Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
530 lines
20 KiB
530 lines
20 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
// |
|
// ----------------------------------------------------------------------------- |
|
// File: node_hash_map.h |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// An `absl::node_hash_map<K, V>` is an unordered associative container of |
|
// unique keys and associated values designed to be a more efficient replacement |
|
// for `std::unordered_map`. Like `unordered_map`, search, insertion, and |
|
// deletion of map elements can be done as an `O(1)` operation. However, |
|
// `node_hash_map` (and other unordered associative containers known as the |
|
// collection of Abseil "Swiss tables") contain other optimizations that result |
|
// in both memory and computation advantages. |
|
// |
|
// In most cases, your default choice for a hash map should be a map of type |
|
// `flat_hash_map`. However, if you need pointer stability and cannot store |
|
// a `flat_hash_map` with `unique_ptr` elements, a `node_hash_map` may be a |
|
// valid alternative. As well, if you are migrating your code from using |
|
// `std::unordered_map`, a `node_hash_map` provides a more straightforward |
|
// migration, because it guarantees pointer stability. Consider migrating to |
|
// `node_hash_map` and perhaps converting to a more efficient `flat_hash_map` |
|
// upon further review. |
|
|
|
#ifndef ABSL_CONTAINER_NODE_HASH_MAP_H_ |
|
#define ABSL_CONTAINER_NODE_HASH_MAP_H_ |
|
|
|
#include <tuple> |
|
#include <type_traits> |
|
#include <utility> |
|
|
|
#include "absl/container/internal/container_memory.h" |
|
#include "absl/container/internal/hash_function_defaults.h" // IWYU pragma: export |
|
#include "absl/container/internal/node_hash_policy.h" |
|
#include "absl/container/internal/raw_hash_map.h" // IWYU pragma: export |
|
#include "absl/memory/memory.h" |
|
|
|
namespace absl { |
|
namespace container_internal { |
|
template <class Key, class Value> |
|
class NodeHashMapPolicy; |
|
} // namespace container_internal |
|
|
|
// ----------------------------------------------------------------------------- |
|
// absl::node_hash_map |
|
// ----------------------------------------------------------------------------- |
|
// |
|
// An `absl::node_hash_map<K, V>` is an unordered associative container which |
|
// has been optimized for both speed and memory footprint in most common use |
|
// cases. Its interface is similar to that of `std::unordered_map<K, V>` with |
|
// the following notable differences: |
|
// |
|
// * Supports heterogeneous lookup, through `find()`, `operator[]()` and |
|
// `insert()`, provided that the map is provided a compatible heterogeneous |
|
// hashing function and equality operator. |
|
// * Contains a `capacity()` member function indicating the number of element |
|
// slots (open, deleted, and empty) within the hash map. |
|
// * Returns `void` from the `erase(iterator)` overload. |
|
// |
|
// By default, `node_hash_map` uses the `absl::Hash` hashing framework. |
|
// All fundamental and Abseil types that support the `absl::Hash` framework have |
|
// a compatible equality operator for comparing insertions into `node_hash_map`. |
|
// If your type is not yet supported by the `asbl::Hash` framework, see |
|
// absl/hash/hash.h for information on extending Abseil hashing to user-defined |
|
// types. |
|
// |
|
// Example: |
|
// |
|
// // Create a node hash map of three strings (that map to strings) |
|
// absl::node_hash_map<std::string, std::string> ducks = |
|
// {{"a", "huey"}, {"b", "dewey"}, {"c", "louie"}}; |
|
// |
|
// // Insert a new element into the node hash map |
|
// ducks.insert({"d", "donald"}}; |
|
// |
|
// // Force a rehash of the node hash map |
|
// ducks.rehash(0); |
|
// |
|
// // Find the element with the key "b" |
|
// std::string search_key = "b"; |
|
// auto result = ducks.find(search_key); |
|
// if (result != ducks.end()) { |
|
// std::cout << "Result: " << search_key->second << std::endl; |
|
// } |
|
template <class Key, class Value, |
|
class Hash = absl::container_internal::hash_default_hash<Key>, |
|
class Eq = absl::container_internal::hash_default_eq<Key>, |
|
