Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
584 lines
25 KiB
584 lines
25 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/time/clock.h" |
|
|
|
#include "absl/base/attributes.h" |
|
#include "absl/base/optimization.h" |
|
|
|
#ifdef _WIN32 |
|
#include <windows.h> |
|
#endif |
|
|
|
#include <algorithm> |
|
#include <atomic> |
|
#include <cerrno> |
|
#include <cstdint> |
|
#include <ctime> |
|
#include <limits> |
|
|
|
#include "absl/base/internal/spinlock.h" |
|
#include "absl/base/internal/unscaledcycleclock.h" |
|
#include "absl/base/macros.h" |
|
#include "absl/base/port.h" |
|
#include "absl/base/thread_annotations.h" |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
Time Now() { |
|
// TODO(bww): Get a timespec instead so we don't have to divide. |
|
int64_t n = absl::GetCurrentTimeNanos(); |
|
if (n >= 0) { |
|
return time_internal::FromUnixDuration( |
|
time_internal::MakeDuration(n / 1000000000, n % 1000000000 * 4)); |
|
} |
|
return time_internal::FromUnixDuration(absl::Nanoseconds(n)); |
|
} |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
// Decide if we should use the fast GetCurrentTimeNanos() algorithm |
|
// based on the cyclecounter, otherwise just get the time directly |
|
// from the OS on every call. This can be chosen at compile-time via |
|
// -DABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS=[0|1] |
|
#ifndef ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
|
#if ABSL_USE_UNSCALED_CYCLECLOCK |
|
#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 1 |
|
#else |
|
#define ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS 0 |
|
#endif |
|
#endif |
|
|
|
#if defined(__APPLE__) || defined(_WIN32) |
|
#include "absl/time/internal/get_current_time_chrono.inc" |
|
#else |
|
#include "absl/time/internal/get_current_time_posix.inc" |
|
#endif |
|
|
|
// Allows override by test. |
|
#ifndef GET_CURRENT_TIME_NANOS_FROM_SYSTEM |
|
#define GET_CURRENT_TIME_NANOS_FROM_SYSTEM() \ |
|
::absl::time_internal::GetCurrentTimeNanosFromSystem() |
|
#endif |
|
|
|
#if !ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
int64_t GetCurrentTimeNanos() { return GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); } |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
#else // Use the cyclecounter-based implementation below. |
|
|
|
// Allows override by test. |
|
#ifndef GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW |
|
#define GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW() \ |
|
::absl::time_internal::UnscaledCycleClockWrapperForGetCurrentTime::Now() |
|
#endif |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace time_internal { |
|
// This is a friend wrapper around UnscaledCycleClock::Now() |
|
// (needed to access UnscaledCycleClock). |
|
class UnscaledCycleClockWrapperForGetCurrentTime { |
|
public: |
|
static int64_t Now() { return base_internal::UnscaledCycleClock::Now(); } |
|
}; |
|
} // namespace time_internal |
|
|
|
// uint64_t is used in this module to provide an extra bit in multiplications |
|
|
|
// --------------------------------------------------------------------- |
|
// An implementation of reader-write locks that use no atomic ops in the read |
|
// case. This is a generalization of Lamport's method for reading a multiword |
|
// clock. Increment a word on each write acquisition, using the low-order bit |
|
// as a spinlock; the word is the high word of the "clock". Readers read the |
|
// high word, then all other data, then the high word again, and repeat the |
|
// read if the reads of the high words yields different answers, or an odd |
|
// value (either case suggests possible interference from a writer). |
