Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
1145 lines
39 KiB
1145 lines
39 KiB
// This file tests std::string processing functions related to numeric values. |
|
|
|
#include "absl/strings/numbers.h" |
|
|
|
#include <sys/types.h> |
|
#include <cfenv> // NOLINT(build/c++11) |
|
#include <cinttypes> |
|
#include <climits> |
|
#include <cmath> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstdio> |
|
#include <cstdlib> |
|
#include <cstring> |
|
#include <limits> |
|
#include <numeric> |
|
#include <random> |
|
#include <set> |
|
#include <string> |
|
#include <vector> |
|
|
|
#include "gmock/gmock.h" |
|
#include "gtest/gtest.h" |
|
#include "absl/base/internal/raw_logging.h" |
|
#include "absl/strings/str_cat.h" |
|
|
|
#include "absl/strings/internal/numbers_test_common.inc" |
|
|
|
namespace { |
|
|
|
using absl::numbers_internal::FastInt32ToBuffer; |
|
using absl::numbers_internal::FastInt64ToBuffer; |
|
using absl::numbers_internal::FastUInt32ToBuffer; |
|
using absl::numbers_internal::FastUInt64ToBuffer; |
|
using absl::numbers_internal::kFastToBufferSize; |
|
using absl::numbers_internal::kSixDigitsToBufferSize; |
|
using absl::numbers_internal::safe_strto32_base; |
|
using absl::numbers_internal::safe_strto64_base; |
|
using absl::numbers_internal::safe_strtou32_base; |
|
using absl::numbers_internal::safe_strtou64_base; |
|
using absl::numbers_internal::SixDigitsToBuffer; |
|
using absl::SimpleAtoi; |
|
using testing::Eq; |
|
using testing::MatchesRegex; |
|
|
|
// Number of floats to test with. |
|
// 10,000,000 is a reasonable default for a test that only takes a few seconds. |
|
// 1,000,000,000+ triggers checking for all possible mantissa values for |
|
// double-precision tests. 2,000,000,000+ triggers checking for every possible |
|
// single-precision float. |
|
#ifdef _MSC_VER |
|
// Use a smaller number on MSVC to avoid test time out (1 min) |
|
const int kFloatNumCases = 5000000; |
|
#else |
|
const int kFloatNumCases = 10000000; |
|
#endif |
|
|
|
// This is a slow, brute-force routine to compute the exact base-10 |
|
// representation of a double-precision floating-point number. It |
|
// is useful for debugging only. |
|
std::string PerfectDtoa(double d) { |
|
if (d == 0) return "0"; |
|
if (d < 0) return "-" + PerfectDtoa(-d); |
|
|
|
// Basic theory: decompose d into mantissa and exp, where |
|
// d = mantissa * 2^exp, and exp is as close to zero as possible. |
|
int64_t mantissa, exp = 0; |
|
while (d >= 1ULL << 63) ++exp, d *= 0.5; |
|
while ((mantissa = d) != d) --exp, d *= 2.0; |
|
|
|
// Then convert mantissa to ASCII, and either double it (if |
|
// exp > 0) or halve it (if exp < 0) repeatedly. "halve it" |
|
// in this case means multiplying it by five and dividing by 10. |
|
constexpr int maxlen = 1100; // worst case is actually 1030 or so. |
|
char buf[maxlen + 5]; |
|
for (int64_t num = mantissa, pos = maxlen; --pos >= 0;) { |
|
buf[pos] = '0' + (num % 10); |
|
num /= 10; |
|
} |
|
char* begin = &buf[0]; |
|
char* end = buf + maxlen; |
|
for (int i = 0; i != exp; i += (exp > 0) ? 1 : -1) { |
|
int carry = 0; |
|
for (char* p = end; --p != begin;) { |
|
int dig = *p - '0'; |
|
dig = dig * (exp > 0 ? 2 : 5) + carry; |
|