class Alloc = std::allocator<std::pair<const Key, Value>>> |
|
class node_hash_map |
|
: public absl::container_internal::raw_hash_map< |
|
absl::container_internal::NodeHashMapPolicy<Key, Value>, Hash, Eq, |
|
Alloc> { |
|
using Base = typename node_hash_map::raw_hash_map; |
|
|
|
public: |
|
node_hash_map() {} |
|
using Base::Base; |
|
|
|
// node_hash_map::begin() |
|
// |
|
// Returns an iterator to the beginning of the `node_hash_map`. |
|
using Base::begin; |
|
|
|
// node_hash_map::cbegin() |
|
// |
|
// Returns a const iterator to the beginning of the `node_hash_map`. |
|
using Base::cbegin; |
|
|
|
// node_hash_map::cend() |
|
// |
|
// Returns a const iterator to the end of the `node_hash_map`. |
|
using Base::cend; |
|
|
|
// node_hash_map::end() |
|
// |
|
// Returns an iterator to the end of the `node_hash_map`. |
|
using Base::end; |
|
|
|
// node_hash_map::capacity() |
|
// |
|
// Returns the number of element slots (assigned, deleted, and empty) |
|
// available within the `node_hash_map`. |
|
// |
|
// NOTE: this member function is particular to `absl::node_hash_map` and is |
|
// not provided in the `std::unordered_map` API. |
|
using Base::capacity; |
|
|
|
// node_hash_map::empty() |
|
// |
|
// Returns whether or not the `node_hash_map` is empty. |
|
using Base::empty; |
|
|
|
// node_hash_map::max_size() |
|
// |
|
// Returns the largest theoretical possible number of elements within a |
|
// `node_hash_map` under current memory constraints. This value can be thought |
|
// of as the largest value of `std::distance(begin(), end())` for a |
|
// `node_hash_map<K, V>`. |
|
using Base::max_size; |
|
|
|
// node_hash_map::size() |
|
// |
|
// Returns the number of elements currently within the `node_hash_map`. |
|
using Base::size; |
|
|
|
// node_hash_map::clear() |
|
// |
|
// Removes all elements from the `node_hash_map`. Invalidates any references, |
|
// pointers, or iterators referring to contained elements. |
|
// |
|
// NOTE: this operation may shrink the underlying buffer. To avoid shrinking |
|
// the underlying buffer call `erase(begin(), end())`. |
|
using Base::clear; |
|
|
|
// node_hash_map::erase() |
|
// |
|
// Erases elements within the `node_hash_map`. Erasing does not trigger a |
|
// rehash. Overloads are listed below. |
|
// |
|
// void erase(const_iterator pos): |
|
// |
|
// Erases the element at `position` of the `node_hash_map`, returning |
|
// `void`. |
|
// |
|
// NOTE: this return behavior is different than that of STL containers in |
|
// general and `std::unordered_map` in particular. |
|
// |
|
// iterator erase(const_iterator first, const_iterator last): |
|
// |
|
// Erases the elements in the open interval [`first`, `last`), returning an |
|
// iterator pointing to `last`. |
|
// |
|
// size_type erase(const key_type& key): |
|
// |
|
// Erases the element with the matching key, if it exists. |
|
using Base::erase; |
|
|
|
// node_hash_map::insert() |
|
// |
|
// Inserts an element of the specified value into the `node_hash_map`, |
|
// returning an iterator pointing to the newly inserted element, provided that |
|
// an element with the given key does not already exist. If rehashing occurs |
|
// due to the insertion, all iterators are invalidated. Overloads are listed |
|
// below. |
|
// |
|
// std::pair<iterator,bool> insert(const init_type& value): |
|
// |
|
// Inserts a value into the `node_hash_map`. Returns a pair consisting of an |
|
// iterator to the inserted element (or to the element that prevented the |
|
// insertion) and a `bool` denoting whether the insertion took place. |
|
// |
|
// std::pair<iterator,bool> insert(T&& value): |
|
// std::pair<iterator,bool> insert(init_type&& value): |
|
// |
|
// Inserts a moveable value into the `node_hash_map`. Returns a `std::pair` |
|
// consisting of an iterator to the inserted element (or to the element that |
|
// prevented the insertion) and a `bool` denoting whether the insertion took |
|
// place. |
|
// |
|
// iterator insert(const_iterator hint, const init_type& value): |
|
// iterator insert(const_iterator hint, T&& value): |
|
// iterator insert(const_iterator hint, init_type&& value); |
|
// |
|
