Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
872 lines
25 KiB
872 lines
25 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/base/internal/exception_safety_testing.h" |
|
|
|
#include <cstddef> |
|
#include <exception> |
|
#include <iostream> |
|
#include <list> |
|
#include <type_traits> |
|
#include <vector> |
|
|
|
#include "gtest/gtest-spi.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/memory/memory.h" |
|
|
|
namespace testing { |
|
|
|
namespace { |
|
|
|
using ::testing::exceptions_internal::SetCountdown; |
|
using ::testing::exceptions_internal::TestException; |
|
using ::testing::exceptions_internal::UnsetCountdown; |
|
|
|
// EXPECT_NO_THROW can't inspect the thrown inspection in general. |
|
template <typename F> |
|
void ExpectNoThrow(const F& f) { |
|
try { |
|
f(); |
|
} catch (TestException e) { |
|
ADD_FAILURE() << "Unexpected exception thrown from " << e.what(); |
|
} |
|
} |
|
|
|
TEST(ThrowingValueTest, Throws) { |
|
SetCountdown(); |
|
EXPECT_THROW(ThrowingValue<> bomb, TestException); |
|
|
|
// It's not guaranteed that every operator only throws *once*. The default |
|
// ctor only throws once, though, so use it to make sure we only throw when |
|
// the countdown hits 0 |
|
SetCountdown(2); |
|
ExpectNoThrow([]() { ThrowingValue<> bomb; }); |
|
ExpectNoThrow([]() { ThrowingValue<> bomb; }); |
|
EXPECT_THROW(ThrowingValue<> bomb, TestException); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
// Tests that an operation throws when the countdown is at 0, doesn't throw when |
|
// the countdown doesn't hit 0, and doesn't modify the state of the |
|
// ThrowingValue if it throws |
|
template <typename F> |
|
void TestOp(const F& f) { |
|
ExpectNoThrow(f); |
|
|
|
SetCountdown(); |
|
EXPECT_THROW(f(), TestException); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingCtors) { |
|
ThrowingValue<> bomb; |
|
|
|
TestOp([]() { ThrowingValue<> bomb(1); }); |
|
TestOp([&]() { ThrowingValue<> bomb1 = bomb; }); |
|
TestOp([&]() { ThrowingValue<> bomb1 = std::move(bomb); }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingAssignment) { |
|
ThrowingValue<> bomb, bomb1; |
|
|
|
TestOp([&]() { bomb = bomb1; }); |
|
TestOp([&]() { bomb = std::move(bomb1); }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingComparisons) { |
|
ThrowingValue<> bomb1, bomb2; |
|
TestOp([&]() { return bomb1 == bomb2; }); |
|
TestOp([&]() { return bomb1 != bomb2; }); |
|
TestOp([&]() { return bomb1 < bomb2; }); |
|
TestOp([&]() { return bomb1 <= bomb2; }); |
|
TestOp([&]() { return bomb1 > bomb2; }); |
|
TestOp([&]() { return bomb1 >= bomb2; }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingArithmeticOps) { |
|
ThrowingValue<> bomb1(1), bomb2(2); |
|
|
|
TestOp([&bomb1]() { +bomb1; }); |
|
TestOp([&bomb1]() { -bomb1; }); |
|
TestOp([&bomb1]() { ++bomb1; }); |
|
TestOp([&bomb1]() { bomb1++; }); |
|
TestOp([&bomb1]() { --bomb1; }); |
|
TestOp([&bomb1]() { bomb1--; }); |
|
|
|
TestOp([&]() { bomb1 + bomb2; }); |
|
TestOp([&]() { bomb1 - bomb2; }); |
|
TestOp([&]() { bomb1* bomb2; }); |
|
TestOp([&]() { bomb1 / bomb2; }); |
|
TestOp([&]() { bomb1 << 1; }); |
|
TestOp([&]() { bomb1 >> 1; }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingLogicalOps) { |
|
ThrowingValue<> bomb1, bomb2; |
|
