum meaningful z-value. |
|
if (z == 0.0) { |
|
return 0.5; |
|
} |
|
double x; |
|
double y = 0.5 * std::fabs(z); |
|
if (y >= (kZMax * 0.5)) { |
|
x = 1.0; |
|
} else if (y < 1.0) { |
|
double w = y * y; |
|
x = EvaluatePolynomial(w, kP1) * y * 2.0; |
|
} else { |
|
y -= 2.0; |
|
x = EvaluatePolynomial(y, kP2); |
|
} |
|
return z > 0.0 ? ((x + 1.0) * 0.5) : ((1.0 - x) * 0.5); |
|
} |
|
|
|
// Approximates the survival function of the normal distribution. |
|
// |
|
// Algorithm 26.2.18, from: |
|
// [Abramowitz and Stegun, Handbook of Mathematical Functions,p.932] |
|
// http://people.math.sfu.ca/~cbm/aands/abramowitz_and_stegun.pdf |
|
// |
|
double normal_survival(double z) { |
|
// Maybe replace with the alternate formulation. |
|
// 0.5 * erfc((x - mean)/(sqrt(2) * sigma)) |
|
static constexpr double kR[] = { |
|
1.0, 0.196854, 0.115194, 0.000344, 0.019527, |
|
}; |
|
double r = EvaluatePolynomial(z, kR); |
|
r *= r; |
|
return 0.5 / (r * r); |
|
} |
|
|
|
} // namespace |
|
|
|
// Calculates the critical chi-square value given degrees-of-freedom and a |
|
// p-value, usually using bisection. Also known by the name CRITCHI. |
|
double ChiSquareValue(int dof, double p) { |
|
static constexpr double kChiEpsilon = |
|
0.000001; // Accuracy of the approximation. |
|
static constexpr double kChiMax = |
|
99999.0; // Maximum chi-squared value. |
|
|
|
const double p_value = 1.0 - p; |
|
if (dof < 1 || p_value > 1.0) { |
|
return 0.0; |
|
} |
|
|
|
if (dof > kLargeDOF) { |
|
// For large degrees of freedom, use the normal approximation by |
|
// Wilson, E. B. and Hilferty, M. M. (1931) |
|
// chi^2 - mean |
|
// Z = -------------- |
|
// stddev |
|
const double z = InverseNormalSurvival(p_value); |
|
const double mean = 1 - 2.0 / (9 * dof); |
|
const double variance = 2.0 / (9 * dof); |
|
// Cannot use this method if the variance is 0. |
|
if (variance != 0) { |
|
double term = z * std::sqrt(variance) + mean; |
|
return dof * (term * term * term); |
|
} |
|
} |
|
|
|
if (p_value <= 0.0) return kChiMax; |
|
|
|
// Otherwise search for the p value by bisection |
|
double min_chisq = 0.0; |
|
double max_chisq = kChiMax; |
|
double current = dof / std::sqrt(p_value); |
|
while ((max_chisq - min_chisq) > kChiEpsilon) { |
|
if (ChiSquarePValue(current, dof) < p_value) { |
|
max_chisq = current; |
|
} else { |
|
min_chisq = current; |
|
} |
|
current = (max_chisq + min_chisq) * 0.5; |
|
} |
|
return current; |
|
} |
|
|
|
// Calculates the p-value (probability) of a given chi-square value |
|
// and degrees of freedom. |
|
// |
|
// Adapted from the POCHISQ function from: |
|
// Hill, I. D. and Pike, M. C. Algorithm 299 |
|
// Collected Algorithms of the CACM 1963 p. 243 |
|
// |
|
double ChiSquarePValue(double chi_square, int dof) { |
|
static constexpr double kLogSqrtPi = |
|
0.5723649429247000870717135; // Log[Sqrt[Pi]] |
|
static constexpr double kInverseSqrtPi = |
|
0.5641895835477562869480795; // 1/(Sqrt[Pi]) |
|
|
|
// For large degrees of freedom, use the normal approximation by |
|
// Wilson, E. B. and Hilferty, M. M. (1931) |
|
// Via Wikipedia: |
|
// By the Central Limit Theorem, because the chi-square distribution is the |
|
// sum of k independent random variables with finite mean and variance, it |
|
// converges to a normal distribution for large k. |
|
if (dof > kLargeDOF) { |
|
// Re-scale everything. |
|
const double chi_square_scaled = std::pow(chi_square / dof, 1.0 / 3); |
|
const double mean = 1 - 2.0 / (9 * dof); |
|
const double variance = 2.0 / (9 * dof); |
|
// If variance is 0, this method cannot be used. |
|
if (variance != 0) { |
|
const double z = (chi_square_scaled - mean) / std::sqrt(variance); |
|
if (z > 0) { |
|
return normal_survival(z); |
|
} else if (z < 0) { |
|
return 1.0 - normal_survival(-z); |
|
} else { |
|
return 0.5; |
|
} |
|
} |
|
} |
|
|
|
// The chi square function is >= 0 for any degrees of freedom. |
|
// In other words, probability that the chi square function >= 0 is 1. |
|
if (chi_square <= 0.0) return 1.0; |
|
|
|
// If the degrees of freedom is zero, the chi square function is always 0 by |
|
// definition. In other words, the probability that the chi square function |
|
// is > 0 is zero (chi square values <= 0 have been filtered above). |
|
if (dof < 1) return 0; |
|
|
|
auto capped_exp = [](double x) { return x < -20 ? 0.0 : std::exp(x); }; |
|
static constexpr double kBigX = 20; |
|
|
|
double a = 0.5 * chi_square; |
|
const bool even = !(dof & 1); // True if dof is an even number. |
|
const double y = capped_exp(-a); |
|
double s = even ? y : (2.0 * POZ(-std::sqrt(chi_square))); |
|
|
|
if (dof <= 2) { |
|
return s; |
|
} |
|
|
|
chi_square = 0.5 * (dof - 1.0); |
|
double z = (even ? 1.0 : 0.5); |
|
if (a > kBigX) { |
|
double e = (even ? 0.0 : kLogSqrtPi); |
|
double c = std::log(a); |
|
while (z <= chi_square) { |
|
e = std::log(z) + e; |
|
s += capped_exp(c * z - a - e); |
|
z += 1.0; |
|
} |
|
return s; |
|
} |
|
|
|
double e = (even ? 1.0 : (kInverseSqrtPi / std::sqrt(a))); |
|
double c = 0.0; |
|
while (z <= chi_square) { |
|
e = e * (a / z); |
|
c = c + e; |
|
z += 1.0; |
|
} |
|
return c * y + s; |
|
} |
|
|
|
} // namespace random_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl
|
|
|