// Inserts a value, using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. Returns an iterator to the |
|
// inserted element, or to the existing element that prevented the |
|
// insertion. |
|
// |
|
// void insert(InputIterator first, InputIterator last): |
|
// |
|
// Inserts a range of values [`first`, `last`). |
|
// |
|
// NOTE: Although the STL does not specify which element may be inserted if |
|
// multiple keys compare equivalently, for `node_hash_map` we guarantee the |
|
// first match is inserted. |
|
// |
|
// void insert(std::initializer_list<init_type> ilist): |
|
// |
|
// Inserts the elements within the initializer list `ilist`. |
|
// |
|
// NOTE: Although the STL does not specify which element may be inserted if |
|
// multiple keys compare equivalently within the initializer list, for |
|
// `node_hash_map` we guarantee the first match is inserted. |
|
using Base::insert; |
|
|
|
// node_hash_map::insert_or_assign() |
|
// |
|
// Inserts an element of the specified value into the `node_hash_map` provided |
|
// that a value with the given key does not already exist, or replaces it with |
|
// the element value if a key for that value already exists, returning an |
|
// iterator pointing to the newly inserted element. If rehashing occurs due to |
|
// the insertion, all iterators are invalidated. Overloads are listed |
|
// below. |
|
// |
|
// std::pair<iterator, bool> insert_or_assign(const init_type& k, T&& obj): |
|
// std::pair<iterator, bool> insert_or_assign(init_type&& k, T&& obj): |
|
// |
|
// Inserts/Assigns (or moves) the element of the specified key into the |
|
// `node_hash_map`. |
|
// |
|
// iterator insert_or_assign(const_iterator hint, |
|
// const init_type& k, T&& obj): |
|
// iterator insert_or_assign(const_iterator hint, init_type&& k, T&& obj): |
|
// |
|
// Inserts/Assigns (or moves) the element of the specified key into the |
|
// `node_hash_map` using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. |
|
using Base::insert_or_assign; |
|
|
|
// node_hash_map::emplace() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `node_hash_map`, provided that no element with the given key |
|
// already exists. |
|
// |
|
// The element may be constructed even if there already is an element with the |
|
// key in the container, in which case the newly constructed element will be |
|
// destroyed immediately. Prefer `try_emplace()` unless your key is not |
|
// copyable or moveable. |
|
// |
|
// If rehashing occurs due to the insertion, all iterators are invalidated. |
|
using Base::emplace; |
|
|
|
// node_hash_map::emplace_hint() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `node_hash_map`, using the position of `hint` as a non-binding |
|
// suggestion for where to begin the insertion search, and only inserts |
|
// provided that no element with the given key already exists. |
|
// |
|
// The element may be constructed even if there already is an element with the |
|
// key in the container, in which case the newly constructed element will be |
|
// destroyed immediately. Prefer `try_emplace()` unless your key is not |
|
// copyable or moveable. |
|
// |
|
// If rehashing occurs due to the insertion, all iterators are invalidated. |
|
using Base::emplace_hint; |
|
|
|
// node_hash_map::try_emplace() |
|
// |
|
// Inserts an element of the specified value by constructing it in-place |
|
// within the `node_hash_map`, provided that no element with the given key |
|
// already exists. Unlike `emplace()`, if an element with the given key |
|
// already exists, we guarantee that no element is constructed. |
|
// |
|
// If rehashing occurs due to the insertion, all iterators are invalidated. |
|
// Overloads are listed below. |
|
// |
|
// std::pair<iterator, bool> try_emplace(const key_type& k, Args&&... args): |
|
// std::pair<iterator, bool> try_emplace(key_type&& k, Args&&... args): |
|
// |
|
// Inserts (via copy or move) the element of the specified key into the |
|
// `node_hash_map`. |
|
// |
|
// iterator try_emplace(const_iterator hint, |
|
// const init_type& k, Args&&... args): |
|
// iterator try_emplace(const_iterator hint, init_type&& k, Args&&... args): |
|
// |
|
// Inserts (via copy or move) the element of the specified key into the |