|
|
TestOp([&bomb1]() { !bomb1; }); |
|
TestOp([&]() { bomb1&& bomb2; }); |
|
TestOp([&]() { bomb1 || bomb2; }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingBitwiseOps) { |
|
ThrowingValue<> bomb1, bomb2; |
|
|
|
TestOp([&bomb1]() { ~bomb1; }); |
|
TestOp([&]() { bomb1& bomb2; }); |
|
TestOp([&]() { bomb1 | bomb2; }); |
|
TestOp([&]() { bomb1 ^ bomb2; }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingCompoundAssignmentOps) { |
|
ThrowingValue<> bomb1(1), bomb2(2); |
|
|
|
TestOp([&]() { bomb1 += bomb2; }); |
|
TestOp([&]() { bomb1 -= bomb2; }); |
|
TestOp([&]() { bomb1 *= bomb2; }); |
|
TestOp([&]() { bomb1 /= bomb2; }); |
|
TestOp([&]() { bomb1 %= bomb2; }); |
|
TestOp([&]() { bomb1 &= bomb2; }); |
|
TestOp([&]() { bomb1 |= bomb2; }); |
|
TestOp([&]() { bomb1 ^= bomb2; }); |
|
TestOp([&]() { bomb1 *= bomb2; }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingStreamOps) { |
|
ThrowingValue<> bomb; |
|
|
|
TestOp([&]() { std::cin >> bomb; }); |
|
TestOp([&]() { std::cout << bomb; }); |
|
} |
|
|
|
template <typename F> |
|
void TestAllocatingOp(const F& f) { |
|
ExpectNoThrow(f); |
|
|
|
SetCountdown(); |
|
EXPECT_THROW(f(), exceptions_internal::TestBadAllocException); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingAllocatingOps) { |
|
// make_unique calls unqualified operator new, so these exercise the |
|
// ThrowingValue overloads. |
|
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>>(1); }); |
|
TestAllocatingOp([]() { return absl::make_unique<ThrowingValue<>[]>(2); }); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingMoveCtor) { |
|
ThrowingValue<TypeSpec::kNoThrowMove> nothrow_ctor; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([¬hrow_ctor]() { |
|
ThrowingValue<TypeSpec::kNoThrowMove> nothrow1 = std::move(nothrow_ctor); |
|
}); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingMoveAssign) { |
|
ThrowingValue<TypeSpec::kNoThrowMove> nothrow_assign1, nothrow_assign2; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([¬hrow_assign1, ¬hrow_assign2]() { |
|
nothrow_assign1 = std::move(nothrow_assign2); |
|
}); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingCopyCtor) { |
|
ThrowingValue<> tv; |
|
|
|
TestOp([&]() { ThrowingValue<> tv_copy(tv); }); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingCopyAssign) { |
|
ThrowingValue<> tv1, tv2; |
|
|
|
TestOp([&]() { tv1 = tv2; }); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingCopyCtor) { |
|
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_ctor; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([¬hrow_ctor]() { |
|
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow1(nothrow_ctor); |
|
}); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingCopyAssign) { |
|
ThrowingValue<TypeSpec::kNoThrowCopy> nothrow_assign1, nothrow_assign2; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([¬hrow_assign1, ¬hrow_assign2]() { |
|
nothrow_assign1 = nothrow_assign2; |
|
}); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, ThrowingSwap) { |
|
ThrowingValue<> bomb1, bomb2; |
|
TestOp([&]() { std::swap(bomb1, bomb2); }); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingSwap) { |
|
ThrowingValue<TypeSpec::kNoThrowMove> bomb1, bomb2; |
|
