Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1275 lines
45 KiB
1275 lines
45 KiB
// Copyright 2018 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#include "absl/hash/hash.h" |
|
|
|
#include <algorithm> |
|
#include <array> |
|
#include <bitset> |
|
#include <cstring> |
|
#include <deque> |
|
#include <forward_list> |
|
#include <functional> |
|
#include <initializer_list> |
|
#include <iterator> |
|
#include <limits> |
|
#include <list> |
|
#include <map> |
|
#include <memory> |
|
#include <numeric> |
|
#include <random> |
|
#include <set> |
|
#include <string> |
|
#include <tuple> |
|
#include <type_traits> |
|
#include <unordered_map> |
|
#include <unordered_set> |
|
#include <utility> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/container/btree_map.h" |
|
#include "absl/container/btree_set.h" |
|
#include "absl/container/flat_hash_map.h" |
|
#include "absl/container/flat_hash_set.h" |
|
#include "absl/container/node_hash_map.h" |
|
#include "absl/container/node_hash_set.h" |
|
#include "absl/hash/hash_testing.h" |
|
#include "absl/hash/internal/spy_hash_state.h" |
|
#include "absl/meta/type_traits.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/strings/cord_test_helpers.h" |
|
|
|
namespace { |
|
|
|
// Utility wrapper of T for the purposes of testing the `AbslHash` type erasure |
|
// mechanism. `TypeErasedValue<T>` can be constructed with a `T`, and can |
|
// be compared and hashed. However, all hashing goes through the hashing |
|
// type-erasure framework. |
|
template <typename T> |
|
class TypeErasedValue { |
|
public: |
|
TypeErasedValue() = default; |
|
TypeErasedValue(const TypeErasedValue&) = default; |
|
TypeErasedValue(TypeErasedValue&&) = default; |
|
explicit TypeErasedValue(const T& n) : n_(n) {} |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H hash_state, const TypeErasedValue& v) { |
|
v.HashValue(absl::HashState::Create(&hash_state)); |
|
return hash_state; |
|
} |
|
|
|
void HashValue(absl::HashState state) const { |
|
absl::HashState::combine(std::move(state), n_); |
|
} |
|
|
|
bool operator==(const TypeErasedValue& rhs) const { return n_ == rhs.n_; } |
|
bool operator!=(const TypeErasedValue& rhs) const { return !(*this == rhs); } |
|
|
|
private: |
|
T n_; |
|
}; |
|
|
|
// A TypeErasedValue refinement, for containers. It exposes the wrapped |
|
// `value_type` and is constructible from an initializer list. |
|
template <typename T> |
|
class TypeErasedContainer : public TypeErasedValue<T> { |
|
public: |
|
using value_type = typename T::value_type; |
|
TypeErasedContainer() = default; |
|
TypeErasedContainer(const TypeErasedContainer&) = default; |
|
TypeErasedContainer(TypeErasedContainer&&) = default; |
|
explicit TypeErasedContainer(const T& n) : TypeErasedValue<T>(n) {} |
|
TypeErasedContainer(std::initializer_list<value_type> init_list) |
|
: TypeErasedContainer(T(init_list.begin(), init_list.end())) {} |
|
// one-argument constructor of value type T, to appease older toolchains that |
|
// get confused by one-element initializer lists in some contexts |
|
explicit TypeErasedContainer(const value_type& v) |
|
: TypeErasedContainer(T(&v, &v + 1)) {} |
|
}; |
|
|
|
template <typename T> |
|
using TypeErasedVector = TypeErasedContainer<std::vector<T>>; |
|
|
|
using absl::Hash; |
|
using absl::hash_internal::SpyHashState; |
|
|
|
template <typename T> |
|
class HashValueIntTest : public testing::Test { |
|
}; |
|
TYPED_TEST_SUITE_P(HashValueIntTest); |
|
|
|
template <typename T> |
|
SpyHashState SpyHash(const T& value) { |
|
return SpyHashState::combine(SpyHashState(), value); |
|
} |
|
|
|
// Helper trait to verify if T is hashable. We use absl::Hash's poison status to |
|
// detect it. |
|
template <typename T> |
|
using is_hashable = std::is_default_constructible<absl::Hash<T>>; |
|
|
|
TYPED_TEST_P(HashValueIntTest, BasicUsage) { |
|
EXPECT_TRUE((is_hashable<TypeParam>::value)); |
|
|
|
TypeParam n = 42; |
|
EXPECT_EQ(SpyHash(n), SpyHash(TypeParam{42})); |
|
EXPECT_NE(SpyHash(n), SpyHash(TypeParam{0})); |
|
EXPECT_NE(SpyHash(std::numeric_limits<TypeParam>::max()), |
|
SpyHash(std::numeric_limits<TypeParam>::min())); |
|
} |
|
|
|
TYPED_TEST_P(HashValueIntTest, FastPath) { |
|
// Test the fast-path to make sure the values are the same. |
|
TypeParam n = 42; |
|
EXPECT_EQ(absl::Hash<TypeParam>{}(n), |
|
absl::Hash<std::tuple<TypeParam>>{}(std::tuple<TypeParam>(n))); |
|
} |
|
|
|
REGISTER_TYPED_TEST_SUITE_P(HashValueIntTest, BasicUsage, FastPath); |
|
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, |
|
uint32_t, uint64_t, size_t>; |
|
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueIntTest, IntTypes); |
|
|
|
enum LegacyEnum { kValue1, kValue2, kValue3 }; |
|
|
|
enum class EnumClass { kValue4, kValue5, kValue6 }; |
|
|
|
TEST(HashValueTest, EnumAndBool) { |
|
EXPECT_TRUE((is_hashable<LegacyEnum>::value)); |
|
EXPECT_TRUE((is_hashable<EnumClass>::value)); |
|
EXPECT_TRUE((is_hashable<bool>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
LegacyEnum::kValue1, LegacyEnum::kValue2, LegacyEnum::kValue3))); |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
EnumClass::kValue4, EnumClass::kValue5, EnumClass::kValue6))); |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(true, false))); |
|
} |
|
|
|
TEST(HashValueTest, FloatingPoint) { |
|
EXPECT_TRUE((is_hashable<float>::value)); |
|
EXPECT_TRUE((is_hashable<double>::value)); |
|
EXPECT_TRUE((is_hashable<long double>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(42.f, 0.f, -0.f, std::numeric_limits<float>::infinity(), |
|