|
// `node_hash_map` using the position of `hint` as a non-binding suggestion |
|
// for where to begin the insertion search. |
|
using Base::try_emplace; |
|
|
|
// node_hash_map::extract() |
|
// |
|
// Extracts the indicated element, erasing it in the process, and returns it |
|
// as a C++17-compatible node handle. Overloads are listed below. |
|
// |
|
// node_type extract(const_iterator position): |
|
// |
|
// Extracts the key,value pair of the element at the indicated position and |
|
// returns a node handle owning that extracted data. |
|
// |
|
// node_type extract(const key_type& x): |
|
// |
|
// Extracts the key,value pair of the element with a key matching the passed |
|
// key value and returns a node handle owning that extracted data. If the |
|
// `node_hash_map` does not contain an element with a matching key, this |
|
// function returns an empty node handle. |
|
using Base::extract; |
|
|
|
// node_hash_map::merge() |
|
// |
|
// Extracts elements from a given `source` node hash map into this |
|
// `node_hash_map`. If the destination `node_hash_map` already contains an |
|
// element with an equivalent key, that element is not extracted. |
|
using Base::merge; |
|
|
|
// node_hash_map::swap(node_hash_map& other) |
|
// |
|
// Exchanges the contents of this `node_hash_map` with those of the `other` |
|
// node hash map, avoiding invocation of any move, copy, or swap operations on |
|
// individual elements. |
|
// |
|
// All iterators and references on the `node_hash_map` remain valid, excepting |
|
// for the past-the-end iterator, which is invalidated. |
|
// |
|
// `swap()` requires that the node hash map's hashing and key equivalence |
|
// functions be Swappable, and are exchaged using unqualified calls to |
|
// non-member `swap()`. If the map's allocator has |
|
// `std::allocator_traits<allocator_type>::propagate_on_container_swap::value` |
|
// set to `true`, the allocators are also exchanged using an unqualified call |
|
// to non-member `swap()`; otherwise, the allocators are not swapped. |
|
using Base::swap; |
|
|
|
// node_hash_map::rehash(count) |
|
// |
|
// Rehashes the `node_hash_map`, setting the number of slots to be at least |
|
// the passed value. If the new number of slots increases the load factor more |
|
// than the current maximum load factor |
|
// (`count` < `size()` / `max_load_factor()`), then the new number of slots |
|
// will be at least `size()` / `max_load_factor()`. |
|
// |
|
// To force a rehash, pass rehash(0). |
|
using Base::rehash; |
|
|
|
// node_hash_map::reserve(count) |
|
// |
|
// Sets the number of slots in the `node_hash_map` to the number needed to |
|
// accommodate at least `count` total elements without exceeding the current |
|
// maximum load factor, and may rehash the container if needed. |
|
using Base::reserve; |
|
|
|
// node_hash_map::at() |
|
// |
|
// Returns a reference to the mapped value of the element with key equivalent |
|
// to the passed key. |
|
using Base::at; |
|
|
|
// node_hash_map::contains() |
|
// |
|
// Determines whether an element with a key comparing equal to the given `key` |
|
// exists within the `node_hash_map`, returning `true` if so or `false` |
|
// otherwise. |
|
using Base::contains; |
|
|
|
// node_hash_map::count(const Key& key) const |
|
// |
|
// Returns the number of elements with a key comparing equal to the given |
|
// `key` within the `node_hash_map`. note that this function will return |
|
// either `1` or `0` since duplicate keys are not allowed within a |
|
// `node_hash_map`. |
|
using Base::count; |
|
|
|
// node_hash_map::equal_range() |
|
// |
|
// Returns a closed range [first, last], defined by a `std::pair` of two |
|
// iterators, containing all elements with the passed key in the |
|
// `node_hash_map`. |
|
using Base::equal_range; |
|
|
|
// node_hash_map::find() |
|
// |
|
// Finds an element with the passed `key` within the `node_hash_map`. |
|
using Base::find; |
|
|
|
// node_hash_map::operator[]() |
|
// |
|
// Returns a reference to the value mapped to the passed key within the |
|
// `node_hash_map`, performing an `insert()` if the key does not already |
|
// exist. If an insertion occurs and results in a rehashing of the container, |