ExpectNoThrow([&]() { std::swap(bomb1, bomb2); }); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingAllocation) { |
|
ThrowingValue<TypeSpec::kNoThrowNew>* allocated; |
|
ThrowingValue<TypeSpec::kNoThrowNew>* array; |
|
|
|
ExpectNoThrow([&allocated]() { |
|
allocated = new ThrowingValue<TypeSpec::kNoThrowNew>(1); |
|
delete allocated; |
|
}); |
|
ExpectNoThrow([&array]() { |
|
array = new ThrowingValue<TypeSpec::kNoThrowNew>[2]; |
|
delete[] array; |
|
}); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingDelete) { |
|
auto* allocated = new ThrowingValue<>(1); |
|
auto* array = new ThrowingValue<>[2]; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([allocated]() { delete allocated; }); |
|
SetCountdown(); |
|
ExpectNoThrow([array]() { delete[] array; }); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
using Storage = |
|
absl::aligned_storage_t<sizeof(ThrowingValue<>), alignof(ThrowingValue<>)>; |
|
|
|
TEST(ThrowingValueTest, NonThrowingPlacementDelete) { |
|
constexpr int kArrayLen = 2; |
|
// We intentionally create extra space to store the tag allocated by placement |
|
// new[]. |
|
constexpr int kStorageLen = 4; |
|
|
|
Storage buf; |
|
Storage array_buf[kStorageLen]; |
|
auto* placed = new (&buf) ThrowingValue<>(1); |
|
auto placed_array = new (&array_buf) ThrowingValue<>[kArrayLen]; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([placed, &buf]() { |
|
placed->~ThrowingValue<>(); |
|
ThrowingValue<>::operator delete(placed, &buf); |
|
}); |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([&, placed_array]() { |
|
for (int i = 0; i < kArrayLen; ++i) placed_array[i].~ThrowingValue<>(); |
|
ThrowingValue<>::operator delete[](placed_array, &array_buf); |
|
}); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingValueTest, NonThrowingDestructor) { |
|
auto* allocated = new ThrowingValue<>(); |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([allocated]() { delete allocated; }); |
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingBoolTest, ThrowingBool) { |
|
ThrowingBool t = true; |
|
|
|
// Test that it's contextually convertible to bool |
|
if (t) { // NOLINT(whitespace/empty_if_body) |
|
} |
|
EXPECT_TRUE(t); |
|
|
|
TestOp([&]() { (void)!t; }); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, MemoryManagement) { |
|
// Just exercise the memory management capabilities under LSan to make sure we |
|
// don't leak. |
|
ThrowingAllocator<int> int_alloc; |
|
int* ip = int_alloc.allocate(1); |
|
int_alloc.deallocate(ip, 1); |
|
int* i_array = int_alloc.allocate(2); |
|
int_alloc.deallocate(i_array, 2); |
|
|
|
ThrowingAllocator<ThrowingValue<>> tv_alloc; |
|
ThrowingValue<>* ptr = tv_alloc.allocate(1); |
|
tv_alloc.deallocate(ptr, 1); |
|
ThrowingValue<>* tv_array = tv_alloc.allocate(2); |
|
tv_alloc.deallocate(tv_array, 2); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, CallsGlobalNew) { |
|
ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate> nothrow_alloc; |
|
ThrowingValue<>* ptr; |
|
|
|
SetCountdown(); |
|
// This will only throw if ThrowingValue::new is called. |
|
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); }); |
|
nothrow_alloc.deallocate(ptr, 1); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, ThrowingConstructors) { |
|
ThrowingAllocator<int> int_alloc; |
|
int* ip = nullptr; |