-std::numeric_limits<float>::infinity()))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(42., 0., -0., std::numeric_limits<double>::infinity(), |
|
-std::numeric_limits<double>::infinity()))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
// Add some values with small exponent to test that NORMAL values also |
|
// append their category. |
|
.5L, 1.L, 2.L, 4.L, 42.L, 0.L, -0.L, |
|
17 * static_cast<long double>(std::numeric_limits<double>::max()), |
|
std::numeric_limits<long double>::infinity(), |
|
-std::numeric_limits<long double>::infinity()))); |
|
} |
|
|
|
TEST(HashValueTest, Pointer) { |
|
EXPECT_TRUE((is_hashable<int*>::value)); |
|
EXPECT_TRUE((is_hashable<int(*)(char, float)>::value)); |
|
EXPECT_TRUE((is_hashable<void(*)(int, int, ...)>::value)); |
|
|
|
int i; |
|
int* ptr = &i; |
|
int* n = nullptr; |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(&i, ptr, nullptr, ptr + 1, n))); |
|
} |
|
|
|
TEST(HashValueTest, PointerAlignment) { |
|
// We want to make sure that pointer alignment will not cause bits to be |
|
// stuck. |
|
|
|
constexpr size_t kTotalSize = 1 << 20; |
|
std::unique_ptr<char[]> data(new char[kTotalSize]); |
|
constexpr size_t kLog2NumValues = 5; |
|
constexpr size_t kNumValues = 1 << kLog2NumValues; |
|
|
|
for (size_t align = 1; align < kTotalSize / kNumValues; |
|
align < 8 ? align += 1 : align < 1024 ? align += 8 : align += 32) { |
|
SCOPED_TRACE(align); |
|
ASSERT_LE(align * kNumValues, kTotalSize); |
|
|
|
size_t bits_or = 0; |
|
size_t bits_and = ~size_t{}; |
|
|
|
for (size_t i = 0; i < kNumValues; ++i) { |
|
size_t hash = absl::Hash<void*>()(data.get() + i * align); |
|
bits_or |= hash; |
|
bits_and &= hash; |
|
} |
|
|
|
// Limit the scope to the bits we would be using for Swisstable. |
|
constexpr size_t kMask = (1 << (kLog2NumValues + 7)) - 1; |
|
size_t stuck_bits = (~bits_or | bits_and) & kMask; |
|
EXPECT_EQ(stuck_bits, 0) << "0x" << std::hex << stuck_bits; |
|
} |
|
} |
|
|
|
TEST(HashValueTest, PointerToMember) { |
|
struct Bass { |
|
void q() {} |
|
}; |
|
|
|
struct A : Bass { |
|
virtual ~A() = default; |
|
virtual void vfa() {} |
|
|
|
static auto pq() -> void (A::*)() { return &A::q; } |
|
}; |
|
|
|
struct B : Bass { |
|
virtual ~B() = default; |
|
virtual void vfb() {} |
|
|
|
static auto pq() -> void (B::*)() { return &B::q; } |
|
}; |
|
|
|
struct Foo : A, B { |
|
void f1() {} |
|
void f2() const {} |
|
|
|
int g1() & { return 0; } |
|
int g2() const & { return 0; } |
|
int g3() && { return 0; } |
|
int g4() const && { return 0; } |
|
|
|
int h1() & { return 0; } |
|
int h2() const & { return 0; } |
|
int h3() && { return 0; } |
|
int h4() const && { return 0; } |
|
|
|
int a; |
|
int b; |
|
|
|
const int c = 11; |
|
const int d = 22; |
|
}; |
|
|
|
EXPECT_TRUE((is_hashable<float Foo::*>::value)); |
|
EXPECT_TRUE((is_hashable<double (Foo::*)(int, int)&&>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(&Foo::a, &Foo::b, static_cast<int Foo::*>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(&Foo::c, &Foo::d, static_cast<const int Foo::*>(nullptr), |
|
&Foo::a, &Foo::b))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
&Foo::f1, static_cast<void (Foo::*)()>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
&Foo::f2, static_cast<void (Foo::*)() const>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
&Foo::g1, &Foo::h1, static_cast<int (Foo::*)() &>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
&Foo::g2, &Foo::h2, static_cast<int (Foo::*)() const &>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
&Foo::g3, &Foo::h3, static_cast<int (Foo::*)() &&>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
&Foo::g4, &Foo::h4, static_cast<int (Foo::*)() const &&>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(static_cast<void (Foo::*)()>(&Foo::vfa), |
|
static_cast<void (Foo::*)()>(&Foo::vfb), |
|
static_cast<void (Foo::*)()>(nullptr)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(static_cast<void (Foo::*)()>(Foo::A::pq()), |
|
static_cast<void (Foo::*)()>(Foo::B::pq()), |
|
static_cast<void (Foo::*)()>(nullptr)))); |
|
} |
|
|
|
TEST(HashValueTest, PairAndTuple) { |
|
EXPECT_TRUE((is_hashable<std::pair<int, int>>::value)); |
|
EXPECT_TRUE((is_hashable<std::pair<const int&, const int&>>::value)); |
|
EXPECT_TRUE((is_hashable<std::tuple<int&, int&>>::value)); |
|
EXPECT_TRUE((is_hashable<std::tuple<int&&, int&&>>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
std::make_pair(0, 42), std::make_pair(0, 42), std::make_pair(42, 0), |
|
std::make_pair(0, 0), std::make_pair(42, 42), std::make_pair(1, 42)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(std::make_tuple(0, 0, 0), std::make_tuple(0, 0, 42), |
|
std::make_tuple(0, 23, 0), std::make_tuple(17, 0, 0), |
|
std::make_tuple(42, 0, 0), std::make_tuple(3, 9, 9), |
|
std::make_tuple(0, 0, -42)))); |
|
|
|
// Test that tuples of lvalue references work (so we need a few lvalues): |
|
int a = 0, b = 1, c = 17, d = 23; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
std::tie(a, a), std::tie(a, b), std::tie(b, c), std::tie(c, d)))); |
|
|
|
// Test that tuples of rvalue references work: |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
std::forward_as_tuple(0, 0, 0), std::forward_as_tuple(0, 0, 42), |
|
std::forward_as_tuple(0, 23, 0), std::forward_as_tuple(17, 0, 0), |
|
std::forward_as_tuple(42, 0, 0), std::forward_as_tuple(3, 9, 9), |
|
std::forward_as_tuple(0, 0, -42)))); |
|
} |
|
|
|
TEST(HashValueTest, CombineContiguousWorks) { |
|
std::vector<std::tuple<int>> v1 = {std::make_tuple(1), std::make_tuple(3)}; |
|
std::vector<std::tuple<int>> v2 = {std::make_tuple(1), std::make_tuple(2)}; |
|