|
// Here we use a spinlock to ensure only one writer at a time, rather than |
|
// spinning on the bottom bit of the word to benefit from SpinLock |
|
// spin-delay tuning. |
|
|
|
// Acquire seqlock (*seq) and return the value to be written to unlock. |
|
static inline uint64_t SeqAcquire(std::atomic<uint64_t> *seq) { |
|
uint64_t x = seq->fetch_add(1, std::memory_order_relaxed); |
|
|
|
// We put a release fence between update to *seq and writes to shared data. |
|
// Thus all stores to shared data are effectively release operations and |
|
// update to *seq above cannot be re-ordered past any of them. Note that |
|
// this barrier is not for the fetch_add above. A release barrier for the |
|
// fetch_add would be before it, not after. |
|
std::atomic_thread_fence(std::memory_order_release); |
|
|
|
return x + 2; // original word plus 2 |
|
} |
|
|
|
// Release seqlock (*seq) by writing x to it---a value previously returned by |
|
// SeqAcquire. |
|
static inline void SeqRelease(std::atomic<uint64_t> *seq, uint64_t x) { |
|
// The unlock store to *seq must have release ordering so that all |
|
// updates to shared data must finish before this store. |
|
seq->store(x, std::memory_order_release); // release lock for readers |
|
} |
|
|
|
// --------------------------------------------------------------------- |
|
|
|
// "nsscaled" is unit of time equal to a (2**kScale)th of a nanosecond. |
|
enum { kScale = 30 }; |
|
|
|
// The minimum interval between samples of the time base. |
|
// We pick enough time to amortize the cost of the sample, |
|
// to get a reasonably accurate cycle counter rate reading, |
|
// and not so much that calculations will overflow 64-bits. |
|
static const uint64_t kMinNSBetweenSamples = 2000 << 20; |
|
|
|
// We require that kMinNSBetweenSamples shifted by kScale |
|
// have at least a bit left over for 64-bit calculations. |
|
static_assert(((kMinNSBetweenSamples << (kScale + 1)) >> (kScale + 1)) == |
|
kMinNSBetweenSamples, |
|
"cannot represent kMaxBetweenSamplesNSScaled"); |
|
|
|
// data from a sample of the kernel's time value |
|
struct TimeSampleAtomic { |
|
std::atomic<uint64_t> raw_ns{0}; // raw kernel time |
|
std::atomic<uint64_t> base_ns{0}; // our estimate of time |
|
std::atomic<uint64_t> base_cycles{0}; // cycle counter reading |
|
std::atomic<uint64_t> nsscaled_per_cycle{0}; // cycle period |
|
// cycles before we'll sample again (a scaled reciprocal of the period, |
|
// to avoid a division on the fast path). |
|
std::atomic<uint64_t> min_cycles_per_sample{0}; |
|
}; |
|
// Same again, but with non-atomic types |
|
struct TimeSample { |
|
uint64_t raw_ns = 0; // raw kernel time |
|
uint64_t base_ns = 0; // our estimate of time |
|
uint64_t base_cycles = 0; // cycle counter reading |
|
uint64_t nsscaled_per_cycle = 0; // cycle period |
|
uint64_t min_cycles_per_sample = 0; // approx cycles before next sample |
|
}; |
|
|
|
struct ABSL_CACHELINE_ALIGNED TimeState { |
|
std::atomic<uint64_t> seq{0}; |
|
TimeSampleAtomic last_sample; // the last sample; under seq |
|
|
|
// The following counters are used only by the test code. |
|
int64_t stats_initializations{0}; |
|
int64_t stats_reinitializations{0}; |
|
int64_t stats_calibrations{0}; |
|
int64_t stats_slow_paths{0}; |
|
int64_t stats_fast_slow_paths{0}; |
|
|
|
uint64_t last_now_cycles ABSL_GUARDED_BY(lock){0}; |
|
|
|
// Used by GetCurrentTimeNanosFromKernel(). |
|
// We try to read clock values at about the same time as the kernel clock. |
|
// This value gets adjusted up or down as estimate of how long that should |
|
// take, so we can reject attempts that take unusually long. |
|