|
|
|
SetCountdown(); |
|
EXPECT_THROW(ip = int_alloc.allocate(1), TestException); |
|
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); |
|
|
|
*ip = 1; |
|
SetCountdown(); |
|
EXPECT_THROW(int_alloc.construct(ip, 2), TestException); |
|
EXPECT_EQ(*ip, 1); |
|
int_alloc.deallocate(ip, 1); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, NonThrowingConstruction) { |
|
{ |
|
ThrowingAllocator<int, AllocSpec::kNoThrowAllocate> int_alloc; |
|
int* ip = nullptr; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); |
|
|
|
EXPECT_EQ(*ip, 2); |
|
int_alloc.deallocate(ip, 1); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
{ |
|
ThrowingAllocator<int> int_alloc; |
|
int* ip = nullptr; |
|
ExpectNoThrow([&]() { ip = int_alloc.allocate(1); }); |
|
ExpectNoThrow([&]() { int_alloc.construct(ip, 2); }); |
|
EXPECT_EQ(*ip, 2); |
|
int_alloc.deallocate(ip, 1); |
|
} |
|
|
|
{ |
|
ThrowingAllocator<ThrowingValue<>, AllocSpec::kNoThrowAllocate> |
|
nothrow_alloc; |
|
ThrowingValue<>* ptr; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([&]() { ptr = nothrow_alloc.allocate(1); }); |
|
|
|
SetCountdown(); |
|
ExpectNoThrow( |
|
[&]() { nothrow_alloc.construct(ptr, 2, testing::no_throw_ctor); }); |
|
|
|
EXPECT_EQ(ptr->Get(), 2); |
|
nothrow_alloc.destroy(ptr); |
|
nothrow_alloc.deallocate(ptr, 1); |
|
|
|
UnsetCountdown(); |
|
} |
|
|
|
{ |
|
ThrowingAllocator<int> a; |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = a; }); |
|
|
|
SetCountdown(); |
|
ExpectNoThrow([&]() { ThrowingAllocator<double> a1 = std::move(a); }); |
|
|
|
UnsetCountdown(); |
|
} |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, ThrowingAllocatorConstruction) { |
|
ThrowingAllocator<int> a; |
|
TestOp([]() { ThrowingAllocator<int> a; }); |
|
TestOp([&]() { a.select_on_container_copy_construction(); }); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, State) { |
|
ThrowingAllocator<int> a1, a2; |
|
EXPECT_NE(a1, a2); |
|
|
|
auto a3 = a1; |
|
EXPECT_EQ(a3, a1); |
|
int* ip = a1.allocate(1); |
|
EXPECT_EQ(a3, a1); |
|
a3.deallocate(ip, 1); |
|
EXPECT_EQ(a3, a1); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, InVector) { |
|
std::vector<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> v; |
|
for (int i = 0; i < 20; ++i) v.push_back({}); |
|
for (int i = 0; i < 20; ++i) v.pop_back(); |
|
} |
|
|
|
TEST(ThrowingAllocatorTest, InList) { |
|
std::list<ThrowingValue<>, ThrowingAllocator<ThrowingValue<>>> l; |
|
for (int i = 0; i < 20; ++i) l.push_back({}); |
|
for (int i = 0; i < 20; ++i) l.pop_back(); |
|
for (int i = 0; i < 20; ++i) l.push_front({}); |
|
for (int i = 0; i < 20; ++i) l.pop_front(); |
|
} |
|
|
|
template <typename TesterInstance, typename = void> |
|
struct NullaryTestValidator : public std::false_type {}; |
|
|
|
template <typename TesterInstance> |
|
struct NullaryTestValidator< |
|
TesterInstance, |
|
absl::void_t<decltype(std::declval<TesterInstance>().Test())>> |
|
: public std::true_type {}; |
|
|
|
template <typename TesterInstance> |
|
bool HasNullaryTest(const TesterInstance&) { |
|
return NullaryTestValidator<TesterInstance>::value; |
|
} |
|
|
|
void DummyOp(void*) {} |
|
|
|
template <typename TesterInstance, typename = void> |
|
struct UnaryTestValidator : public std::false_type {}; |
|