|
|
auto vh1 = SpyHash(v1); |
|
auto vh2 = SpyHash(v2); |
|
EXPECT_NE(vh1, vh2); |
|
} |
|
|
|
struct DummyDeleter { |
|
template <typename T> |
|
void operator() (T* ptr) {} |
|
}; |
|
|
|
struct SmartPointerEq { |
|
template <typename T, typename U> |
|
bool operator()(const T& t, const U& u) const { |
|
return GetPtr(t) == GetPtr(u); |
|
} |
|
|
|
template <typename T> |
|
static auto GetPtr(const T& t) -> decltype(&*t) { |
|
return t ? &*t : nullptr; |
|
} |
|
|
|
static std::nullptr_t GetPtr(std::nullptr_t) { return nullptr; } |
|
}; |
|
|
|
TEST(HashValueTest, SmartPointers) { |
|
EXPECT_TRUE((is_hashable<std::unique_ptr<int>>::value)); |
|
EXPECT_TRUE((is_hashable<std::unique_ptr<int, DummyDeleter>>::value)); |
|
EXPECT_TRUE((is_hashable<std::shared_ptr<int>>::value)); |
|
|
|
int i, j; |
|
std::unique_ptr<int, DummyDeleter> unique1(&i); |
|
std::unique_ptr<int, DummyDeleter> unique2(&i); |
|
std::unique_ptr<int, DummyDeleter> unique_other(&j); |
|
std::unique_ptr<int, DummyDeleter> unique_null; |
|
|
|
std::shared_ptr<int> shared1(&i, DummyDeleter()); |
|
std::shared_ptr<int> shared2(&i, DummyDeleter()); |
|
std::shared_ptr<int> shared_other(&j, DummyDeleter()); |
|
std::shared_ptr<int> shared_null; |
|
|
|
// Sanity check of the Eq function. |
|
ASSERT_TRUE(SmartPointerEq{}(unique1, shared1)); |
|
ASSERT_FALSE(SmartPointerEq{}(unique1, shared_other)); |
|
ASSERT_TRUE(SmartPointerEq{}(unique_null, nullptr)); |
|
ASSERT_FALSE(SmartPointerEq{}(shared2, nullptr)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::forward_as_tuple(&i, nullptr, // |
|
unique1, unique2, unique_null, // |
|
absl::make_unique<int>(), // |
|
shared1, shared2, shared_null, // |
|
std::make_shared<int>()), |
|
SmartPointerEq{})); |
|
} |
|
|
|
TEST(HashValueTest, FunctionPointer) { |
|
using Func = int (*)(); |
|
EXPECT_TRUE(is_hashable<Func>::value); |
|
|
|
Func p1 = [] { return 2; }, p2 = [] { return 1; }; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(p1, p2, nullptr))); |
|
} |
|
|
|
struct WrapInTuple { |
|
template <typename T> |
|
std::tuple<int, T, size_t> operator()(const T& t) const { |
|
return std::make_tuple(7, t, 0xdeadbeef); |
|
} |
|
}; |
|
|
|
absl::Cord FlatCord(absl::string_view sv) { |
|
absl::Cord c(sv); |
|
c.Flatten(); |
|
return c; |
|
} |
|
|
|
absl::Cord FragmentedCord(absl::string_view sv) { |
|
if (sv.size() < 2) { |
|
return absl::Cord(sv); |
|
} |
|
size_t halfway = sv.size() / 2; |
|
std::vector<absl::string_view> parts = {sv.substr(0, halfway), |
|
sv.substr(halfway)}; |
|
return absl::MakeFragmentedCord(parts); |
|
} |
|
|
|
TEST(HashValueTest, Strings) { |
|
EXPECT_TRUE((is_hashable<std::string>::value)); |
|
|
|
const std::string small = "foo"; |
|
const std::string dup = "foofoo"; |
|
const std::string large = std::string(2048, 'x'); // multiple of chunk size |
|
const std::string huge = std::string(5000, 'a'); // not a multiple |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // |
|
std::string(), absl::string_view(), absl::Cord(), // |
|
std::string(""), absl::string_view(""), absl::Cord(""), // |
|
std::string(small), absl::string_view(small), absl::Cord(small), // |
|
std::string(dup), absl::string_view(dup), absl::Cord(dup), // |
|
std::string(large), absl::string_view(large), absl::Cord(large), // |
|
std::string(huge), absl::string_view(huge), FlatCord(huge), // |
|
FragmentedCord(huge)))); |
|
|
|
// Also check that nested types maintain the same hash. |
|
const WrapInTuple t{}; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( // |
|
t(std::string()), t(absl::string_view()), t(absl::Cord()), // |
|
t(std::string("")), t(absl::string_view("")), t(absl::Cord("")), // |
|
t(std::string(small)), t(absl::string_view(small)), // |
|
t(absl::Cord(small)), // |
|
t(std::string(dup)), t(absl::string_view(dup)), t(absl::Cord(dup)), // |
|
t(std::string(large)), t(absl::string_view(large)), // |
|
t(absl::Cord(large)), // |
|
t(std::string(huge)), t(absl::string_view(huge)), // |
|
t(FlatCord(huge)), t(FragmentedCord(huge))))); |
|
|
|
// Make sure that hashing a `const char*` does not use its string-value. |
|
EXPECT_NE(SpyHash(static_cast<const char*>("ABC")), |
|
SpyHash(absl::string_view("ABC"))); |
|
} |
|
|
|
TEST(HashValueTest, WString) { |
|
EXPECT_TRUE((is_hashable<std::wstring>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
std::wstring(), std::wstring(L"ABC"), std::wstring(L"ABC"), |
|
std::wstring(L"Some other different string"), |
|
std::wstring(L"Iñtërnâtiônàlizætiøn")))); |
|
} |
|
|
|
TEST(HashValueTest, U16String) { |
|
EXPECT_TRUE((is_hashable<std::u16string>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
std::u16string(), std::u16string(u"ABC"), std::u16string(u"ABC"), |
|
std::u16string(u"Some other different string"), |
|
std::u16string(u"Iñtërnâtiônàlizætiøn")))); |
|
} |
|
|
|
TEST(HashValueTest, U32String) { |
|
EXPECT_TRUE((is_hashable<std::u32string>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
std::u32string(), std::u32string(U"ABC"), std::u32string(U"ABC"), |
|
std::u32string(U"Some other different string"), |
|
std::u32string(U"Iñtërnâtiônàlizætiøn")))); |
|
} |
|
|
|
TEST(HashValueTest, StdArray) { |
|
EXPECT_TRUE((is_hashable<std::array<int, 3>>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(std::array<int, 3>{}, std::array<int, 3>{{0, 23, 42}}))); |
|
} |
|
|
|
TEST(HashValueTest, StdBitset) { |
|
EXPECT_TRUE((is_hashable<std::bitset<257>>::value)); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
{std::bitset<2>("00"), std::bitset<2>("01"), std::bitset<2>("10"), |
|
std::bitset<2>("11")})); |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
