Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
976 lines
37 KiB
976 lines
37 KiB
// Copyright 2016 Google Inc. All Rights Reserved. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// http://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
// This file implements the TimeZoneIf interface using the "zoneinfo" |
|
// data provided by the IANA Time Zone Database (i.e., the only real game |
|
// in town). |
|
// |
|
// TimeZoneInfo represents the history of UTC-offset changes within a time |
|
// zone. Most changes are due to daylight-saving rules, but occasionally |
|
// shifts are made to the time-zone's base offset. The database only attempts |
|
// to be definitive for times since 1970, so be wary of local-time conversions |
|
// before that. Also, rule and zone-boundary changes are made at the whim |
|
// of governments, so the conversion of future times needs to be taken with |
|
// a grain of salt. |
|
// |
|
// For more information see tzfile(5), http://www.iana.org/time-zones, or |
|
// http://en.wikipedia.org/wiki/Zoneinfo. |
|
// |
|
// Note that we assume the proleptic Gregorian calendar and 60-second |
|
// minutes throughout. |
|
|
|
#include "time_zone_info.h" |
|
|
|
#include <algorithm> |
|
#include <cassert> |
|
#include <chrono> |
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <functional> |
|
#include <iostream> |
|
#include <memory> |
|
#include <sstream> |
|
#include <string> |
|
|
|
#include "absl/time/internal/cctz/include/cctz/civil_time.h" |
|
#include "time_zone_fixed.h" |
|
#include "time_zone_posix.h" |
|
|
|
namespace absl { |
|
namespace time_internal { |
|
namespace cctz { |
|
|
|
namespace { |
|
|
|
inline bool IsLeap(year_t year) { |
|
return (year % 4) == 0 && ((year % 100) != 0 || (year % 400) == 0); |
|
} |
|
|
|
// The number of days in non-leap and leap years respectively. |
|
const std::int_least32_t kDaysPerYear[2] = {365, 366}; |
|
|
|
// The day offsets of the beginning of each (1-based) month in non-leap and |
|
// leap years respectively (e.g., 335 days before December in a leap year). |
|
const std::int_least16_t kMonthOffsets[2][1 + 12 + 1] = { |
|
{-1, 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365}, |
|
{-1, 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}, |
|
}; |
|
|
|
// We reject leap-second encoded zoneinfo and so assume 60-second minutes. |
|
const std::int_least32_t kSecsPerDay = 24 * 60 * 60; |
|
|
|
// 400-year chunks always have 146097 days (20871 weeks). |
|
const std::int_least64_t kSecsPer400Years = 146097LL * kSecsPerDay; |
|
|
|
// Like kDaysPerYear[] but scaled up by a factor of kSecsPerDay. |
|
const std::int_least32_t kSecsPerYear[2] = { |
|
365 * kSecsPerDay, |
|
366 * kSecsPerDay, |
|
}; |
|
|
|
// Single-byte, unsigned numeric values are encoded directly. |
|
inline std::uint_fast8_t Decode8(const char* cp) { |
|
return static_cast<std::uint_fast8_t>(*cp) & 0xff; |
|
} |
|
|
|
// Multi-byte, numeric values are encoded using a MSB first, |
|
// twos-complement representation. These helpers decode, from |
|
// the given address, 4-byte and 8-byte values respectively. |
|
// Note: If int_fastXX_t == intXX_t and this machine is not |
|
// twos complement, then there will be at least one input value |
|
// we cannot represent. |
|
std::int_fast32_t Decode32(const char* cp) { |
|
std::uint_fast32_t v = 0; |
|
for (int i = 0; i != (32 / 8); ++i) v = (v << 8) | Decode8(cp++); |
|
const std::int_fast32_t s32max = 0x7fffffff; |
|
const auto s32maxU = static_cast<std::uint_fast32_t>(s32max); |
|
if (v <= s32maxU) return static_cast<std::int_fast32_t>(v); |
|
return static_cast<std::int_fast32_t>(v - s32maxU - 1) - s32max - 1; |
|
} |
|
|
|
std::int_fast64_t Decode64(const char* cp) { |
|
std::uint_fast64_t v = 0; |
|
for (int i = 0; i != (64 / 8); ++i) v = (v << 8) | Decode8(cp++); |
|
const std::int_fast64_t s64max = 0x7fffffffffffffff; |
|
const auto s64maxU = static_cast<std::uint_fast64_t>(s64max); |
|
if (v <= s64maxU) return static_cast<std::int_fast64_t>(v); |
|
return static_cast<std::int_fast64_t>(v - s64maxU - 1) - s64max - 1; |
|
} |
|
|
|
// Generate a year-relative offset for a PosixTransition. |
|
std::int_fast64_t TransOffset(bool leap_year, int jan1_weekday, |
|
const PosixTransition& pt) { |
|
std::int_fast64_t days = 0; |
|
switch (pt.date.fmt) { |
|
case PosixTransition::J: { |
|
days = pt.date.j.day; |
|
if (!leap_year || days < kMonthOffsets[1][3]) days -= 1; |
|
break; |
|
} |
|
case PosixTransition::N: { |
|
days = pt.date.n.day; |
|
break; |
|
} |
|
case PosixTransition::M: { |
|
const bool last_week = (pt.date.m.week == 5); |
|
days = kMonthOffsets[leap_year][pt.date.m.month + last_week]; |
|
const std::int_fast64_t weekday = (jan1_weekday + days) % 7; |
|
if (last_week) { |
|