|
|
template <typename TesterInstance> |
|
struct UnaryTestValidator< |
|
TesterInstance, |
|
absl::void_t<decltype(std::declval<TesterInstance>().Test(DummyOp))>> |
|
: public std::true_type {}; |
|
|
|
template <typename TesterInstance> |
|
bool HasUnaryTest(const TesterInstance&) { |
|
return UnaryTestValidator<TesterInstance>::value; |
|
} |
|
|
|
TEST(ExceptionSafetyTesterTest, IncompleteTypesAreNotTestable) { |
|
using T = exceptions_internal::UninitializedT; |
|
auto op = [](T* t) {}; |
|
auto inv = [](T*) { return testing::AssertionSuccess(); }; |
|
auto fac = []() { return absl::make_unique<T>(); }; |
|
|
|
// Test that providing operation and inveriants still does not allow for the |
|
// the invocation of .Test() and .Test(op) because it lacks a factory |
|
auto without_fac = |
|
testing::MakeExceptionSafetyTester().WithOperation(op).WithInvariants( |
|
inv, testing::strong_guarantee); |
|
EXPECT_FALSE(HasNullaryTest(without_fac)); |
|
EXPECT_FALSE(HasUnaryTest(without_fac)); |
|
|
|
// Test that providing invariants and factory allows the invocation of |
|
// .Test(op) but does not allow for .Test() because it lacks an operation |
|
auto without_op = testing::MakeExceptionSafetyTester() |
|
.WithInvariants(inv, testing::strong_guarantee) |
|
.WithFactory(fac); |
|
EXPECT_FALSE(HasNullaryTest(without_op)); |
|
EXPECT_TRUE(HasUnaryTest(without_op)); |
|
|
|
// Test that providing operation and factory still does not allow for the |
|
// the invocation of .Test() and .Test(op) because it lacks invariants |
|
auto without_inv = |
|
testing::MakeExceptionSafetyTester().WithOperation(op).WithFactory(fac); |
|
EXPECT_FALSE(HasNullaryTest(without_inv)); |
|
EXPECT_FALSE(HasUnaryTest(without_inv)); |
|
} |
|
|
|
struct ExampleStruct {}; |
|
|
|
std::unique_ptr<ExampleStruct> ExampleFunctionFactory() { |
|
return absl::make_unique<ExampleStruct>(); |
|
} |
|
|
|
void ExampleFunctionOperation(ExampleStruct*) {} |
|
|
|
testing::AssertionResult ExampleFunctionInvariant(ExampleStruct*) { |
|
return testing::AssertionSuccess(); |
|
} |
|
|
|
struct { |
|
std::unique_ptr<ExampleStruct> operator()() const { |
|
return ExampleFunctionFactory(); |
|
} |
|
} example_struct_factory; |
|
|
|
struct { |
|
void operator()(ExampleStruct*) const {} |
|
} example_struct_operation; |
|
|
|
struct { |
|
testing::AssertionResult operator()(ExampleStruct* example_struct) const { |
|
return ExampleFunctionInvariant(example_struct); |
|
} |
|
} example_struct_invariant; |
|
|
|
auto example_lambda_factory = []() { return ExampleFunctionFactory(); }; |
|
|
|
auto example_lambda_operation = [](ExampleStruct*) {}; |
|
|
|
auto example_lambda_invariant = [](ExampleStruct* example_struct) { |
|
return ExampleFunctionInvariant(example_struct); |
|
}; |
|
|
|
// Testing that function references, pointers, structs with operator() and |
|
// lambdas can all be used with ExceptionSafetyTester |
|
TEST(ExceptionSafetyTesterTest, MixedFunctionTypes) { |
|
// function reference |
|
EXPECT_TRUE(testing::MakeExceptionSafetyTester() |
|
.WithFactory(ExampleFunctionFactory) |
|
.WithOperation(ExampleFunctionOperation) |
|
.WithInvariants(ExampleFunctionInvariant) |
|
.Test()); |
|
|
|
// function pointer |
|
EXPECT_TRUE(testing::MakeExceptionSafetyTester() |