{std::bitset<5>("10101"), std::bitset<5>("10001"), std::bitset<5>()})); |
|
|
|
constexpr int kNumBits = 256; |
|
std::array<std::string, 6> bit_strings; |
|
bit_strings.fill(std::string(kNumBits, '1')); |
|
bit_strings[1][0] = '0'; |
|
bit_strings[2][1] = '0'; |
|
bit_strings[3][kNumBits / 3] = '0'; |
|
bit_strings[4][kNumBits - 2] = '0'; |
|
bit_strings[5][kNumBits - 1] = '0'; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
{std::bitset<kNumBits>(bit_strings[0].c_str()), |
|
std::bitset<kNumBits>(bit_strings[1].c_str()), |
|
std::bitset<kNumBits>(bit_strings[2].c_str()), |
|
std::bitset<kNumBits>(bit_strings[3].c_str()), |
|
std::bitset<kNumBits>(bit_strings[4].c_str()), |
|
std::bitset<kNumBits>(bit_strings[5].c_str())})); |
|
} // namespace |
|
|
|
// Dummy type with unordered equality and hashing semantics. This preserves |
|
// input order internally, and is used below to ensure we get test coverage |
|
// for equal sequences with different iteraton orders. |
|
template <typename T> |
|
class UnorderedSequence { |
|
public: |
|
UnorderedSequence() = default; |
|
template <typename TT> |
|
UnorderedSequence(std::initializer_list<TT> l) |
|
: values_(l.begin(), l.end()) {} |
|
template <typename ForwardIterator, |
|
typename std::enable_if<!std::is_integral<ForwardIterator>::value, |
|
bool>::type = true> |
|
UnorderedSequence(ForwardIterator begin, ForwardIterator end) |
|
: values_(begin, end) {} |
|
// one-argument constructor of value type T, to appease older toolchains that |
|
// get confused by one-element initializer lists in some contexts |
|
explicit UnorderedSequence(const T& v) : values_(&v, &v + 1) {} |
|
|
|
using value_type = T; |
|
|
|
size_t size() const { return values_.size(); } |
|
typename std::vector<T>::const_iterator begin() const { |
|
return values_.begin(); |
|
} |
|
typename std::vector<T>::const_iterator end() const { return values_.end(); } |
|
|
|
friend bool operator==(const UnorderedSequence& lhs, |
|
const UnorderedSequence& rhs) { |
|
return lhs.size() == rhs.size() && |
|
std::is_permutation(lhs.begin(), lhs.end(), rhs.begin()); |
|
} |
|
friend bool operator!=(const UnorderedSequence& lhs, |
|
const UnorderedSequence& rhs) { |
|
return !(lhs == rhs); |
|
} |
|
template <typename H> |
|
friend H AbslHashValue(H h, const UnorderedSequence& u) { |
|
return H::combine(H::combine_unordered(std::move(h), u.begin(), u.end()), |
|
u.size()); |
|
} |
|
|
|
private: |
|
std::vector<T> values_; |
|
}; |
|
|
|
template <typename T> |
|
class HashValueSequenceTest : public testing::Test { |
|
}; |
|
TYPED_TEST_SUITE_P(HashValueSequenceTest); |
|
|
|
TYPED_TEST_P(HashValueSequenceTest, BasicUsage) { |
|
EXPECT_TRUE((is_hashable<TypeParam>::value)); |
|
|
|
using IntType = typename TypeParam::value_type; |
|
auto a = static_cast<IntType>(0); |
|
auto b = static_cast<IntType>(23); |
|
auto c = static_cast<IntType>(42); |
|
|
|
std::vector<TypeParam> exemplars = { |
|
TypeParam(), TypeParam(), TypeParam{a, b, c}, |
|
TypeParam{a, c, b}, TypeParam{c, a, b}, TypeParam{a}, |
|
TypeParam{a, a}, TypeParam{a, a, a}, TypeParam{a, a, b}, |
|
TypeParam{a, b, a}, TypeParam{b, a, a}, TypeParam{a, b}, |
|
TypeParam{b, c}}; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
|
} |
|
|
|
REGISTER_TYPED_TEST_SUITE_P(HashValueSequenceTest, BasicUsage); |
|
using IntSequenceTypes = testing::Types< |
|
std::deque<int>, std::forward_list<int>, std::list<int>, std::vector<int>, |
|
std::vector<bool>, TypeErasedContainer<std::vector<int>>, std::set<int>, |
|
std::multiset<int>, UnorderedSequence<int>, |
|
TypeErasedContainer<UnorderedSequence<int>>, std::unordered_set<int>, |
|
std::unordered_multiset<int>, absl::flat_hash_set<int>, |
|
absl::node_hash_set<int>, absl::btree_set<int>>; |
|
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueSequenceTest, IntSequenceTypes); |
|
|
|
template <typename T> |
|
class HashValueNestedSequenceTest : public testing::Test {}; |
|
TYPED_TEST_SUITE_P(HashValueNestedSequenceTest); |
|
|
|
TYPED_TEST_P(HashValueNestedSequenceTest, BasicUsage) { |
|
using T = TypeParam; |
|
using V = typename T::value_type; |
|
std::vector<T> exemplars = { |
|
// empty case |
|
T{}, |
|
// sets of empty sets |
|
T{V{}}, T{V{}, V{}}, T{V{}, V{}, V{}}, |
|
// multisets of different values |
|
T{V{1}}, T{V{1, 1}, V{1, 1}}, T{V{1, 1, 1}, V{1, 1, 1}, V{1, 1, 1}}, |
|
// various orderings of same nested sets |
|
T{V{}, V{1, 2}}, T{V{}, V{2, 1}}, T{V{1, 2}, V{}}, T{V{2, 1}, V{}}, |
|
// various orderings of various nested sets, case 2 |
|
T{V{1, 2}, V{3, 4}}, T{V{1, 2}, V{4, 3}}, T{V{1, 3}, V{2, 4}}, |
|
T{V{1, 3}, V{4, 2}}, T{V{1, 4}, V{2, 3}}, T{V{1, 4}, V{3, 2}}, |
|
T{V{2, 3}, V{1, 4}}, T{V{2, 3}, V{4, 1}}, T{V{2, 4}, V{1, 3}}, |
|
T{V{2, 4}, V{3, 1}}, T{V{3, 4}, V{1, 2}}, T{V{3, 4}, V{2, 1}}}; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
|
} |
|
|
|
REGISTER_TYPED_TEST_SUITE_P(HashValueNestedSequenceTest, BasicUsage); |
|
template <typename T> |
|
using TypeErasedSet = TypeErasedContainer<UnorderedSequence<T>>; |
|
|
|
using NestedIntSequenceTypes = testing::Types< |
|
std::vector<std::vector<int>>, std::vector<UnorderedSequence<int>>, |
|
std::vector<TypeErasedSet<int>>, UnorderedSequence<std::vector<int>>, |
|
UnorderedSequence<UnorderedSequence<int>>, |
|
UnorderedSequence<TypeErasedSet<int>>, TypeErasedSet<std::vector<int>>, |
|
TypeErasedSet<UnorderedSequence<int>>, TypeErasedSet<TypeErasedSet<int>>>; |
|
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueNestedSequenceTest, |
|
NestedIntSequenceTypes); |
|
|
|