carry = dig / 10; |
|
dig %= 10; |
|
*p = '0' + dig; |
|
} |
|
} |
|
if (exp < 0) { |
|
// "dividing by 10" above means we have to add the decimal point. |
|
memmove(end + 1 + exp, end + exp, 1 - exp); |
|
end[exp] = '.'; |
|
++end; |
|
} |
|
while (*begin == '0' && begin[1] != '.') ++begin; |
|
return {begin, end}; |
|
} |
|
|
|
TEST(ToString, PerfectDtoa) { |
|
EXPECT_THAT(PerfectDtoa(1), Eq("1")); |
|
EXPECT_THAT(PerfectDtoa(0.1), |
|
Eq("0.1000000000000000055511151231257827021181583404541015625")); |
|
EXPECT_THAT(PerfectDtoa(1e24), Eq("999999999999999983222784")); |
|
EXPECT_THAT(PerfectDtoa(5e-324), MatchesRegex("0.0000.*625")); |
|
for (int i = 0; i < 100; ++i) { |
|
for (double multiplier : |
|
{1e-300, 1e-200, 1e-100, 0.1, 1.0, 10.0, 1e100, 1e300}) { |
|
double d = multiplier * i; |
|
std::string s = PerfectDtoa(d); |
|
EXPECT_EQ(d, strtod(s.c_str(), nullptr)); |
|
} |
|
} |
|
} |
|
|
|
void CheckInt32(int32_t x) { |
|
char buffer[kFastInt32ToBufferSize]; |
|
char* actual = FastInt32ToBuffer(x, buffer); |
|
std::string expected = std::to_string(x); |
|
ASSERT_TRUE(expected == actual) |
|
<< "Expected \"" << expected << "\", Actual \"" << actual << "\", Input " |
|
<< x; |
|
} |
|
|
|
void CheckInt64(int64_t x) { |
|
char buffer[kFastInt64ToBufferSize + 3]; |
|
buffer[0] = '*'; |
|
buffer[23] = '*'; |
|
buffer[24] = '*'; |
|
char* actual = FastInt64ToBuffer(x, &buffer[1]); |
|
std::string expected = std::to_string(x); |
|
ASSERT_TRUE(expected == actual) |
|
<< "Expected \"" << expected << "\", Actual \"" << actual << "\", Input " |
|
<< x; |
|
ASSERT_EQ(buffer[0], '*'); |
|
ASSERT_EQ(buffer[23], '*'); |
|
ASSERT_EQ(buffer[24], '*'); |
|
} |
|
|
|
void CheckUInt32(uint32_t x) { |
|
char buffer[kFastUInt64ToBufferSize]; |
|
char* actual = FastUInt32ToBuffer(x, buffer); |
|
std::string expected = std::to_string(x); |
|
ASSERT_TRUE(expected == actual) |
|
<< "Expected \"" << expected << "\", Actual \"" << actual << "\", Input " |
|
<< x; |
|
} |
|
|
|
void CheckUInt64(uint64_t x) { |
|
char buffer[kFastUInt64ToBufferSize + 1]; |
|
char* actual = FastUInt64ToBuffer(x, &buffer[1]); |
|
std::string expected = std::to_string(x); |
|
ASSERT_TRUE(expected == actual) |
|
<< "Expected \"" << expected << "\", Actual \"" << actual << "\", Input " |
|
<< x; |
|
} |
|
|
|
void CheckHex64(uint64_t v) { |
|
char expected[kFastUInt64ToBufferSize]; |
|
std::string actual = absl::StrCat(absl::Hex(v, absl::kZeroPad16)); |
|
snprintf(expected, sizeof(expected), "%016" PRIx64, static_cast<uint64_t>(v)); |
|
ASSERT_TRUE(expected == actual) |
|
<< "Expected \"" << expected << "\", Actual \"" << actual << "\""; |
|
} |
|
|
|
void TestFastPrints() { |
|
for (int i = -100; i <= 100; i++) { |
|
CheckInt32(i); |
|
CheckInt64(i); |
|
} |
|
for (int i = 0; i <= 100; i++) { |
|
CheckUInt32(i); |
|
CheckUInt64(i); |
|
} |
|
// Test min int to make sure that works |
|
CheckInt32(INT_MIN); |
|
CheckInt32(INT_MAX); |
|
CheckInt64(LONG_MIN); |
|
CheckInt64(uint64_t{1000000000}); |
|
CheckInt64(uint64_t{9999999999}); |
|
CheckInt64(uint64_t{100000000000000}); |
|
CheckInt64(uint64_t{999999999999999}); |
|
CheckInt64(uint64_t{1000000000000000000}); |
|
CheckInt64(uint64_t{1199999999999999999}); |
|