|
.WithFactory(&ExampleFunctionFactory) |
|
.WithOperation(&ExampleFunctionOperation) |
|
.WithInvariants(&ExampleFunctionInvariant) |
|
.Test()); |
|
|
|
// struct |
|
EXPECT_TRUE(testing::MakeExceptionSafetyTester() |
|
.WithFactory(example_struct_factory) |
|
.WithOperation(example_struct_operation) |
|
.WithInvariants(example_struct_invariant) |
|
.Test()); |
|
|
|
// lambda |
|
EXPECT_TRUE(testing::MakeExceptionSafetyTester() |
|
.WithFactory(example_lambda_factory) |
|
.WithOperation(example_lambda_operation) |
|
.WithInvariants(example_lambda_invariant) |
|
.Test()); |
|
} |
|
|
|
struct NonNegative { |
|
bool operator==(const NonNegative& other) const { return i == other.i; } |
|
int i; |
|
}; |
|
|
|
testing::AssertionResult CheckNonNegativeInvariants(NonNegative* g) { |
|
if (g->i >= 0) { |
|
return testing::AssertionSuccess(); |
|
} |
|
return testing::AssertionFailure() |
|
<< "i should be non-negative but is " << g->i; |
|
} |
|
|
|
struct { |
|
template <typename T> |
|
void operator()(T* t) const { |
|
(*t)(); |
|
} |
|
} invoker; |
|
|
|
auto tester = |
|
testing::MakeExceptionSafetyTester().WithOperation(invoker).WithInvariants( |
|
CheckNonNegativeInvariants); |
|
auto strong_tester = tester.WithInvariants(testing::strong_guarantee); |
|
|
|
struct FailsBasicGuarantee : public NonNegative { |
|
void operator()() { |
|
--i; |
|
ThrowingValue<> bomb; |
|
++i; |
|
} |
|
}; |
|
|
|
TEST(ExceptionCheckTest, BasicGuaranteeFailure) { |
|
EXPECT_FALSE(tester.WithInitialValue(FailsBasicGuarantee{}).Test()); |
|
} |
|
|
|
struct FollowsBasicGuarantee : public NonNegative { |
|
void operator()() { |
|
++i; |
|
ThrowingValue<> bomb; |
|
} |
|
}; |
|
|
|
TEST(ExceptionCheckTest, BasicGuarantee) { |
|
EXPECT_TRUE(tester.WithInitialValue(FollowsBasicGuarantee{}).Test()); |
|
} |
|
|
|
TEST(ExceptionCheckTest, StrongGuaranteeFailure) { |
|
EXPECT_FALSE(strong_tester.WithInitialValue(FailsBasicGuarantee{}).Test()); |
|
EXPECT_FALSE(strong_tester.WithInitialValue(FollowsBasicGuarantee{}).Test()); |
|
} |
|
|
|
struct BasicGuaranteeWithExtraInvariants : public NonNegative { |
|
// After operator(), i is incremented. If operator() throws, i is set to 9999 |
|
void operator()() { |
|
int old_i = i; |
|
i = kExceptionSentinel; |
|
ThrowingValue<> bomb; |
|
i = ++old_i; |
|
} |
|
|
|
static constexpr int kExceptionSentinel = 9999; |
|
}; |
|
constexpr int BasicGuaranteeWithExtraInvariants::kExceptionSentinel; |
|
|
|
TEST(ExceptionCheckTest, BasicGuaranteeWithInvariants) { |
|
auto tester_with_val = |
|
tester.WithInitialValue(BasicGuaranteeWithExtraInvariants{}); |
|
EXPECT_TRUE(tester_with_val.Test()); |
|
EXPECT_TRUE( |
|
tester_with_val |
|
.WithInvariants([](BasicGuaranteeWithExtraInvariants* w) { |
|
if (w->i == BasicGuaranteeWithExtraInvariants::kExceptionSentinel) { |
|
return testing::AssertionSuccess(); |
|
} |
|
return testing::AssertionFailure() |
|
<< "i should be " |
|
<< BasicGuaranteeWithExtraInvariants::kExceptionSentinel |
|
<< ", but is " << w->i; |
|
}) |
|
.Test()); |
|
} |
|
|
|
struct FollowsStrongGuarantee : public NonNegative { |
|
void operator()() { ThrowingValue<> bomb; } |
|
}; |
|
|
|
TEST(ExceptionCheckTest, StrongGuarantee) { |
|
EXPECT_TRUE(tester.WithInitialValue(FollowsStrongGuarantee{}).Test()); |