// Private type that only supports AbslHashValue to make sure our chosen hash |
|
// implementation is recursive within absl::Hash. |
|
// It uses std::abs() on the value to provide different bitwise representations |
|
// of the same logical value. |
|
struct Private { |
|
int i; |
|
template <typename H> |
|
friend H AbslHashValue(H h, Private p) { |
|
return H::combine(std::move(h), std::abs(p.i)); |
|
} |
|
|
|
friend bool operator==(Private a, Private b) { |
|
return std::abs(a.i) == std::abs(b.i); |
|
} |
|
|
|
friend std::ostream& operator<<(std::ostream& o, Private p) { |
|
return o << p.i; |
|
} |
|
}; |
|
|
|
// Test helper for combine_piecewise_buffer. It holds a string_view to the |
|
// buffer-to-be-hashed. Its AbslHashValue specialization will split up its |
|
// contents at the character offsets requested. |
|
class PiecewiseHashTester { |
|
public: |
|
// Create a hash view of a buffer to be hashed contiguously. |
|
explicit PiecewiseHashTester(absl::string_view buf) |
|
: buf_(buf), piecewise_(false), split_locations_() {} |
|
|
|
// Create a hash view of a buffer to be hashed piecewise, with breaks at the |
|
// given locations. |
|
PiecewiseHashTester(absl::string_view buf, std::set<size_t> split_locations) |
|
: buf_(buf), |
|
piecewise_(true), |
|
split_locations_(std::move(split_locations)) {} |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H h, const PiecewiseHashTester& p) { |
|
if (!p.piecewise_) { |
|
return H::combine_contiguous(std::move(h), p.buf_.data(), p.buf_.size()); |
|
} |
|
absl::hash_internal::PiecewiseCombiner combiner; |
|
if (p.split_locations_.empty()) { |
|
h = combiner.add_buffer(std::move(h), p.buf_.data(), p.buf_.size()); |
|
return combiner.finalize(std::move(h)); |
|
} |
|
size_t begin = 0; |
|
for (size_t next : p.split_locations_) { |
|
absl::string_view chunk = p.buf_.substr(begin, next - begin); |
|
h = combiner.add_buffer(std::move(h), chunk.data(), chunk.size()); |
|
begin = next; |
|
} |
|
absl::string_view last_chunk = p.buf_.substr(begin); |
|
if (!last_chunk.empty()) { |
|
h = combiner.add_buffer(std::move(h), last_chunk.data(), |
|
last_chunk.size()); |
|
} |
|
return combiner.finalize(std::move(h)); |
|
} |
|
|
|
private: |
|
absl::string_view buf_; |
|
bool piecewise_; |
|
std::set<size_t> split_locations_; |
|
}; |
|
|
|
// Dummy object that hashes as two distinct contiguous buffers, "foo" followed |
|
// by "bar" |
|
struct DummyFooBar { |
|
template <typename H> |
|
friend H AbslHashValue(H h, const DummyFooBar&) { |
|
const char* foo = "foo"; |
|
const char* bar = "bar"; |
|
h = H::combine_contiguous(std::move(h), foo, 3); |
|
h = H::combine_contiguous(std::move(h), bar, 3); |
|
return h; |
|
} |
|
}; |
|
|
|
TEST(HashValueTest, CombinePiecewiseBuffer) { |
|
absl::Hash<PiecewiseHashTester> hash; |
|
|
|
// Check that hashing an empty buffer through the piecewise API works. |
|
EXPECT_EQ(hash(PiecewiseHashTester("")), hash(PiecewiseHashTester("", {}))); |
|
|
|
// Similarly, small buffers should give consistent results |
|
EXPECT_EQ(hash(PiecewiseHashTester("foobar")), |
|
hash(PiecewiseHashTester("foobar", {}))); |
|
EXPECT_EQ(hash(PiecewiseHashTester("foobar")), |
|
hash(PiecewiseHashTester("foobar", {3}))); |
|
|
|
// But hashing "foobar" in pieces gives a different answer than hashing "foo" |
|
// contiguously, then "bar" contiguously. |
|
EXPECT_NE(hash(PiecewiseHashTester("foobar", {3})), |
|
absl::Hash<DummyFooBar>()(DummyFooBar{})); |
|
|
|
// Test hashing a large buffer incrementally, broken up in several different |
|
// ways. Arrange for breaks on and near the stride boundaries to look for |
|
// off-by-one errors in the implementation. |
|
// |
|
// This test is run on a buffer that is a multiple of the stride size, and one |
|
// that isn't. |
|
for (size_t big_buffer_size : {1024 * 2 + 512, 1024 * 3}) { |
|
SCOPED_TRACE(big_buffer_size); |
|
std::string big_buffer; |
|
for (int i = 0; i < big_buffer_size; ++i) { |
|
// Arbitrary string |
|
big_buffer.push_back(32 + (i * (i / 3)) % 64); |
|
} |
|
auto big_buffer_hash = hash(PiecewiseHashTester(big_buffer)); |
|
|
|
const int possible_breaks = 9; |
|
size_t breaks[possible_breaks] = {1, 512, 1023, 1024, 1025, |
|
1536, 2047, 2048, 2049}; |
|
for (unsigned test_mask = 0; test_mask < (1u << possible_breaks); |
|
++test_mask) { |
|
SCOPED_TRACE(test_mask); |
|
std::set<size_t> break_locations; |
|
for (int j = 0; j < possible_breaks; ++j) { |
|
if (test_mask & (1u << j)) { |
|
break_locations.insert(breaks[j]); |
|
} |
|
} |
|
EXPECT_EQ( |
|
hash(PiecewiseHashTester(big_buffer, std::move(break_locations))), |
|
big_buffer_hash); |
|
} |
|
} |
|
} |
|
|
|
TEST(HashValueTest, PrivateSanity) { |
|
// Sanity check that Private is working as the tests below expect it to work. |
|
EXPECT_TRUE(is_hashable<Private>::value); |
|
EXPECT_NE(SpyHash(Private{0}), SpyHash(Private{1})); |
|
EXPECT_EQ(SpyHash(Private{1}), SpyHash(Private{1})); |
|
} |
|
|
|
TEST(HashValueTest, Optional) { |
|
EXPECT_TRUE(is_hashable<absl::optional<Private>>::value); |
|
|
|
using O = absl::optional<Private>; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(O{}, O{{1}}, O{{-1}}, O{{10}}))); |
|
} |
|
|
|
TEST(HashValueTest, Variant) { |
|
using V = absl::variant<Private, std::string>; |
|
EXPECT_TRUE(is_hashable<V>::value); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
V(Private{1}), V(Private{-1}), V(Private{2}), V("ABC"), V("BCD")))); |
|
|
|
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
|
struct S {}; |
|
EXPECT_FALSE(is_hashable<absl::variant<S>>::value); |
|
#endif |
|
} |
|
|
|
template <typename T> |
|