std::atomic<uint64_t> approx_syscall_time_in_cycles{10 * 1000}; |
|
// Number of times in a row we've seen a kernel time call take substantially |
|
// less than approx_syscall_time_in_cycles. |
|
std::atomic<uint32_t> kernel_time_seen_smaller{0}; |
|
|
|
// A reader-writer lock protecting the static locations below. |
|
// See SeqAcquire() and SeqRelease() above. |
|
absl::base_internal::SpinLock lock{absl::kConstInit, |
|
base_internal::SCHEDULE_KERNEL_ONLY}; |
|
}; |
|
ABSL_CONST_INIT static TimeState time_state{}; |
|
|
|
// Return the time in ns as told by the kernel interface. Place in *cycleclock |
|
// the value of the cycleclock at about the time of the syscall. |
|
// This call represents the time base that this module synchronizes to. |
|
// Ensures that *cycleclock does not step back by up to (1 << 16) from |
|
// last_cycleclock, to discard small backward counter steps. (Larger steps are |
|
// assumed to be complete resyncs, which shouldn't happen. If they do, a full |
|
// reinitialization of the outer algorithm should occur.) |
|
static int64_t GetCurrentTimeNanosFromKernel(uint64_t last_cycleclock, |
|
uint64_t *cycleclock) |
|
ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { |
|
uint64_t local_approx_syscall_time_in_cycles = // local copy |
|
time_state.approx_syscall_time_in_cycles.load(std::memory_order_relaxed); |
|
|
|
int64_t current_time_nanos_from_system; |
|
uint64_t before_cycles; |
|
uint64_t after_cycles; |
|
uint64_t elapsed_cycles; |
|
int loops = 0; |
|
do { |
|
before_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW(); |
|
current_time_nanos_from_system = GET_CURRENT_TIME_NANOS_FROM_SYSTEM(); |
|
after_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW(); |
|
// elapsed_cycles is unsigned, so is large on overflow |
|
elapsed_cycles = after_cycles - before_cycles; |
|
if (elapsed_cycles >= local_approx_syscall_time_in_cycles && |
|
++loops == 20) { // clock changed frequencies? Back off. |
|
loops = 0; |
|
if (local_approx_syscall_time_in_cycles < 1000 * 1000) { |
|
local_approx_syscall_time_in_cycles = |
|
(local_approx_syscall_time_in_cycles + 1) << 1; |
|
} |
|
time_state.approx_syscall_time_in_cycles.store( |
|
local_approx_syscall_time_in_cycles, std::memory_order_relaxed); |
|
} |
|
} while (elapsed_cycles >= local_approx_syscall_time_in_cycles || |
|
last_cycleclock - after_cycles < (static_cast<uint64_t>(1) << 16)); |
|
|
|
// Adjust approx_syscall_time_in_cycles to be within a factor of 2 |
|
// of the typical time to execute one iteration of the loop above. |
|
if ((local_approx_syscall_time_in_cycles >> 1) < elapsed_cycles) { |
|
// measured time is no smaller than half current approximation |
|
time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); |
|
} else if (time_state.kernel_time_seen_smaller.fetch_add( |
|
1, std::memory_order_relaxed) >= 3) { |
|
// smaller delays several times in a row; reduce approximation by 12.5% |
|
const uint64_t new_approximation = |
|
local_approx_syscall_time_in_cycles - |
|
(local_approx_syscall_time_in_cycles >> 3); |
|
time_state.approx_syscall_time_in_cycles.store(new_approximation, |
|
std::memory_order_relaxed); |
|
time_state.kernel_time_seen_smaller.store(0, std::memory_order_relaxed); |
|
} |
|
|
|
*cycleclock = after_cycles; |
|
return current_time_nanos_from_system; |
|
} |
|
|
|
static int64_t GetCurrentTimeNanosSlowPath() ABSL_ATTRIBUTE_COLD; |
|
|
|
// Read the contents of *atomic into *sample. |
|
// Each field is read atomically, but to maintain atomicity between fields, |
|
// the access must be done under a lock. |
|
static void ReadTimeSampleAtomic(const struct TimeSampleAtomic *atomic, |
|
struct TimeSample *sample) { |