days -= (weekday + 7 - 1 - pt.date.m.weekday) % 7 + 1; |
|
} else { |
|
days += (pt.date.m.weekday + 7 - weekday) % 7; |
|
days += (pt.date.m.week - 1) * 7; |
|
} |
|
break; |
|
} |
|
} |
|
return (days * kSecsPerDay) + pt.time.offset; |
|
} |
|
|
|
inline time_zone::civil_lookup MakeUnique(const time_point<seconds>& tp) { |
|
time_zone::civil_lookup cl; |
|
cl.kind = time_zone::civil_lookup::UNIQUE; |
|
cl.pre = cl.trans = cl.post = tp; |
|
return cl; |
|
} |
|
|
|
inline time_zone::civil_lookup MakeUnique(std::int_fast64_t unix_time) { |
|
return MakeUnique(FromUnixSeconds(unix_time)); |
|
} |
|
|
|
inline time_zone::civil_lookup MakeSkipped(const Transition& tr, |
|
const civil_second& cs) { |
|
time_zone::civil_lookup cl; |
|
cl.kind = time_zone::civil_lookup::SKIPPED; |
|
cl.pre = FromUnixSeconds(tr.unix_time - 1 + (cs - tr.prev_civil_sec)); |
|
cl.trans = FromUnixSeconds(tr.unix_time); |
|
cl.post = FromUnixSeconds(tr.unix_time - (tr.civil_sec - cs)); |
|
return cl; |
|
} |
|
|
|
inline time_zone::civil_lookup MakeRepeated(const Transition& tr, |
|
const civil_second& cs) { |
|
time_zone::civil_lookup cl; |
|
cl.kind = time_zone::civil_lookup::REPEATED; |
|
cl.pre = FromUnixSeconds(tr.unix_time - 1 - (tr.prev_civil_sec - cs)); |
|
cl.trans = FromUnixSeconds(tr.unix_time); |
|
cl.post = FromUnixSeconds(tr.unix_time + (cs - tr.civil_sec)); |
|
return cl; |
|
} |
|
|
|
inline civil_second YearShift(const civil_second& cs, year_t shift) { |
|
return civil_second(cs.year() + shift, cs.month(), cs.day(), |
|
cs.hour(), cs.minute(), cs.second()); |
|
} |
|
|
|
} // namespace |
|
|
|
// What (no leap-seconds) UTC+seconds zoneinfo would look like. |
|
bool TimeZoneInfo::ResetToBuiltinUTC(const seconds& offset) { |
|
transition_types_.resize(1); |
|
TransitionType& tt(transition_types_.back()); |
|
tt.utc_offset = static_cast<std::int_least32_t>(offset.count()); |
|
tt.is_dst = false; |
|
tt.abbr_index = 0; |
|
|
|
// We temporarily add some redundant, contemporary (2013 through 2023) |
|
// transitions for performance reasons. See TimeZoneInfo::LocalTime(). |
|
// TODO: Fix the performance issue and remove the extra transitions. |
|
transitions_.clear(); |
|
transitions_.reserve(12); |
|
for (const std::int_fast64_t unix_time : { |
|
-(1LL << 59), // BIG_BANG |
|
1356998400LL, // 2013-01-01T00:00:00+00:00 |
|
1388534400LL, // 2014-01-01T00:00:00+00:00 |
|
1420070400LL, // 2015-01-01T00:00:00+00:00 |
|
1451606400LL, // 2016-01-01T00:00:00+00:00 |
|
1483228800LL, // 2017-01-01T00:00:00+00:00 |
|
1514764800LL, // 2018-01-01T00:00:00+00:00 |
|
1546300800LL, // 2019-01-01T00:00:00+00:00 |
|
1577836800LL, // 2020-01-01T00:00:00+00:00 |
|
1609459200LL, // 2021-01-01T00:00:00+00:00 |
|
1640995200LL, // 2022-01-01T00:00:00+00:00 |
|
1672531200LL, // 2023-01-01T00:00:00+00:00 |
|
2147483647LL, // 2^31 - 1 |
|
}) { |
|
Transition& tr(*transitions_.emplace(transitions_.end())); |
|
tr.unix_time = unix_time; |
|
tr.type_index = 0; |
|
tr.civil_sec = LocalTime(tr.unix_time, tt).cs; |
|
tr.prev_civil_sec = tr.civil_sec - 1; |
|
} |
|
|
|
default_transition_type_ = 0; |
|
abbreviations_ = FixedOffsetToAbbr(offset); |
|
abbreviations_.append(1, '\0'); // add NUL |
|
future_spec_.clear(); // never needed for a fixed-offset zone |
|
extended_ = false; |
|
|
|
tt.civil_max = LocalTime(seconds::max().count(), tt).cs; |
|
tt.civil_min = LocalTime(seconds::min().count(), tt).cs; |
|
|
|
transitions_.shrink_to_fit(); |
|
return true; |
|
} |
|
|
|
// Builds the in-memory header using the raw bytes from the file. |
|
bool TimeZoneInfo::Header::Build(const tzhead& tzh) { |
|
std::int_fast32_t v; |
|
if ((v = Decode32(tzh.tzh_timecnt)) < 0) return false; |
|
timecnt = static_cast<std::size_t>(v); |
|
if ((v = Decode32(tzh.tzh_typecnt)) < 0) return false; |
|
typecnt = static_cast<std::size_t>(v); |
|
if ((v = Decode32(tzh.tzh_charcnt)) < 0) return false; |
|
charcnt = static_cast<std::size_t>(v); |
|
if ((v = Decode32(tzh.tzh_leapcnt)) < 0) return false; |
|
leapcnt = static_cast<std::size_t>(v); |
|
if ((v = Decode32(tzh.tzh_ttisstdcnt)) < 0) return false; |
|
ttisstdcnt = static_cast<std::size_t>(v); |
|
if ((v = Decode32(tzh.tzh_ttisgmtcnt)) < 0) return false; |
|
ttisgmtcnt = static_cast<std::size_t>(v); |
|
return true; |
|
} |
|
|
|
// How many bytes of data are associated with this header. The result |
|
// depends upon whether this is a section with 4-byte or 8-byte times. |
|
std::size_t TimeZoneInfo::Header::DataLength(std::size_t time_len) const { |
|
std::size_t len = 0; |
|
len += (time_len + 1) * timecnt; // unix_time + type_index |
|
len += (4 + 1 + 1) * typecnt; // utc_offset + is_dst + abbr_index |
|
len += 1 * charcnt; // abbreviations |
|
len += (time_len + 4) * leapcnt; // leap-time + TAI-UTC |
|