class HashValueAssociativeMapTest : public testing::Test {}; |
|
TYPED_TEST_SUITE_P(HashValueAssociativeMapTest); |
|
|
|
TYPED_TEST_P(HashValueAssociativeMapTest, BasicUsage) { |
|
using M = TypeParam; |
|
using V = typename M::value_type; |
|
std::vector<M> exemplars{M{}, |
|
M{V{0, "foo"}}, |
|
M{V{1, "foo"}}, |
|
M{V{0, "bar"}}, |
|
M{V{1, "bar"}}, |
|
M{V{0, "foo"}, V{42, "bar"}}, |
|
M{V{42, "bar"}, V{0, "foo"}}, |
|
M{V{1, "foo"}, V{42, "bar"}}, |
|
M{V{1, "foo"}, V{43, "bar"}}, |
|
M{V{1, "foo"}, V{43, "baz"}}}; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
|
} |
|
|
|
REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMapTest, BasicUsage); |
|
using AssociativeMapTypes = testing::Types< |
|
std::map<int, std::string>, std::unordered_map<int, std::string>, |
|
absl::flat_hash_map<int, std::string>, |
|
absl::node_hash_map<int, std::string>, absl::btree_map<int, std::string>, |
|
UnorderedSequence<std::pair<const int, std::string>>>; |
|
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMapTest, |
|
AssociativeMapTypes); |
|
|
|
template <typename T> |
|
class HashValueAssociativeMultimapTest : public testing::Test {}; |
|
TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest); |
|
|
|
TYPED_TEST_P(HashValueAssociativeMultimapTest, BasicUsage) { |
|
using MM = TypeParam; |
|
using V = typename MM::value_type; |
|
std::vector<MM> exemplars{MM{}, |
|
MM{V{0, "foo"}}, |
|
MM{V{1, "foo"}}, |
|
MM{V{0, "bar"}}, |
|
MM{V{1, "bar"}}, |
|
MM{V{0, "foo"}, V{0, "bar"}}, |
|
MM{V{0, "bar"}, V{0, "foo"}}, |
|
MM{V{0, "foo"}, V{42, "bar"}}, |
|
MM{V{1, "foo"}, V{42, "bar"}}, |
|
MM{V{1, "foo"}, V{1, "foo"}, V{43, "bar"}}, |
|
MM{V{1, "foo"}, V{43, "bar"}, V{1, "foo"}}, |
|
MM{V{1, "foo"}, V{43, "baz"}}}; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(exemplars)); |
|
} |
|
|
|
REGISTER_TYPED_TEST_SUITE_P(HashValueAssociativeMultimapTest, BasicUsage); |
|
using AssociativeMultimapTypes = |
|
testing::Types<std::multimap<int, std::string>, |
|
std::unordered_multimap<int, std::string>>; |
|
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashValueAssociativeMultimapTest, |
|
AssociativeMultimapTypes); |
|
|
|
TEST(HashValueTest, ReferenceWrapper) { |
|
EXPECT_TRUE(is_hashable<std::reference_wrapper<Private>>::value); |
|
|
|
Private p1{1}, p10{10}; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
p1, p10, std::ref(p1), std::ref(p10), std::cref(p1), std::cref(p10)))); |
|
|
|
EXPECT_TRUE(is_hashable<std::reference_wrapper<int>>::value); |
|
int one = 1, ten = 10; |
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly(std::make_tuple( |
|
one, ten, std::ref(one), std::ref(ten), std::cref(one), std::cref(ten)))); |
|
|
|
EXPECT_TRUE(absl::VerifyTypeImplementsAbslHashCorrectly( |
|
std::make_tuple(std::tuple<std::reference_wrapper<int>>(std::ref(one)), |
|
std::tuple<std::reference_wrapper<int>>(std::ref(ten)), |
|
std::tuple<int>(one), std::tuple<int>(ten)))); |
|
} |
|
|
|
template <typename T, typename = void> |
|
struct IsHashCallable : std::false_type {}; |
|
|
|
template <typename T> |
|
struct IsHashCallable<T, absl::void_t<decltype(std::declval<absl::Hash<T>>()( |
|
std::declval<const T&>()))>> : std::true_type {}; |
|
|
|
template <typename T, typename = void> |
|
struct IsAggregateInitializable : std::false_type {}; |
|
|
|
template <typename T> |
|
struct IsAggregateInitializable<T, absl::void_t<decltype(T{})>> |
|
: std::true_type {}; |
|
|
|
TEST(IsHashableTest, ValidHash) { |
|
EXPECT_TRUE((is_hashable<int>::value)); |
|
EXPECT_TRUE(std::is_default_constructible<absl::Hash<int>>::value); |
|
EXPECT_TRUE(std::is_copy_constructible<absl::Hash<int>>::value); |
|
EXPECT_TRUE(std::is_move_constructible<absl::Hash<int>>::value); |
|
EXPECT_TRUE(absl::is_copy_assignable<absl::Hash<int>>::value); |
|
EXPECT_TRUE(absl::is_move_assignable<absl::Hash<int>>::value); |
|
EXPECT_TRUE(IsHashCallable<int>::value); |
|
EXPECT_TRUE(IsAggregateInitializable<absl::Hash<int>>::value); |
|
} |
|
|
|
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
|
TEST(IsHashableTest, PoisonHash) { |
|
struct X {}; |
|
EXPECT_FALSE((is_hashable<X>::value)); |
|
EXPECT_FALSE(std::is_default_constructible<absl::Hash<X>>::value); |
|
EXPECT_FALSE(std::is_copy_constructible<absl::Hash<X>>::value); |
|
EXPECT_FALSE(std::is_move_constructible<absl::Hash<X>>::value); |
|
EXPECT_FALSE(absl::is_copy_assignable<absl::Hash<X>>::value); |
|
EXPECT_FALSE(absl::is_move_assignable<absl::Hash<X>>::value); |
|
EXPECT_FALSE(IsHashCallable<X>::value); |
|
#if !defined(__GNUC__) || __GNUC__ < 9 |
|
// This doesn't compile on GCC 9. |
|
EXPECT_FALSE(IsAggregateInitializable<absl::Hash<X>>::value); |
|
#endif |
|
} |
|
#endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
|
|
|
// Hashable types |
|
// |
|
// These types exist simply to exercise various AbslHashValue behaviors, so |
|
// they are named by what their AbslHashValue overload does. |
|
struct NoOp { |
|
template <typename HashCode> |
|
friend HashCode AbslHashValue(HashCode h, NoOp n) { |
|
return h; |
|
} |
|
}; |
|
|
|
struct EmptyCombine { |
|
template <typename HashCode> |
|
friend HashCode AbslHashValue(HashCode h, EmptyCombine e) { |
|
return HashCode::combine(std::move(h)); |
|
} |
|
}; |
|
|
|
template <typename Int> |
|
struct CombineIterative { |
|
template <typename HashCode> |
|
friend HashCode AbslHashValue(HashCode h, CombineIterative c) { |
|
for (int i = 0; i < 5; ++i) { |
|
h = HashCode::combine(std::move(h), Int(i)); |
|
} |
|
return h; |
|
} |
|
}; |
|
|
|
template <typename Int> |
|
struct CombineVariadic { |
|
template <typename HashCode> |
|