|
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}).Test()); |
|
} |
|
|
|
struct HasReset : public NonNegative { |
|
void operator()() { |
|
i = -1; |
|
ThrowingValue<> bomb; |
|
i = 1; |
|
} |
|
|
|
void reset() { i = 0; } |
|
}; |
|
|
|
testing::AssertionResult CheckHasResetInvariants(HasReset* h) { |
|
h->reset(); |
|
return testing::AssertionResult(h->i == 0); |
|
} |
|
|
|
TEST(ExceptionCheckTest, ModifyingChecker) { |
|
auto set_to_1000 = [](FollowsBasicGuarantee* g) { |
|
g->i = 1000; |
|
return testing::AssertionSuccess(); |
|
}; |
|
auto is_1000 = [](FollowsBasicGuarantee* g) { |
|
return testing::AssertionResult(g->i == 1000); |
|
}; |
|
auto increment = [](FollowsStrongGuarantee* g) { |
|
++g->i; |
|
return testing::AssertionSuccess(); |
|
}; |
|
|
|
EXPECT_FALSE(tester.WithInitialValue(FollowsBasicGuarantee{}) |
|
.WithInvariants(set_to_1000, is_1000) |
|
.Test()); |
|
EXPECT_TRUE(strong_tester.WithInitialValue(FollowsStrongGuarantee{}) |
|
.WithInvariants(increment) |
|
.Test()); |
|
EXPECT_TRUE(testing::MakeExceptionSafetyTester() |
|
.WithInitialValue(HasReset{}) |
|
.WithInvariants(CheckHasResetInvariants) |
|
.Test(invoker)); |
|
} |
|
|
|
struct NonCopyable : public NonNegative { |
|
NonCopyable(const NonCopyable&) = delete; |
|
NonCopyable() : NonNegative{0} {} |
|
|
|
void operator()() { ThrowingValue<> bomb; } |
|
}; |
|
|
|
TEST(ExceptionCheckTest, NonCopyable) { |
|
auto factory = []() { return absl::make_unique<NonCopyable>(); }; |
|
EXPECT_TRUE(tester.WithFactory(factory).Test()); |
|
EXPECT_TRUE(strong_tester.WithFactory(factory).Test()); |
|
} |
|
|
|
struct NonEqualityComparable : public NonNegative { |
|
void operator()() { ThrowingValue<> bomb; } |
|
|
|
void ModifyOnThrow() { |
|
++i; |
|
ThrowingValue<> bomb; |
|
static_cast<void>(bomb); |
|
--i; |
|
} |
|
}; |
|
|
|
TEST(ExceptionCheckTest, NonEqualityComparable) { |
|
auto nec_is_strong = [](NonEqualityComparable* nec) { |
|
return testing::AssertionResult(nec->i == NonEqualityComparable().i); |
|
}; |
|
auto strong_nec_tester = tester.WithInitialValue(NonEqualityComparable{}) |
|
.WithInvariants(nec_is_strong); |
|
|
|
EXPECT_TRUE(strong_nec_tester.Test()); |
|
EXPECT_FALSE(strong_nec_tester.Test( |
|
[](NonEqualityComparable* n) { n->ModifyOnThrow(); })); |
|
} |
|
|
|
template <typename T> |
|
struct ExhaustivenessTester { |
|
void operator()() { |
|
successes |= 1; |
|
T b1; |
|
static_cast<void>(b1); |
|
successes |= (1 << 1); |
|
T b2; |
|
static_cast<void>(b2); |
|
successes |= (1 << 2); |
|
T b3; |
|
static_cast<void>(b3); |
|
successes |= (1 << 3); |
|
} |
|
|
|
bool operator==(const ExhaustivenessTester<ThrowingValue<>>&) const { |
|
return true; |
|
} |
|
|
|
static unsigned char successes; |
|
}; |
|
|
|
struct { |
|
template <typename T> |
|
testing::AssertionResult operator()(ExhaustivenessTester<T>*) const { |
|
return testing::AssertionSuccess(); |
|
} |
|
} CheckExhaustivenessTesterInvariants; |
|
|
|
template <typename T> |
|
unsigned char ExhaustivenessTester<T>::successes = 0; |
|
|
|
TEST(ExceptionCheckTest, Exhaustiveness) { |
|
auto exhaust_tester = testing::MakeExceptionSafetyTester() |
|
.WithInvariants(CheckExhaustivenessTesterInvariants) |
|
.WithOperation(invoker); |
|
|
|
EXPECT_TRUE( |