|
sample->base_ns = atomic->base_ns.load(std::memory_order_relaxed); |
|
sample->base_cycles = atomic->base_cycles.load(std::memory_order_relaxed); |
|
sample->nsscaled_per_cycle = |
|
atomic->nsscaled_per_cycle.load(std::memory_order_relaxed); |
|
sample->min_cycles_per_sample = |
|
atomic->min_cycles_per_sample.load(std::memory_order_relaxed); |
|
sample->raw_ns = atomic->raw_ns.load(std::memory_order_relaxed); |
|
} |
|
|
|
// Public routine. |
|
// Algorithm: We wish to compute real time from a cycle counter. In normal |
|
// operation, we construct a piecewise linear approximation to the kernel time |
|
// source, using the cycle counter value. The start of each line segment is at |
|
// the same point as the end of the last, but may have a different slope (that |
|
// is, a different idea of the cycle counter frequency). Every couple of |
|
// seconds, the kernel time source is sampled and compared with the current |
|
// approximation. A new slope is chosen that, if followed for another couple |
|
// of seconds, will correct the error at the current position. The information |
|
// for a sample is in the "last_sample" struct. The linear approximation is |
|
// estimated_time = last_sample.base_ns + |
|
// last_sample.ns_per_cycle * (counter_reading - last_sample.base_cycles) |
|
// (ns_per_cycle is actually stored in different units and scaled, to avoid |
|
// overflow). The base_ns of the next linear approximation is the |
|
// estimated_time using the last approximation; the base_cycles is the cycle |
|
// counter value at that time; the ns_per_cycle is the number of ns per cycle |
|
// measured since the last sample, but adjusted so that most of the difference |
|
// between the estimated_time and the kernel time will be corrected by the |
|
// estimated time to the next sample. In normal operation, this algorithm |
|
// relies on: |
|
// - the cycle counter and kernel time rates not changing a lot in a few |
|
// seconds. |
|
// - the client calling into the code often compared to a couple of seconds, so |
|
// the time to the next correction can be estimated. |
|
// Any time ns_per_cycle is not known, a major error is detected, or the |
|
// assumption about frequent calls is violated, the implementation returns the |
|
// kernel time. It records sufficient data that a linear approximation can |
|
// resume a little later. |
|
|
|
int64_t GetCurrentTimeNanos() { |
|
// read the data from the "last_sample" struct (but don't need raw_ns yet) |
|
// The reads of "seq" and test of the values emulate a reader lock. |
|
uint64_t base_ns; |
|
uint64_t base_cycles; |
|
uint64_t nsscaled_per_cycle; |
|
uint64_t min_cycles_per_sample; |
|
uint64_t seq_read0; |
|
uint64_t seq_read1; |
|
|
|
// If we have enough information to interpolate, the value returned will be |
|
// derived from this cycleclock-derived time estimate. On some platforms |
|
// (POWER) the function to retrieve this value has enough complexity to |
|
// contribute to register pressure - reading it early before initializing |
|
// the other pieces of the calculation minimizes spill/restore instructions, |
|
// minimizing icache cost. |
|
uint64_t now_cycles = GET_CURRENT_TIME_NANOS_CYCLECLOCK_NOW(); |
|
|
|
// Acquire pairs with the barrier in SeqRelease - if this load sees that |
|
// store, the shared-data reads necessarily see that SeqRelease's updates |
|
// to the same shared data. |
|
seq_read0 = time_state.seq.load(std::memory_order_acquire); |
|
|
|
base_ns = time_state.last_sample.base_ns.load(std::memory_order_relaxed); |
|
base_cycles = |
|
time_state.last_sample.base_cycles.load(std::memory_order_relaxed); |
|