friend HashCode AbslHashValue(HashCode h, CombineVariadic c) { |
|
return HashCode::combine(std::move(h), Int(0), Int(1), Int(2), Int(3), |
|
Int(4)); |
|
} |
|
}; |
|
enum class InvokeTag { |
|
kUniquelyRepresented, |
|
kHashValue, |
|
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
|
kLegacyHash, |
|
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
|
kStdHash, |
|
kNone |
|
}; |
|
|
|
template <InvokeTag T> |
|
using InvokeTagConstant = std::integral_constant<InvokeTag, T>; |
|
|
|
template <InvokeTag... Tags> |
|
struct MinTag; |
|
|
|
template <InvokeTag a, InvokeTag b, InvokeTag... Tags> |
|
struct MinTag<a, b, Tags...> : MinTag<(a < b ? a : b), Tags...> {}; |
|
|
|
template <InvokeTag a> |
|
struct MinTag<a> : InvokeTagConstant<a> {}; |
|
|
|
template <InvokeTag... Tags> |
|
struct CustomHashType { |
|
explicit CustomHashType(size_t val) : value(val) {} |
|
size_t value; |
|
}; |
|
|
|
template <InvokeTag allowed, InvokeTag... tags> |
|
struct EnableIfContained |
|
: std::enable_if<absl::disjunction< |
|
std::integral_constant<bool, allowed == tags>...>::value> {}; |
|
|
|
template < |
|
typename H, InvokeTag... Tags, |
|
typename = typename EnableIfContained<InvokeTag::kHashValue, Tags...>::type> |
|
H AbslHashValue(H state, CustomHashType<Tags...> t) { |
|
static_assert(MinTag<Tags...>::value == InvokeTag::kHashValue, ""); |
|
return H::combine(std::move(state), |
|
t.value + static_cast<int>(InvokeTag::kHashValue)); |
|
} |
|
|
|
} // namespace |
|
|
|
namespace absl { |
|
ABSL_NAMESPACE_BEGIN |
|
namespace hash_internal { |
|
template <InvokeTag... Tags> |
|
struct is_uniquely_represented< |
|
CustomHashType<Tags...>, |
|
typename EnableIfContained<InvokeTag::kUniquelyRepresented, Tags...>::type> |
|
: std::true_type {}; |
|
} // namespace hash_internal |
|
ABSL_NAMESPACE_END |
|
} // namespace absl |
|
|
|
#if ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
|
namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE { |
|
template <InvokeTag... Tags> |
|
struct hash<CustomHashType<Tags...>> { |
|
template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
|
InvokeTag::kLegacyHash, TagsIn...>::type> |
|
size_t operator()(CustomHashType<TagsIn...> t) const { |
|
static_assert(MinTag<Tags...>::value == InvokeTag::kLegacyHash, ""); |
|
return t.value + static_cast<int>(InvokeTag::kLegacyHash); |
|
} |
|
}; |
|
} // namespace ABSL_INTERNAL_LEGACY_HASH_NAMESPACE |
|
#endif // ABSL_HASH_INTERNAL_SUPPORT_LEGACY_HASH_ |
|
|
|
namespace std { |
|
template <InvokeTag... Tags> // NOLINT |
|
struct hash<CustomHashType<Tags...>> { |
|
template <InvokeTag... TagsIn, typename = typename EnableIfContained< |
|
InvokeTag::kStdHash, TagsIn...>::type> |
|
size_t operator()(CustomHashType<TagsIn...> t) const { |
|
static_assert(MinTag<Tags...>::value == InvokeTag::kStdHash, ""); |
|
return t.value + static_cast<int>(InvokeTag::kStdHash); |
|
} |
|
}; |
|
} // namespace std |
|
|
|
namespace { |
|
|
|
template <typename... T> |
|
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>, T...) { |
|
using type = CustomHashType<T::value...>; |
|
SCOPED_TRACE(testing::PrintToString(std::vector<InvokeTag>{T::value...})); |
|
EXPECT_TRUE(is_hashable<type>()); |
|
EXPECT_TRUE(is_hashable<const type>()); |
|
EXPECT_TRUE(is_hashable<const type&>()); |
|
|
|
const size_t offset = static_cast<int>(std::min({T::value...})); |
|
EXPECT_EQ(SpyHash(type(7)), SpyHash(size_t{7 + offset})); |
|
} |
|
|
|
void TestCustomHashType(InvokeTagConstant<InvokeTag::kNone>) { |
|
#if ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
|
// is_hashable is false if we don't support any of the hooks. |
|
using type = CustomHashType<>; |
|
EXPECT_FALSE(is_hashable<type>()); |
|
EXPECT_FALSE(is_hashable<const type>()); |
|
EXPECT_FALSE(is_hashable<const type&>()); |
|
#endif // ABSL_META_INTERNAL_STD_HASH_SFINAE_FRIENDLY_ |
|
} |
|
|
|
template <InvokeTag Tag, typename... T> |
|
void TestCustomHashType(InvokeTagConstant<Tag> tag, T... t) { |
|
constexpr auto next = static_cast<InvokeTag>(static_cast<int>(Tag) + 1); |
|
TestCustomHashType(InvokeTagConstant<next>(), tag, t...); |
|
TestCustomHashType(InvokeTagConstant<next>(), t...); |
|
} |
|
|
|
TEST(HashTest, CustomHashType) { |
|
TestCustomHashType(InvokeTagConstant<InvokeTag{}>()); |
|
} |
|
|
|
TEST(HashTest, NoOpsAreEquivalent) { |
|
EXPECT_EQ(Hash<NoOp>()({}), Hash<NoOp>()({})); |
|
EXPECT_EQ(Hash<NoOp>()({}), Hash<EmptyCombine>()({})); |
|
} |
|
|
|
template <typename T> |
|
class HashIntTest : public testing::Test { |
|
}; |
|
TYPED_TEST_SUITE_P(HashIntTest); |
|
|
|
TYPED_TEST_P(HashIntTest, BasicUsage) { |
|
EXPECT_NE(Hash<NoOp>()({}), Hash<TypeParam>()(0)); |
|
EXPECT_NE(Hash<NoOp>()({}), |
|
Hash<TypeParam>()(std::numeric_limits<TypeParam>::max())); |
|
if (std::numeric_limits<TypeParam>::min() != 0) { |
|
EXPECT_NE(Hash<NoOp>()({}), |
|
Hash<TypeParam>()(std::numeric_limits<TypeParam>::min())); |
|
} |
|
|
|
EXPECT_EQ(Hash<CombineIterative<TypeParam>>()({}), |
|
Hash<CombineVariadic<TypeParam>>()({})); |
|
} |
|
|
|
REGISTER_TYPED_TEST_SUITE_P(HashIntTest, BasicUsage); |
|
using IntTypes = testing::Types<unsigned char, char, int, int32_t, int64_t, |
|
uint32_t, uint64_t, size_t>; |
|
INSTANTIATE_TYPED_TEST_SUITE_P(My, HashIntTest, IntTypes); |
|
|
|
struct StructWithPadding { |
|
char c; |
|
int i; |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H hash_state, const StructWithPadding& s) { |
|
return H::combine(std::move(hash_state), s.c, s.i); |
|
} |
|
}; |
|
|
|
static_assert(sizeof(StructWithPadding) > sizeof(char) + sizeof(int), |
|
"StructWithPadding doesn't have padding"); |
|