len += 1 * ttisstdcnt; // UTC/local indicators |
|
len += 1 * ttisgmtcnt; // standard/wall indicators |
|
return len; |
|
} |
|
|
|
// Check that the TransitionType has the expected offset/is_dst/abbreviation. |
|
void TimeZoneInfo::CheckTransition(const std::string& name, |
|
const TransitionType& tt, |
|
std::int_fast32_t offset, bool is_dst, |
|
const std::string& abbr) const { |
|
if (tt.utc_offset != offset || tt.is_dst != is_dst || |
|
&abbreviations_[tt.abbr_index] != abbr) { |
|
std::clog << name << ": Transition" |
|
<< " offset=" << tt.utc_offset << "/" |
|
<< (tt.is_dst ? "DST" : "STD") |
|
<< "/abbr=" << &abbreviations_[tt.abbr_index] |
|
<< " does not match POSIX spec '" << future_spec_ << "'\n"; |
|
} |
|
} |
|
|
|
// zic(8) can generate no-op transitions when a zone changes rules at an |
|
// instant when there is actually no discontinuity. So we check whether |
|
// two transitions have equivalent types (same offset/is_dst/abbr). |
|
bool TimeZoneInfo::EquivTransitions(std::uint_fast8_t tt1_index, |
|
std::uint_fast8_t tt2_index) const { |
|
if (tt1_index == tt2_index) return true; |
|
const TransitionType& tt1(transition_types_[tt1_index]); |
|
const TransitionType& tt2(transition_types_[tt2_index]); |
|
if (tt1.is_dst != tt2.is_dst) return false; |
|
if (tt1.utc_offset != tt2.utc_offset) return false; |
|
if (tt1.abbr_index != tt2.abbr_index) return false; |
|
return true; |
|
} |
|
|
|
// Use the POSIX-TZ-environment-variable-style string to handle times |
|
// in years after the last transition stored in the zoneinfo data. |
|
void TimeZoneInfo::ExtendTransitions(const std::string& name, |
|
const Header& hdr) { |
|
extended_ = false; |
|
bool extending = !future_spec_.empty(); |
|
|
|
PosixTimeZone posix; |
|
if (extending && !ParsePosixSpec(future_spec_, &posix)) { |
|
std::clog << name << ": Failed to parse '" << future_spec_ << "'\n"; |
|
extending = false; |
|
} |
|
|
|
if (extending && posix.dst_abbr.empty()) { // std only |
|
// The future specification should match the last/default transition, |
|
// and that means that handling the future will fall out naturally. |
|
std::uint_fast8_t index = default_transition_type_; |
|
if (hdr.timecnt != 0) index = transitions_[hdr.timecnt - 1].type_index; |
|
const TransitionType& tt(transition_types_[index]); |
|
CheckTransition(name, tt, posix.std_offset, false, posix.std_abbr); |
|
extending = false; |
|
} |
|
|
|
if (extending && hdr.timecnt < 2) { |
|
std::clog << name << ": Too few transitions for POSIX spec\n"; |
|
extending = false; |
|
} |
|
|
|
if (!extending) { |
|
// Ensure that there is always a transition in the second half of the |
|
// time line (the BIG_BANG transition is in the first half) so that the |
|
// signed difference between a civil_second and the civil_second of its |
|
// previous transition is always representable, without overflow. |
|
const Transition& last(transitions_.back()); |
|
if (last.unix_time < 0) { |
|
const std::uint_fast8_t type_index = last.type_index; |
|
Transition& tr(*transitions_.emplace(transitions_.end())); |
|
tr.unix_time = 2147483647; // 2038-01-19T03:14:07+00:00 |
|
tr.type_index = type_index; |
|
} |
|
return; // last transition wins |
|
} |
|
|
|
// Extend the transitions for an additional 400 years using the |
|
// future specification. Years beyond those can be handled by |
|
// mapping back to a cycle-equivalent year within that range. |
|
// zic(8) should probably do this so that we don't have to. |
|
// TODO: Reduce the extension by the number of compatible |
|
// transitions already in place. |
|
transitions_.reserve(hdr.timecnt + 400 * 2 + 1); |
|
transitions_.resize(hdr.timecnt + 400 * 2); |
|
extended_ = true; |
|
|
|
// The future specification should match the last two transitions, |
|
// and those transitions should have different is_dst flags. Note |
|
// that nothing says the UTC offset used by the is_dst transition |
|
// must be greater than that used by the !is_dst transition. (See |
|
// Europe/Dublin, for example.) |
|
const Transition* tr0 = &transitions_[hdr.timecnt - 1]; |
|
const Transition* tr1 = &transitions_[hdr.timecnt - 2]; |
|
const TransitionType* tt0 = &transition_types_[tr0->type_index]; |
|
const TransitionType* tt1 = &transition_types_[tr1->type_index]; |
|
const TransitionType& dst(tt0->is_dst ? *tt0 : *tt1); |
|
const TransitionType& std(tt0->is_dst ? *tt1 : *tt0); |
|
CheckTransition(name, dst, posix.dst_offset, true, posix.dst_abbr); |
|
CheckTransition(name, std, posix.std_offset, false, posix.std_abbr); |
|
|
|
// Add the transitions to tr1 and back to tr0 for each extra year. |
|
last_year_ = LocalTime(tr0->unix_time, *tt0).cs.year(); |
|
bool leap_year = IsLeap(last_year_); |
|
const civil_day jan1(last_year_, 1, 1); |
|