nsscaled_per_cycle = |
|
time_state.last_sample.nsscaled_per_cycle.load(std::memory_order_relaxed); |
|
min_cycles_per_sample = time_state.last_sample.min_cycles_per_sample.load( |
|
std::memory_order_relaxed); |
|
|
|
// This acquire fence pairs with the release fence in SeqAcquire. Since it |
|
// is sequenced between reads of shared data and seq_read1, the reads of |
|
// shared data are effectively acquiring. |
|
std::atomic_thread_fence(std::memory_order_acquire); |
|
|
|
// The shared-data reads are effectively acquire ordered, and the |
|
// shared-data writes are effectively release ordered. Therefore if our |
|
// shared-data reads see any of a particular update's shared-data writes, |
|
// seq_read1 is guaranteed to see that update's SeqAcquire. |
|
seq_read1 = time_state.seq.load(std::memory_order_relaxed); |
|
|
|
// Fast path. Return if min_cycles_per_sample has not yet elapsed since the |
|
// last sample, and we read a consistent sample. The fast path activates |
|
// only when min_cycles_per_sample is non-zero, which happens when we get an |
|
// estimate for the cycle time. The predicate will fail if now_cycles < |
|
// base_cycles, or if some other thread is in the slow path. |
|
// |
|
// Since we now read now_cycles before base_ns, it is possible for now_cycles |
|
// to be less than base_cycles (if we were interrupted between those loads and |
|
// last_sample was updated). This is harmless, because delta_cycles will wrap |
|
// and report a time much much bigger than min_cycles_per_sample. In that case |
|
// we will take the slow path. |
|
uint64_t delta_cycles; |
|
if (seq_read0 == seq_read1 && (seq_read0 & 1) == 0 && |
|
(delta_cycles = now_cycles - base_cycles) < min_cycles_per_sample) { |
|
return base_ns + ((delta_cycles * nsscaled_per_cycle) >> kScale); |
|
} |
|
return GetCurrentTimeNanosSlowPath(); |
|
} |
|
|
|
// Return (a << kScale)/b. |
|
// Zero is returned if b==0. Scaling is performed internally to |
|
// preserve precision without overflow. |
|
static uint64_t SafeDivideAndScale(uint64_t a, uint64_t b) { |
|
// Find maximum safe_shift so that |
|
// 0 <= safe_shift <= kScale and (a << safe_shift) does not overflow. |
|
int safe_shift = kScale; |
|
while (((a << safe_shift) >> safe_shift) != a) { |
|
safe_shift--; |
|
} |
|
uint64_t scaled_b = b >> (kScale - safe_shift); |
|
uint64_t quotient = 0; |
|
if (scaled_b != 0) { |
|
quotient = (a << safe_shift) / scaled_b; |
|
} |
|
return quotient; |
|
} |
|
|
|
static uint64_t UpdateLastSample( |
|
uint64_t now_cycles, uint64_t now_ns, uint64_t delta_cycles, |
|
const struct TimeSample *sample) ABSL_ATTRIBUTE_COLD; |
|
|
|
// The slow path of GetCurrentTimeNanos(). This is taken while gathering |
|
// initial samples, when enough time has elapsed since the last sample, and if |
|
// any other thread is writing to last_sample. |
|
// |
|
// Manually mark this 'noinline' to minimize stack frame size of the fast |
|
// path. Without this, sometimes a compiler may inline this big block of code |
|
// into the fast path. That causes lots of register spills and reloads that |
|
// are unnecessary unless the slow path is taken. |
|
// |
|
// TODO(absl-team): Remove this attribute when our compiler is smart enough |
|
// to do the right thing. |
|
ABSL_ATTRIBUTE_NOINLINE |
|
static int64_t GetCurrentTimeNanosSlowPath() |
|
ABSL_LOCKS_EXCLUDED(time_state.lock) { |
|
// Serialize access to slow-path. Fast-path readers are not blocked yet, and |
|
// code below must not modify last_sample until the seqlock is acquired. |
|
time_state.lock.Lock(); |
|
|
|
// Sample the kernel time base. This is the definition of |
|