static_assert(std::is_standard_layout<StructWithPadding>::value, ""); |
|
|
|
// This check has to be disabled because libstdc++ doesn't support it. |
|
// static_assert(std::is_trivially_constructible<StructWithPadding>::value, ""); |
|
|
|
template <typename T> |
|
struct ArraySlice { |
|
T* begin; |
|
T* end; |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H hash_state, const ArraySlice& slice) { |
|
for (auto t = slice.begin; t != slice.end; ++t) { |
|
hash_state = H::combine(std::move(hash_state), *t); |
|
} |
|
return hash_state; |
|
} |
|
}; |
|
|
|
TEST(HashTest, HashNonUniquelyRepresentedType) { |
|
// Create equal StructWithPadding objects that are known to have non-equal |
|
// padding bytes. |
|
static const size_t kNumStructs = 10; |
|
unsigned char buffer1[kNumStructs * sizeof(StructWithPadding)]; |
|
std::memset(buffer1, 0, sizeof(buffer1)); |
|
auto* s1 = reinterpret_cast<StructWithPadding*>(buffer1); |
|
|
|
unsigned char buffer2[kNumStructs * sizeof(StructWithPadding)]; |
|
std::memset(buffer2, 255, sizeof(buffer2)); |
|
auto* s2 = reinterpret_cast<StructWithPadding*>(buffer2); |
|
for (int i = 0; i < kNumStructs; ++i) { |
|
SCOPED_TRACE(i); |
|
s1[i].c = s2[i].c = '0' + i; |
|
s1[i].i = s2[i].i = i; |
|
ASSERT_FALSE(memcmp(buffer1 + i * sizeof(StructWithPadding), |
|
buffer2 + i * sizeof(StructWithPadding), |
|
sizeof(StructWithPadding)) == 0) |
|
<< "Bug in test code: objects do not have unequal" |
|
<< " object representations"; |
|
} |
|
|
|
EXPECT_EQ(Hash<StructWithPadding>()(s1[0]), Hash<StructWithPadding>()(s2[0])); |
|
EXPECT_EQ(Hash<ArraySlice<StructWithPadding>>()({s1, s1 + kNumStructs}), |
|
Hash<ArraySlice<StructWithPadding>>()({s2, s2 + kNumStructs})); |
|
} |
|
|
|
TEST(HashTest, StandardHashContainerUsage) { |
|
std::unordered_map<int, std::string, Hash<int>> map = {{0, "foo"}, |
|
{42, "bar"}}; |
|
|
|
EXPECT_NE(map.find(0), map.end()); |
|
EXPECT_EQ(map.find(1), map.end()); |
|
EXPECT_NE(map.find(0u), map.end()); |
|
} |
|
|
|
struct ConvertibleFromNoOp { |
|
ConvertibleFromNoOp(NoOp) {} // NOLINT(runtime/explicit) |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H hash_state, ConvertibleFromNoOp) { |
|
return H::combine(std::move(hash_state), 1); |
|
} |
|
}; |
|
|
|
TEST(HashTest, HeterogeneousCall) { |
|
EXPECT_NE(Hash<ConvertibleFromNoOp>()(NoOp()), |
|
Hash<NoOp>()(NoOp())); |
|
} |
|
|
|
TEST(IsUniquelyRepresentedTest, SanityTest) { |
|
using absl::hash_internal::is_uniquely_represented; |
|
|
|
EXPECT_TRUE(is_uniquely_represented<unsigned char>::value); |
|
EXPECT_TRUE(is_uniquely_represented<int>::value); |
|
EXPECT_FALSE(is_uniquely_represented<bool>::value); |
|
EXPECT_FALSE(is_uniquely_represented<int*>::value); |
|
} |
|
|
|
struct IntAndString { |
|
int i; |
|
std::string s; |
|
|
|
template <typename H> |
|
friend H AbslHashValue(H hash_state, IntAndString int_and_string) { |
|
return H::combine(std::move(hash_state), int_and_string.s, |
|
int_and_string.i); |
|
} |
|
}; |
|
|
|
TEST(HashTest, SmallValueOn64ByteBoundary) { |
|
Hash<IntAndString>()(IntAndString{0, std::string(63, '0')}); |
|
} |
|
|
|
TEST(HashTest, TypeErased) { |
|
EXPECT_TRUE((is_hashable<TypeErasedValue<size_t>>::value)); |
|
EXPECT_TRUE((is_hashable<std::pair<TypeErasedValue<size_t>, int>>::value)); |
|
|
|
EXPECT_EQ(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{7})); |
|
EXPECT_NE(SpyHash(TypeErasedValue<size_t>(7)), SpyHash(size_t{13})); |
|
|
|
EXPECT_EQ(SpyHash(std::make_pair(TypeErasedValue<size_t>(7), 17)), |
|
SpyHash(std::make_pair(size_t{7}, 17))); |
|
|
|
absl::flat_hash_set<absl::flat_hash_set<int>> ss = {{1, 2}, {3, 4}}; |
|
TypeErasedContainer<absl::flat_hash_set<absl::flat_hash_set<int>>> es = { |
|
absl::flat_hash_set<int>{1, 2}, {3, 4}}; |
|
absl::flat_hash_set<TypeErasedContainer<absl::flat_hash_set<int>>> se = { |
|
{1, 2}, {3, 4}}; |
|
EXPECT_EQ(SpyHash(ss), SpyHash(es)); |
|
EXPECT_EQ(SpyHash(ss), SpyHash(se)); |
|
} |
|
|
|
struct ValueWithBoolConversion { |
|
operator bool() const { return false; } |
|
int i; |
|
}; |
|
|
|
} // namespace |
|
namespace std { |
|
template <> |
|
struct hash<ValueWithBoolConversion> { |
|
size_t operator()(ValueWithBoolConversion v) { return v.i; } |
|
}; |
|
} // namespace std |
|
|
|
namespace { |
|
|
|
TEST(HashTest, DoesNotUseImplicitConversionsToBool) { |
|
EXPECT_NE(absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{0}), |
|
absl::Hash<ValueWithBoolConversion>()(ValueWithBoolConversion{1})); |
|
} |
|
|
|
TEST(HashOf, MatchesHashForSingleArgument) { |
|
std::string s = "forty two"; |
|
int i = 42; |
|
double d = 42.0; |
|
std::tuple<int, int> t{4, 2}; |
|
|
|
EXPECT_EQ(absl::HashOf(s), absl::Hash<std::string>{}(s)); |
|
EXPECT_EQ(absl::HashOf(i), absl::Hash<int>{}(i)); |
|
EXPECT_EQ(absl::HashOf(d), absl::Hash<double>{}(d)); |
|
EXPECT_EQ(absl::HashOf(t), (absl::Hash<std::tuple<int, int>>{}(t))); |
|
} |
|
|
|
TEST(HashOf, MatchesHashOfTupleForMultipleArguments) { |
|
std::string hello = "hello"; |
|
std::string world = "world"; |
|
|
|
EXPECT_EQ(absl::HashOf(), absl::HashOf(std::make_tuple())); |
|
EXPECT_EQ(absl::HashOf(hello), absl::HashOf(std::make_tuple(hello))); |
|
EXPECT_EQ(absl::HashOf(hello, world), |
|
absl::HashOf(std::make_tuple(hello, world))); |
|
} |
|
|
|
template <typename T> |
|
std::true_type HashOfExplicitParameter(decltype(absl::HashOf<T>(0))) { |
|
return {}; |
|
} |
|
template <typename T> |
|
std::false_type HashOfExplicitParameter(size_t) { |
|
return {}; |
|
} |
|
|
|
TEST(HashOf, CantPassExplicitTemplateParameters) { |
|
EXPECT_FALSE(HashOfExplicitParameter<int>(0)); |
|
} |
|
|
|
} // namespace
|
|
|