std::int_fast64_t jan1_time = civil_second(jan1) - civil_second(); |
|
int jan1_weekday = (static_cast<int>(get_weekday(jan1)) + 1) % 7; |
|
Transition* tr = &transitions_[hdr.timecnt]; // next trans to fill |
|
if (LocalTime(tr1->unix_time, *tt1).cs.year() != last_year_) { |
|
// Add a single extra transition to align to a calendar year. |
|
transitions_.resize(transitions_.size() + 1); |
|
assert(tr == &transitions_[hdr.timecnt]); // no reallocation |
|
const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); |
|
std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); |
|
tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; |
|
tr++->type_index = tr1->type_index; |
|
tr0 = &transitions_[hdr.timecnt]; |
|
tr1 = &transitions_[hdr.timecnt - 1]; |
|
tt0 = &transition_types_[tr0->type_index]; |
|
tt1 = &transition_types_[tr1->type_index]; |
|
} |
|
const PosixTransition& pt1(tt0->is_dst ? posix.dst_end : posix.dst_start); |
|
const PosixTransition& pt0(tt0->is_dst ? posix.dst_start : posix.dst_end); |
|
for (const year_t limit = last_year_ + 400; last_year_ < limit;) { |
|
last_year_ += 1; // an additional year of generated transitions |
|
jan1_time += kSecsPerYear[leap_year]; |
|
jan1_weekday = (jan1_weekday + kDaysPerYear[leap_year]) % 7; |
|
leap_year = !leap_year && IsLeap(last_year_); |
|
std::int_fast64_t tr1_offset = TransOffset(leap_year, jan1_weekday, pt1); |
|
tr->unix_time = jan1_time + tr1_offset - tt0->utc_offset; |
|
tr++->type_index = tr1->type_index; |
|
std::int_fast64_t tr0_offset = TransOffset(leap_year, jan1_weekday, pt0); |
|
tr->unix_time = jan1_time + tr0_offset - tt1->utc_offset; |
|
tr++->type_index = tr0->type_index; |
|
} |
|
assert(tr == &transitions_[0] + transitions_.size()); |
|
} |
|
|
|
bool TimeZoneInfo::Load(const std::string& name, ZoneInfoSource* zip) { |
|
// Read and validate the header. |
|
tzhead tzh; |
|
if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) |
|
return false; |
|
if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) |
|
return false; |
|
Header hdr; |
|
if (!hdr.Build(tzh)) |
|
return false; |
|
std::size_t time_len = 4; |
|
if (tzh.tzh_version[0] != '\0') { |
|
// Skip the 4-byte data. |
|
if (zip->Skip(hdr.DataLength(time_len)) != 0) |
|
return false; |
|
// Read and validate the header for the 8-byte data. |
|
if (zip->Read(&tzh, sizeof(tzh)) != sizeof(tzh)) |
|
return false; |
|
if (strncmp(tzh.tzh_magic, TZ_MAGIC, sizeof(tzh.tzh_magic)) != 0) |
|
return false; |
|
if (tzh.tzh_version[0] == '\0') |
|
return false; |
|
if (!hdr.Build(tzh)) |
|
return false; |
|
time_len = 8; |
|
} |
|
if (hdr.typecnt == 0) |
|
return false; |
|
if (hdr.leapcnt != 0) { |
|
// This code assumes 60-second minutes so we do not want |
|
// the leap-second encoded zoneinfo. We could reverse the |
|
// compensation, but the "right" encoding is rarely used |
|
// so currently we simply reject such data. |
|
return false; |
|
} |
|
if (hdr.ttisstdcnt != 0 && hdr.ttisstdcnt != hdr.typecnt) |
|
return false; |
|
if (hdr.ttisgmtcnt != 0 && hdr.ttisgmtcnt != hdr.typecnt) |
|
return false; |
|
|
|
// Read the data into a local buffer. |
|
std::size_t len = hdr.DataLength(time_len); |
|
std::vector<char> tbuf(len); |
|
if (zip->Read(tbuf.data(), len) != len) |
|
return false; |
|
const char* bp = tbuf.data(); |
|
|
|
// Decode and validate the transitions. |
|
transitions_.reserve(hdr.timecnt + 2); // We might add a couple. |
|
transitions_.resize(hdr.timecnt); |
|
for (std::size_t i = 0; i != hdr.timecnt; ++i) { |
|
transitions_[i].unix_time = (time_len == 4) ? Decode32(bp) : Decode64(bp); |
|
bp += time_len; |
|
if (i != 0) { |
|
// Check that the transitions are ordered by time (as zic guarantees). |
|
if (!Transition::ByUnixTime()(transitions_[i - 1], transitions_[i])) |
|
return false; // out of order |
|
} |
|
} |
|
bool seen_type_0 = false; |
|
for (std::size_t i = 0; i != hdr.timecnt; ++i) { |
|
transitions_[i].type_index = Decode8(bp++); |
|
if (transitions_[i].type_index >= hdr.typecnt) |
|
return false; |
|
if (transitions_[i].type_index == 0) |
|
seen_type_0 = true; |
|
} |
|
|
|
// Decode and validate the transition types. |
|
transition_types_.resize(hdr.typecnt); |
|
for (std::size_t i = 0; i != hdr.typecnt; ++i) { |
|
transition_types_[i].utc_offset = |
|
static_cast<std::int_least32_t>(Decode32(bp)); |
|
if (transition_types_[i].utc_offset >= kSecsPerDay || |
|
transition_types_[i].utc_offset <= -kSecsPerDay) |
|
return false; |
|
bp += 4; |
|
transition_types_[i].is_dst = (Decode8(bp++) != 0); |
|
transition_types_[i].abbr_index = Decode8(bp++); |
|
if (transition_types_[i].abbr_index >= hdr.charcnt) |
|
return false; |
|
} |
|
|
|
// Determine the before-first-transition type. |
|
default_transition_type_ = 0; |
|
if (seen_type_0 && hdr.timecnt != 0) { |
|