// "now" if we take the slow path. |
|
uint64_t now_cycles; |
|
uint64_t now_ns = |
|
GetCurrentTimeNanosFromKernel(time_state.last_now_cycles, &now_cycles); |
|
time_state.last_now_cycles = now_cycles; |
|
|
|
uint64_t estimated_base_ns; |
|
|
|
// ---------- |
|
// Read the "last_sample" values again; this time holding the write lock. |
|
struct TimeSample sample; |
|
ReadTimeSampleAtomic(&time_state.last_sample, &sample); |
|
|
|
// ---------- |
|
// Try running the fast path again; another thread may have updated the |
|
// sample between our run of the fast path and the sample we just read. |
|
uint64_t delta_cycles = now_cycles - sample.base_cycles; |
|
if (delta_cycles < sample.min_cycles_per_sample) { |
|
// Another thread updated the sample. This path does not take the seqlock |
|
// so that blocked readers can make progress without blocking new readers. |
|
estimated_base_ns = sample.base_ns + |
|
((delta_cycles * sample.nsscaled_per_cycle) >> kScale); |
|
time_state.stats_fast_slow_paths++; |
|
} else { |
|
estimated_base_ns = |
|
UpdateLastSample(now_cycles, now_ns, delta_cycles, &sample); |
|
} |
|
|
|
time_state.lock.Unlock(); |
|
|
|
return estimated_base_ns; |
|
} |
|
|
|
// Main part of the algorithm. Locks out readers, updates the approximation |
|
// using the new sample from the kernel, and stores the result in last_sample |
|
// for readers. Returns the new estimated time. |
|
static uint64_t UpdateLastSample(uint64_t now_cycles, uint64_t now_ns, |
|
uint64_t delta_cycles, |
|
const struct TimeSample *sample) |
|
ABSL_EXCLUSIVE_LOCKS_REQUIRED(time_state.lock) { |
|
uint64_t estimated_base_ns = now_ns; |
|
uint64_t lock_value = |
|
SeqAcquire(&time_state.seq); // acquire seqlock to block readers |
|
|
|
// The 5s in the next if-statement limits the time for which we will trust |
|
// the cycle counter and our last sample to give a reasonable result. |
|
// Errors in the rate of the source clock can be multiplied by the ratio |
|
// between this limit and kMinNSBetweenSamples. |
|
if (sample->raw_ns == 0 || // no recent sample, or clock went backwards |
|
sample->raw_ns + static_cast<uint64_t>(5) * 1000 * 1000 * 1000 < now_ns || |
|
now_ns < sample->raw_ns || now_cycles < sample->base_cycles) { |
|
// record this sample, and forget any previously known slope. |
|
time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); |
|
time_state.last_sample.base_ns.store(estimated_base_ns, |
|
std::memory_order_relaxed); |
|
time_state.last_sample.base_cycles.store(now_cycles, |
|
std::memory_order_relaxed); |
|
time_state.last_sample.nsscaled_per_cycle.store(0, |
|
std::memory_order_relaxed); |
|
time_state.last_sample.min_cycles_per_sample.store( |
|
0, std::memory_order_relaxed); |
|
time_state.stats_initializations++; |
|
} else if (sample->raw_ns + 500 * 1000 * 1000 < now_ns && |
|
sample->base_cycles + 50 < now_cycles) { |
|
// Enough time has passed to compute the cycle time. |
|
if (sample->nsscaled_per_cycle != 0) { // Have a cycle time estimate. |
|
// Compute time from counter reading, but avoiding overflow |
|
// delta_cycles may be larger than on the fast path. |
|
uint64_t estimated_scaled_ns; |
|
int s = -1; |
|
do { |
|
s++; |
|
estimated_scaled_ns = (delta_cycles >> s) * sample->nsscaled_per_cycle; |
|
} while (estimated_scaled_ns / sample->nsscaled_per_cycle != |
|
(delta_cycles >> s)); |
|
estimated_base_ns = sample->base_ns + |
|
(estimated_scaled_ns >> (kScale - s)); |
|
} |
|
|
|
// Compute the assumed cycle time kMinNSBetweenSamples ns into the future |
|
// assuming the cycle counter rate stays the same as the last interval. |
|
uint64_t ns = now_ns - sample->raw_ns; |
|