|
exhaust_tester.WithInitialValue(ExhaustivenessTester<int>{}).Test()); |
|
EXPECT_EQ(ExhaustivenessTester<int>::successes, 0xF); |
|
|
|
EXPECT_TRUE( |
|
exhaust_tester.WithInitialValue(ExhaustivenessTester<ThrowingValue<>>{}) |
|
.WithInvariants(testing::strong_guarantee) |
|
.Test()); |
|
EXPECT_EQ(ExhaustivenessTester<ThrowingValue<>>::successes, 0xF); |
|
} |
|
|
|
struct LeaksIfCtorThrows : private exceptions_internal::TrackedObject { |
|
LeaksIfCtorThrows() : TrackedObject(ABSL_PRETTY_FUNCTION) { |
|
++counter; |
|
ThrowingValue<> v; |
|
static_cast<void>(v); |
|
--counter; |
|
} |
|
LeaksIfCtorThrows(const LeaksIfCtorThrows&) noexcept |
|
: TrackedObject(ABSL_PRETTY_FUNCTION) {} |
|
static int counter; |
|
}; |
|
int LeaksIfCtorThrows::counter = 0; |
|
|
|
TEST(ExceptionCheckTest, TestLeakyCtor) { |
|
testing::TestThrowingCtor<LeaksIfCtorThrows>(); |
|
EXPECT_EQ(LeaksIfCtorThrows::counter, 1); |
|
LeaksIfCtorThrows::counter = 0; |
|
} |
|
|
|
struct Tracked : private exceptions_internal::TrackedObject { |
|
Tracked() : TrackedObject(ABSL_PRETTY_FUNCTION) {} |
|
}; |
|
|
|
TEST(ConstructorTrackerTest, CreatedBefore) { |
|
Tracked a, b, c; |
|
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); |
|
} |
|
|
|
TEST(ConstructorTrackerTest, CreatedAfter) { |
|
exceptions_internal::ConstructorTracker ct(exceptions_internal::countdown); |
|
Tracked a, b, c; |
|
} |
|
|
|
TEST(ConstructorTrackerTest, NotDestroyedAfter) { |
|
absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage; |
|
EXPECT_NONFATAL_FAILURE( |
|
{ |
|
exceptions_internal::ConstructorTracker ct( |
|
exceptions_internal::countdown); |
|
new (&storage) Tracked; |
|
}, |
|
"not destroyed"); |
|
|
|
// Manual destruction of the Tracked instance is not required because |
|
// ~ConstructorTracker() handles that automatically when a leak is found |
|
} |
|
|
|
TEST(ConstructorTrackerTest, DestroyedTwice) { |
|
EXPECT_NONFATAL_FAILURE( |
|
{ |
|
Tracked t; |
|
t.~Tracked(); |
|
}, |
|
"destroyed improperly"); |
|
} |
|
|
|
TEST(ConstructorTrackerTest, ConstructedTwice) { |
|
absl::aligned_storage_t<sizeof(Tracked), alignof(Tracked)> storage; |
|
EXPECT_NONFATAL_FAILURE( |
|
{ |
|
new (&storage) Tracked; |
|
new (&storage) Tracked; |
|
}, |
|
"re-constructed"); |
|
reinterpret_cast<Tracked*>(&storage)->~Tracked(); |
|
} |
|
|
|
TEST(ThrowingValueTraitsTest, RelationalOperators) { |
|
ThrowingValue<> a, b; |
|
EXPECT_TRUE((std::is_convertible<decltype(a == b), bool>::value)); |
|
EXPECT_TRUE((std::is_convertible<decltype(a != b), bool>::value)); |
|
EXPECT_TRUE((std::is_convertible<decltype(a < b), bool>::value)); |
|
EXPECT_TRUE((std::is_convertible<decltype(a <= b), bool>::value)); |
|
EXPECT_TRUE((std::is_convertible<decltype(a > b), bool>::value)); |
|
EXPECT_TRUE((std::is_convertible<decltype(a >= b), bool>::value)); |
|
} |
|
|
|
TEST(ThrowingAllocatorTraitsTest, Assignablility) { |
|
EXPECT_TRUE(std::is_move_assignable<ThrowingAllocator<int>>::value); |
|
EXPECT_TRUE(std::is_copy_assignable<ThrowingAllocator<int>>::value); |
|
EXPECT_TRUE(std::is_nothrow_move_assignable<ThrowingAllocator<int>>::value); |
|
EXPECT_TRUE(std::is_nothrow_copy_assignable<ThrowingAllocator<int>>::value); |
|
} |
|
|
|
} // namespace |
|
|
|
} // namespace testing
|
|
|