std::uint_fast8_t index = 0; |
|
if (transition_types_[0].is_dst) { |
|
index = transitions_[0].type_index; |
|
while (index != 0 && transition_types_[index].is_dst) |
|
--index; |
|
} |
|
while (index != hdr.typecnt && transition_types_[index].is_dst) |
|
++index; |
|
if (index != hdr.typecnt) |
|
default_transition_type_ = index; |
|
} |
|
|
|
// Copy all the abbreviations. |
|
abbreviations_.assign(bp, hdr.charcnt); |
|
bp += hdr.charcnt; |
|
|
|
// Skip the unused portions. We've already dispensed with leap-second |
|
// encoded zoneinfo. The ttisstd/ttisgmt indicators only apply when |
|
// interpreting a POSIX spec that does not include start/end rules, and |
|
// that isn't the case here (see "zic -p"). |
|
bp += (8 + 4) * hdr.leapcnt; // leap-time + TAI-UTC |
|
bp += 1 * hdr.ttisstdcnt; // UTC/local indicators |
|
bp += 1 * hdr.ttisgmtcnt; // standard/wall indicators |
|
assert(bp == tbuf.data() + tbuf.size()); |
|
|
|
future_spec_.clear(); |
|
if (tzh.tzh_version[0] != '\0') { |
|
// Snarf up the NL-enclosed future POSIX spec. Note |
|
// that version '3' files utilize an extended format. |
|
auto get_char = [](ZoneInfoSource* zip) -> int { |
|
unsigned char ch; // all non-EOF results are positive |
|
return (zip->Read(&ch, 1) == 1) ? ch : EOF; |
|
}; |
|
if (get_char(zip) != '\n') |
|
return false; |
|
for (int c = get_char(zip); c != '\n'; c = get_char(zip)) { |
|
if (c == EOF) |
|
return false; |
|
future_spec_.push_back(static_cast<char>(c)); |
|
} |
|
} |
|
|
|
// We don't check for EOF so that we're forwards compatible. |
|
|
|
// If we did not find version information during the standard loading |
|
// process (as of tzh_version '3' that is unsupported), then ask the |
|
// ZoneInfoSource for any out-of-bound version std::string it may be privy to. |
|
if (version_.empty()) { |
|
version_ = zip->Version(); |
|
} |
|
|
|
// Trim redundant transitions. zic may have added these to work around |
|
// differences between the glibc and reference implementations (see |
|
// zic.c:dontmerge) and the Qt library (see zic.c:WORK_AROUND_QTBUG_53071). |
|
// For us, they just get in the way when we do future_spec_ extension. |
|
while (hdr.timecnt > 1) { |
|
if (!EquivTransitions(transitions_[hdr.timecnt - 1].type_index, |
|
transitions_[hdr.timecnt - 2].type_index)) { |
|
break; |
|
} |
|
hdr.timecnt -= 1; |
|
} |
|
transitions_.resize(hdr.timecnt); |
|
|
|
// Ensure that there is always a transition in the first half of the |
|
// time line (the second half is handled in ExtendTransitions()) so that |
|
// the signed difference between a civil_second and the civil_second of |
|
// its previous transition is always representable, without overflow. |
|
// A contemporary zic will usually have already done this for us. |
|
if (transitions_.empty() || transitions_.front().unix_time >= 0) { |
|
Transition& tr(*transitions_.emplace(transitions_.begin())); |
|
tr.unix_time = -(1LL << 59); // see tz/zic.c "BIG_BANG" |
|
tr.type_index = default_transition_type_; |
|
hdr.timecnt += 1; |
|
} |
|
|
|
// Extend the transitions using the future specification. |
|
ExtendTransitions(name, hdr); |
|
|
|
// Compute the local civil time for each transition and the preceding |
|
// second. These will be used for reverse conversions in MakeTime(). |
|
const TransitionType* ttp = &transition_types_[default_transition_type_]; |
|
for (std::size_t i = 0; i != transitions_.size(); ++i) { |
|
Transition& tr(transitions_[i]); |
|
tr.prev_civil_sec = LocalTime(tr.unix_time, *ttp).cs - 1; |
|
ttp = &transition_types_[tr.type_index]; |
|
tr.civil_sec = LocalTime(tr.unix_time, *ttp).cs; |
|
if (i != 0) { |
|
// Check that the transitions are ordered by civil time. Essentially |
|
// this means that an offset change cannot cross another such change. |
|
// No one does this in practice, and we depend on it in MakeTime(). |
|
if (!Transition::ByCivilTime()(transitions_[i - 1], tr)) |
|
return false; // out of order |
|
} |
|
} |
|
|
|
// Compute the maximum/minimum civil times that can be converted to a |
|
// time_point<seconds> for each of the zone's transition types. |
|
for (auto& tt : transition_types_) { |
|
tt.civil_max = LocalTime(seconds::max().count(), tt).cs; |
|
tt.civil_min = LocalTime(seconds::min().count(), tt).cs; |
|
} |
|
|
|
transitions_.shrink_to_fit(); |
|
return true; |
|
} |
|
|
|
namespace { |
|
|
|
// fopen(3) adaptor. |
|
inline FILE* FOpen(const char* path, const char* mode) { |
|
#if defined(_MSC_VER) |
|
FILE* fp; |
|
if (fopen_s(&fp, path, mode) != 0) fp = nullptr; |
|
return fp; |
|
#else |
|
return fopen(path, mode); // TODO: Enable the close-on-exec flag. |
|
#endif |
|
} |
|
|
|
// A stdio(3)-backed implementation of ZoneInfoSource. |
|
class FileZoneInfoSource : public ZoneInfoSource { |
|
public: |
|