uint64_t measured_nsscaled_per_cycle = SafeDivideAndScale(ns, delta_cycles); |
|
|
|
uint64_t assumed_next_sample_delta_cycles = |
|
SafeDivideAndScale(kMinNSBetweenSamples, measured_nsscaled_per_cycle); |
|
|
|
int64_t diff_ns = now_ns - estimated_base_ns; // estimate low by this much |
|
|
|
// We want to set nsscaled_per_cycle so that our estimate of the ns time |
|
// at the assumed cycle time is the assumed ns time. |
|
// That is, we want to set nsscaled_per_cycle so: |
|
// kMinNSBetweenSamples + diff_ns == |
|
// (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale |
|
// But we wish to damp oscillations, so instead correct only most |
|
// of our current error, by solving: |
|
// kMinNSBetweenSamples + diff_ns - (diff_ns / 16) == |
|
// (assumed_next_sample_delta_cycles * nsscaled_per_cycle) >> kScale |
|
ns = kMinNSBetweenSamples + diff_ns - (diff_ns / 16); |
|
uint64_t new_nsscaled_per_cycle = |
|
SafeDivideAndScale(ns, assumed_next_sample_delta_cycles); |
|
if (new_nsscaled_per_cycle != 0 && |
|
diff_ns < 100 * 1000 * 1000 && -diff_ns < 100 * 1000 * 1000) { |
|
// record the cycle time measurement |
|
time_state.last_sample.nsscaled_per_cycle.store( |
|
new_nsscaled_per_cycle, std::memory_order_relaxed); |
|
uint64_t new_min_cycles_per_sample = |
|
SafeDivideAndScale(kMinNSBetweenSamples, new_nsscaled_per_cycle); |
|
time_state.last_sample.min_cycles_per_sample.store( |
|
new_min_cycles_per_sample, std::memory_order_relaxed); |
|
time_state.stats_calibrations++; |
|
} else { // something went wrong; forget the slope |
|
time_state.last_sample.nsscaled_per_cycle.store( |
|
0, std::memory_order_relaxed); |
|
time_state.last_sample.min_cycles_per_sample.store( |
|
0, std::memory_order_relaxed); |
|
estimated_base_ns = now_ns; |
|
time_state.stats_reinitializations++; |
|
} |
|
time_state.last_sample.raw_ns.store(now_ns, std::memory_order_relaxed); |
|
time_state.last_sample.base_ns.store(estimated_base_ns, |
|
std::memory_order_relaxed); |
|
time_state.last_sample.base_cycles.store(now_cycles, |
|
std::memory_order_relaxed); |
|
} else { |
|
// have a sample, but no slope; waiting for enough time for a calibration |
|
time_state.stats_slow_paths++; |
|
} |
|
|
|
SeqRelease(&time_state.seq, lock_value); // release the readers |
|
|
|
return estimated_base_ns; |
|
} |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
#endif // ABSL_USE_CYCLECLOCK_FOR_GET_CURRENT_TIME_NANOS |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace { |
|
|
|
// Returns the maximum duration that SleepOnce() can sleep for. |
|
constexpr absl::Duration MaxSleep() { |
|
#ifdef _WIN32 |
|
// Windows Sleep() takes unsigned long argument in milliseconds. |
|
return absl::Milliseconds( |
|
std::numeric_limits<unsigned long>::max()); // NOLINT(runtime/int) |
|
#else |
|
return absl::Seconds(std::numeric_limits<time_t>::max()); |
|
#endif |
|
} |
|
|
|
// Sleeps for the given duration. |
|
// REQUIRES: to_sleep <= MaxSleep(). |
|
void SleepOnce(absl::Duration to_sleep) { |
|
#ifdef _WIN32 |
|
Sleep(to_sleep / absl::Milliseconds(1)); |
|
#else |
|
struct timespec sleep_time = absl::ToTimespec(to_sleep); |
|
while (nanosleep(&sleep_time, &sleep_time) != 0 && errno == EINTR) { |
|
// Ignore signals and wait for the full interval to elapse. |
|
} |
|
#endif |
|
} |
|
|
|
} // namespace |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
extern "C" { |
|
|
|
ABSL_ATTRIBUTE_WEAK void AbslInternalSleepFor(absl::Duration duration) { |
|
while (duration > absl::ZeroDuration()) { |
|
absl::Duration to_sleep = std::min(duration, absl::MaxSleep()); |
|
absl::SleepOnce(to_sleep); |
|
duration -= to_sleep; |
|
} |
|
} |
|
|
|
} // extern "C"
|
|
|