|
// all iterators are invalidated. Otherwise iterators are not affected and |
|
// references are not invalidated. Overloads are listed below. |
|
// |
|
// T& operator[](const Key& key): |
|
// |
|
// Inserts an init_type object constructed in-place if the element with the |
|
// given key does not exist. |
|
// |
|
// T& operator[](Key&& key): |
|
// |
|
// Inserts an init_type object constructed in-place provided that an element |
|
// with the given key does not exist. |
|
using Base::operator[]; |
|
|
|
// node_hash_map::bucket_count() |
|
// |
|
// Returns the number of "buckets" within the `node_hash_map`. |
|
using Base::bucket_count; |
|
|
|
// node_hash_map::load_factor() |
|
// |
|
// Returns the current load factor of the `node_hash_map` (the average number |
|
// of slots occupied with a value within the hash map). |
|
using Base::load_factor; |
|
|
|
// node_hash_map::max_load_factor() |
|
// |
|
// Manages the maximum load factor of the `node_hash_map`. Overloads are |
|
// listed below. |
|
// |
|
// float node_hash_map::max_load_factor() |
|
// |
|
// Returns the current maximum load factor of the `node_hash_map`. |
|
// |
|
// void node_hash_map::max_load_factor(float ml) |
|
// |
|
// Sets the maximum load factor of the `node_hash_map` to the passed value. |
|
// |
|
// NOTE: This overload is provided only for API compatibility with the STL; |
|
// `node_hash_map` will ignore any set load factor and manage its rehashing |
|
// internally as an implementation detail. |
|
using Base::max_load_factor; |
|
|
|
// node_hash_map::get_allocator() |
|
// |
|
// Returns the allocator function associated with this `node_hash_map`. |
|
using Base::get_allocator; |
|
|
|
// node_hash_map::hash_function() |
|
// |
|
// Returns the hashing function used to hash the keys within this |
|
// `node_hash_map`. |
|
using Base::hash_function; |
|
|
|
// node_hash_map::key_eq() |
|
// |
|
// Returns the function used for comparing keys equality. |
|
using Base::key_eq; |
|
|
|
ABSL_DEPRECATED("Call `hash_function()` instead.") |
|
typename Base::hasher hash_funct() { return this->hash_function(); } |
|
|
|
ABSL_DEPRECATED("Call `rehash()` instead.") |
|
void resize(typename Base::size_type hint) { this->rehash(hint); } |
|
}; |
|
|
|
namespace container_internal { |
|
|
|
template <class Key, class Value> |
|
class NodeHashMapPolicy |
|
: public absl::container_internal::node_hash_policy< |
|
std::pair<const Key, Value>&, NodeHashMapPolicy<Key, Value>> { |
|
using value_type = std::pair<const Key, Value>; |
|
|
|
public: |
|
using key_type = Key; |
|
using mapped_type = Value; |
|
using init_type = std::pair</*non const*/ key_type, mapped_type>; |
|
|
|
template <class Allocator, class... Args> |
|
static value_type* new_element(Allocator* alloc, Args&&... args) { |
|
using PairAlloc = typename absl::allocator_traits< |
|
Allocator>::template rebind_alloc<value_type>; |
|
PairAlloc pair_alloc(*alloc); |
|
value_type* res = |
|
absl::allocator_traits<PairAlloc>::allocate(pair_alloc, 1); |
|
absl::allocator_traits<PairAlloc>::construct(pair_alloc, res, |
|
std::forward<Args>(args)...); |
|
return res; |
|
} |
|
|
|
template <class Allocator> |
|
static void delete_element(Allocator* alloc, value_type* pair) { |
|
using PairAlloc = typename absl::allocator_traits< |
|
Allocator>::template rebind_alloc<value_type>; |
|
PairAlloc pair_alloc(*alloc); |
|
absl::allocator_traits<PairAlloc>::destroy(pair_alloc, pair); |
|
absl::allocator_traits<PairAlloc>::deallocate(pair_alloc, pair, 1); |
|
} |
|
|
|
template <class F, class... Args> |
|
static decltype(absl::container_internal::DecomposePair( |
|
std::declval<F>(), std::declval<Args>()...)) |
|
apply(F&& f, Args&&... args) { |
|
return absl::container_internal::DecomposePair(std::forward<F>(f), |
|
std::forward<Args>(args)...); |
|
} |
|
|
|
static size_t element_space_used(const value_type*) { |
|
return sizeof(value_type); |
|
} |
|
|
|
static Value& value(value_type* elem) { return elem->second; } |
|
static const Value& value(const value_type* elem) { return elem->second; } |
|
}; |
|
} // namespace container_internal |
|
} // namespace absl |
|
#endif // ABSL_CONTAINER_NODE_HASH_MAP_H_
|
|
|