static std::unique_ptr<ZoneInfoSource> Open(const std::string& name); |
|
|
|
std::size_t Read(void* ptr, std::size_t size) override { |
|
size = std::min(size, len_); |
|
std::size_t nread = fread(ptr, 1, size, fp_.get()); |
|
len_ -= nread; |
|
return nread; |
|
} |
|
int Skip(std::size_t offset) override { |
|
offset = std::min(offset, len_); |
|
int rc = fseek(fp_.get(), static_cast<long>(offset), SEEK_CUR); |
|
if (rc == 0) len_ -= offset; |
|
return rc; |
|
} |
|
std::string Version() const override { |
|
// TODO: It would nice if the zoneinfo data included the tzdb version. |
|
return std::string(); |
|
} |
|
|
|
protected: |
|
explicit FileZoneInfoSource( |
|
FILE* fp, std::size_t len = std::numeric_limits<std::size_t>::max()) |
|
: fp_(fp, fclose), len_(len) {} |
|
|
|
private: |
|
std::unique_ptr<FILE, int(*)(FILE*)> fp_; |
|
std::size_t len_; |
|
}; |
|
|
|
std::unique_ptr<ZoneInfoSource> FileZoneInfoSource::Open( |
|
const std::string& name) { |
|
// Use of the "file:" prefix is intended for testing purposes only. |
|
if (name.compare(0, 5, "file:") == 0) return Open(name.substr(5)); |
|
|
|
// Map the time-zone name to a path name. |
|
std::string path; |
|
if (name.empty() || name[0] != '/') { |
|
const char* tzdir = "/usr/share/zoneinfo"; |
|
char* tzdir_env = nullptr; |
|
#if defined(_MSC_VER) |
|
_dupenv_s(&tzdir_env, nullptr, "TZDIR"); |
|
#else |
|
tzdir_env = std::getenv("TZDIR"); |
|
#endif |
|
if (tzdir_env && *tzdir_env) tzdir = tzdir_env; |
|
path += tzdir; |
|
path += '/'; |
|
#if defined(_MSC_VER) |
|
free(tzdir_env); |
|
#endif |
|
} |
|
path += name; |
|
|
|
// Open the zoneinfo file. |
|
FILE* fp = FOpen(path.c_str(), "rb"); |
|
if (fp == nullptr) return nullptr; |
|
std::size_t length = 0; |
|
if (fseek(fp, 0, SEEK_END) == 0) { |
|
long pos = ftell(fp); |
|
if (pos >= 0) { |
|
length = static_cast<std::size_t>(pos); |
|
} |
|
rewind(fp); |
|
} |
|
return std::unique_ptr<ZoneInfoSource>(new FileZoneInfoSource(fp, length)); |
|
} |
|
|
|
class AndroidZoneInfoSource : public FileZoneInfoSource { |
|
public: |
|
static std::unique_ptr<ZoneInfoSource> Open(const std::string& name); |
|
std::string Version() const override { return version_; } |
|
|
|
private: |
|
explicit AndroidZoneInfoSource(FILE* fp, std::size_t len, const char* vers) |
|
: FileZoneInfoSource(fp, len), version_(vers) {} |
|
std::string version_; |
|
}; |
|
|
|
std::unique_ptr<ZoneInfoSource> AndroidZoneInfoSource::Open( |
|
const std::string& name) { |
|
// Use of the "file:" prefix is intended for testing purposes only. |
|
if (name.compare(0, 5, "file:") == 0) return Open(name.substr(5)); |
|
|
|
#if defined(__ANDROID__) |
|
// See Android's libc/tzcode/bionic.cpp for additional information. |
|
for (const char* tzdata : {"/data/misc/zoneinfo/current/tzdata", |
|
"/system/usr/share/zoneinfo/tzdata"}) { |
|
std::unique_ptr<FILE, int (*)(FILE*)> fp(FOpen(tzdata, "rb"), fclose); |
|
if (fp.get() == nullptr) continue; |
|
|
|
char hbuf[24]; // covers header.zonetab_offset too |
|
if (fread(hbuf, 1, sizeof(hbuf), fp.get()) != sizeof(hbuf)) continue; |
|
if (strncmp(hbuf, "tzdata", 6) != 0) continue; |
|
const char* vers = (hbuf[11] == '\0') ? hbuf + 6 : ""; |
|
const std::int_fast32_t index_offset = Decode32(hbuf + 12); |
|
const std::int_fast32_t data_offset = Decode32(hbuf + 16); |
|
if (index_offset < 0 || data_offset < index_offset) continue; |
|
if (fseek(fp.get(), static_cast<long>(index_offset), SEEK_SET) != 0) |
|
continue; |
|
|
|
char ebuf[52]; // covers entry.unused too |
|
const std::size_t index_size = |
|
static_cast<std::size_t>(data_offset - index_offset); |
|
const std::size_t zonecnt = index_size / sizeof(ebuf); |
|
if (zonecnt * sizeof(ebuf) != index_size) continue; |
|
for (std::size_t i = 0; i != zonecnt; ++i) { |
|
if (fread(ebuf, 1, sizeof(ebuf), fp.get()) != sizeof(ebuf)) break; |
|
const std::int_fast32_t start = data_offset + Decode32(ebuf + 40); |
|
const std::int_fast32_t length = Decode32(ebuf + 44); |
|
if (start < 0 || length < 0) break; |
|
ebuf[40] = '\0'; // ensure zone name is NUL terminated |
|
if (strcmp(name.c_str(), ebuf) == 0) { |
|
if (fseek(fp.get(), static_cast<long>(start), SEEK_SET) != 0) break; |
|
return std::unique_ptr<ZoneInfoSource>(new AndroidZoneInfoSource( |
|
fp.release(), static_cast<std::size_t>(length), vers)); |
|
} |
|
} |
|
} |
|
#endif // __ANDROID__ |
|
return nullptr; |
|
} |
|
|
|
} // namespace |
|
|
|
bool TimeZoneInfo::Load(const std::string& name) { |
|
// We can ensure that the loading of UTC or any other fixed-offset |
|
// zone never fails because the simple, fixed-offset state can be |
|
// internally generated. Note that this depends on our choice to not |
|
// accept leap-second encoded ("right") zoneinfo. |
|
auto offset = seconds::zero(); |
|
if (FixedOffsetFromName(name, &offset)) { |
|
return ResetToBuiltinUTC(offset); |
|
} |
|
|
|
// Find and use a ZoneInfoSource to load the named zone. |
|
auto zip = cctz_extension::zone_info_source_factory( |
|
name, [](const std::string& name) -> std::unique_ptr<ZoneInfoSource> { |
|
if (auto zip = FileZoneInfoSource::Open(name)) return zip; |
|
if (auto zip = AndroidZoneInfoSource::Open(name)) return zip; |
|
return nullptr; |
|
}); |
|
return zip != nullptr && Load(name, zip.get()); |
|
} |
|
|
|
// BreakTime() translation for a particular transition type. |
|
time_zone::absolute_lookup TimeZoneInfo::LocalTime( |
|
std::int_fast64_t unix_time, const TransitionType& tt) const { |
|
// A civil time in "+offset" looks like (time+offset) in UTC. |
|
// Note: We perform two additions in the civil_second domain to |
|
// sidestep the chance of overflow in (unix_time + tt.utc_offset). |
|
return {(civil_second() + unix_time) + tt.utc_offset, |
|
tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; |
|
} |
|
|
|
// BreakTime() translation for a particular transition. |
|
time_zone::absolute_lookup TimeZoneInfo::LocalTime( |
|
std::int_fast64_t unix_time, const Transition& tr) const { |
|
const TransitionType& tt = transition_types_[tr.type_index]; |
|
// Note: (unix_time - tr.unix_time) will never overflow as we |
|
// have ensured that there is always a "nearby" transition. |
|
return {tr.civil_sec + (unix_time - tr.unix_time), // TODO: Optimize. |
|
tt.utc_offset, tt.is_dst, &abbreviations_[tt.abbr_index]}; |
|
} |
|
|
|
// MakeTime() translation with a conversion-preserving +N * 400-year shift. |
|
time_zone::civil_lookup TimeZoneInfo::TimeLocal(const civil_second& cs, |
|
year_t c4_shift) const { |
|
assert(last_year_ - 400 < cs.year() && cs.year() <= last_year_); |
|
time_zone::civil_lookup cl = MakeTime(cs); |
|
if (c4_shift > seconds::max().count() / kSecsPer400Years) { |
|
cl.pre = cl.trans = cl.post = time_point<seconds>::max(); |
|
} else { |
|
const auto offset = seconds(c4_shift * kSecsPer400Years); |
|
const auto limit = time_point<seconds>::max() - offset; |
|
for (auto* tp : {&cl.pre, &cl.trans, &cl.post}) { |
|
if (*tp > limit) { |
|
*tp = time_point<seconds>::max(); |
|
} else { |
|
*tp += offset; |
|
} |
|
} |
|
} |
|
return cl; |
|
} |
|
|
|
time_zone::absolute_lookup TimeZoneInfo::BreakTime( |
|
const time_point<seconds>& tp) const { |
|
std::int_fast64_t unix_time = ToUnixSeconds(tp); |
|
const std::size_t timecnt = transitions_.size(); |
|
assert(timecnt != 0); // We always add a transition. |
|
|
|
if (unix_time < transitions_[0].unix_time) { |
|
return LocalTime(unix_time, transition_types_[default_transition_type_]); |
|
} |
|
if (unix_time >= transitions_[timecnt - 1].unix_time) { |
|
// After the last transition. If we extended the transitions using |
|
// future_spec_, shift back to a supported year using the 400-year |
|
// cycle of calendaric equivalence and then compensate accordingly. |
|
if (extended_) { |
|
const std::int_fast64_t diff = |
|
unix_time - transitions_[timecnt - 1].unix_time; |
|
const year_t shift = diff / kSecsPer400Years + 1; |
|
const auto d = seconds(shift * kSecsPer400Years); |
|
time_zone::absolute_lookup al = BreakTime(tp - d); |
|
al.cs = YearShift(al.cs, shift * 400); |
|
return al; |
|
} |
|
return LocalTime(unix_time, transitions_[timecnt - 1]); |
|
} |
|
|
|
const std::size_t hint = local_time_hint_.load(std::memory_order_relaxed); |
|
if (0 < hint && hint < timecnt) { |
|
if (transitions_[hint - 1].unix_time <= unix_time) { |
|
if (unix_time < transitions_[hint].unix_time) { |
|
return LocalTime(unix_time, transitions_[hint - 1]); |
|
} |
|
} |
|
} |
|
|
|
const Transition target = {unix_time, 0, civil_second(), civil_second()}; |
|
const Transition* begin = &transitions_[0]; |
|
const Transition* tr = std::upper_bound(begin, begin + timecnt, target, |
|
Transition::ByUnixTime()); |
|
local_time_hint_.store(static_cast<std::size_t>(tr - begin), |
|
std::memory_order_relaxed); |
|
return LocalTime(unix_time, *--tr); |
|
} |
|
|
|
time_zone::civil_lookup TimeZoneInfo::MakeTime(const civil_second& cs) const { |
|
const std::size_t timecnt = transitions_.size(); |
|
assert(timecnt != 0); // We always add a transition. |
|
|
|
// Find the first transition after our target civil time. |
|
const Transition* tr = nullptr; |
|
const Transition* begin = &transitions_[0]; |
|
const Transition* end = begin + timecnt; |
|
if (cs < begin->civil_sec) { |
|
tr = begin; |
|
} else if (cs >= transitions_[timecnt - 1].civil_sec) { |
|
tr = end; |
|
} else { |
|
const std::size_t hint = time_local_hint_.load(std::memory_order_relaxed); |
|
if (0 < hint && hint < timecnt) { |
|
if (transitions_[hint - 1].civil_sec <= cs) { |
|
if (cs < transitions_[hint].civil_sec) { |
|
tr = begin + hint; |
|
} |
|
} |
|
} |
|
if (tr == nullptr) { |
|
const Transition target = {0, 0, cs, civil_second()}; |
|
tr = std::upper_bound(begin, end, target, Transition::ByCivilTime()); |
|
time_local_hint_.store(static_cast<std::size_t>(tr - begin), |
|
std::memory_order_relaxed); |
|
} |
|
} |
|
|
|
if (tr == begin) { |
|
if (tr->prev_civil_sec >= cs) { |
|
// Before first transition, so use the default offset. |
|
const TransitionType& tt(transition_types_[default_transition_type_]); |
|
if (cs < tt.civil_min) return MakeUnique(time_point<seconds>::min()); |
|
return MakeUnique(cs - (civil_second() + tt.utc_offset)); |
|
} |
|
// tr->prev_civil_sec < cs < tr->civil_sec |
|
return MakeSkipped(*tr, cs); |
|
} |
|
|
|
if (tr == end) { |
|
if (cs > (--tr)->prev_civil_sec) { |
|
// After the last transition. If we extended the transitions using |
|
// future_spec_, shift back to a supported year using the 400-year |
|
// cycle of calendaric equivalence and then compensate accordingly. |
|
if (extended_ && cs.year() > last_year_) { |
|
const year_t shift = (cs.year() - last_year_ - 1) / 400 + 1; |
|
return TimeLocal(YearShift(cs, shift * -400), shift); |
|
} |
|
const TransitionType& tt(transition_types_[tr->type_index]); |
|
if (cs > tt.civil_max) return MakeUnique(time_point<seconds>::max()); |
|
return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); |
|
} |
|
// tr->civil_sec <= cs <= tr->prev_civil_sec |
|
return MakeRepeated(*tr, cs); |
|
} |
|
|
|
if (tr->prev_civil_sec < cs) { |
|
// tr->prev_civil_sec < cs < tr->civil_sec |
|
return MakeSkipped(*tr, cs); |
|
} |
|
|
|
if (cs <= (--tr)->prev_civil_sec) { |
|
// tr->civil_sec <= cs <= tr->prev_civil_sec |
|
return MakeRepeated(*tr, cs); |
|
} |
|
|
|
// In between transitions. |
|
return MakeUnique(tr->unix_time + (cs - tr->civil_sec)); |
|
} |
|
|
|
std::string TimeZoneInfo::Version() const { |
|
return version_; |
|
} |
|
|
|
std::string TimeZoneInfo::Description() const { |
|
std::ostringstream oss; |
|
oss << "#trans=" << transitions_.size(); |
|
oss << " #types=" << transition_types_.size(); |
|
oss << " spec='" << future_spec_ << "'"; |
|
return oss.str(); |
|
} |
|
|
|
bool TimeZoneInfo::NextTransition(const time_point<seconds>& tp, |
|
time_zone::civil_transition* trans) const { |
|
if (transitions_.empty()) return false; |
|
const Transition* begin = &transitions_[0]; |
|
const Transition* end = begin + transitions_.size(); |
|
if (begin->unix_time <= -(1LL << 59)) { |
|
// Do not report the BIG_BANG found in recent zoneinfo data as it is |
|
// really a sentinel, not a transition. See tz/zic.c. |
|
++begin; |
|
} |
|
std::int_fast64_t unix_time = ToUnixSeconds(tp); |
|
const Transition target = { unix_time }; |
|
const Transition* tr = std::upper_bound(begin, end, target, |
|
Transition::ByUnixTime()); |
|
for (; tr != end; ++tr) { // skip no-op transitions |
|
std::uint_fast8_t prev_type_index = |
|
(tr == begin) ? default_transition_type_ : tr[-1].type_index; |
|
if (!EquivTransitions(prev_type_index, tr[0].type_index)) break; |
|
} |
|
// When tr == end we return false, ignoring future_spec_. |
|
if (tr == end) return false; |
|
trans->from = tr->prev_civil_sec + 1; |
|
trans->to = tr->civil_sec; |
|
return true; |
|
} |
|
|
|
bool TimeZoneInfo::PrevTransition(const time_point<seconds>& tp, |
|
time_zone::civil_transition* trans) const { |
|
if (transitions_.empty()) return false; |
|
const Transition* begin = &transitions_[0]; |
|
const Transition* end = begin + transitions_.size(); |
|
if (begin->unix_time <= -(1LL << 59)) { |
|
// Do not report the BIG_BANG found in recent zoneinfo data as it is |
|
// really a sentinel, not a transition. See tz/zic.c. |
|
++begin; |
|
} |
|
std::int_fast64_t unix_time = ToUnixSeconds(tp); |
|
if (FromUnixSeconds(unix_time) != tp) { |
|
if (unix_time == std::numeric_limits<std::int_fast64_t>::max()) { |
|
if (end == begin) return false; // Ignore future_spec_. |
|
trans->from = (--end)->prev_civil_sec + 1; |
|
trans->to = end->civil_sec; |
|
return true; |
|
} |
|
unix_time += 1; // ceils |
|
} |
|
const Transition target = { unix_time }; |
|
const Transition* tr = std::lower_bound(begin, end, target, |
|
Transition::ByUnixTime()); |
|
for (; tr != begin; --tr) { // skip no-op transitions |
|
std::uint_fast8_t prev_type_index = |
|
(tr - 1 == begin) ? default_transition_type_ : tr[-2].type_index; |
|
if (!EquivTransitions(prev_type_index, tr[-1].type_index)) break; |
|
} |
|
// When tr == end we return the "last" transition, ignoring future_spec_. |
|
if (tr == begin) return false; |
|
trans->from = (--tr)->prev_civil_sec + 1; |
|
trans->to = tr->civil_sec; |
|
return true; |
|
} |
|
|
|
} // namespace cctz |
|
} // namespace time_internal |
|
} // namespace absl
|
|
|