CheckInt64(int64_t{-700000000000000000}); |
|
CheckInt64(LONG_MAX); |
|
CheckUInt32(std::numeric_limits<uint32_t>::max()); |
|
CheckUInt64(uint64_t{1000000000}); |
|
CheckUInt64(uint64_t{9999999999}); |
|
CheckUInt64(uint64_t{100000000000000}); |
|
CheckUInt64(uint64_t{999999999999999}); |
|
CheckUInt64(uint64_t{1000000000000000000}); |
|
CheckUInt64(uint64_t{1199999999999999999}); |
|
CheckUInt64(std::numeric_limits<uint64_t>::max()); |
|
|
|
for (int i = 0; i < 10000; i++) { |
|
CheckHex64(i); |
|
} |
|
CheckHex64(uint64_t{0x123456789abcdef0}); |
|
} |
|
|
|
template <typename int_type, typename in_val_type> |
|
void VerifySimpleAtoiGood(in_val_type in_value, int_type exp_value) { |
|
std::string s = absl::StrCat(in_value); |
|
int_type x = static_cast<int_type>(~exp_value); |
|
EXPECT_TRUE(SimpleAtoi(s, &x)) |
|
<< "in_value=" << in_value << " s=" << s << " x=" << x; |
|
EXPECT_EQ(exp_value, x); |
|
x = static_cast<int_type>(~exp_value); |
|
EXPECT_TRUE(SimpleAtoi(s.c_str(), &x)); |
|
EXPECT_EQ(exp_value, x); |
|
} |
|
|
|
template <typename int_type, typename in_val_type> |
|
void VerifySimpleAtoiBad(in_val_type in_value) { |
|
std::string s = absl::StrCat(in_value); |
|
int_type x; |
|
EXPECT_FALSE(SimpleAtoi(s, &x)); |
|
EXPECT_FALSE(SimpleAtoi(s.c_str(), &x)); |
|
} |
|
|
|
TEST(NumbersTest, Atoi) { |
|
// SimpleAtoi(absl::string_view, int32_t) |
|
VerifySimpleAtoiGood<int32_t>(0, 0); |
|
VerifySimpleAtoiGood<int32_t>(42, 42); |
|
VerifySimpleAtoiGood<int32_t>(-42, -42); |
|
|
|
VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::min(), |
|
std::numeric_limits<int32_t>::min()); |
|
VerifySimpleAtoiGood<int32_t>(std::numeric_limits<int32_t>::max(), |
|
std::numeric_limits<int32_t>::max()); |
|
|
|
// SimpleAtoi(absl::string_view, uint32_t) |
|
VerifySimpleAtoiGood<uint32_t>(0, 0); |
|
VerifySimpleAtoiGood<uint32_t>(42, 42); |
|
VerifySimpleAtoiBad<uint32_t>(-42); |
|
|
|
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int32_t>::min()); |
|
VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<int32_t>::max(), |
|
std::numeric_limits<int32_t>::max()); |
|
VerifySimpleAtoiGood<uint32_t>(std::numeric_limits<uint32_t>::max(), |
|
std::numeric_limits<uint32_t>::max()); |
|
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::min()); |
|
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<int64_t>::max()); |
|
VerifySimpleAtoiBad<uint32_t>(std::numeric_limits<uint64_t>::max()); |
|
|
|
// SimpleAtoi(absl::string_view, int64_t) |
|
VerifySimpleAtoiGood<int64_t>(0, 0); |
|
VerifySimpleAtoiGood<int64_t>(42, 42); |
|
VerifySimpleAtoiGood<int64_t>(-42, -42); |
|
|
|
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::min(), |
|
std::numeric_limits<int32_t>::min()); |
|
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int32_t>::max(), |
|
std::numeric_limits<int32_t>::max()); |
|
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<uint32_t>::max(), |
|
std::numeric_limits<uint32_t>::max()); |
|
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::min(), |
|
std::numeric_limits<int64_t>::min()); |
|
VerifySimpleAtoiGood<int64_t>(std::numeric_limits<int64_t>::max(), |
|
std::numeric_limits<int64_t>::max()); |
|
VerifySimpleAtoiBad<int64_t>(std::numeric_limits<uint64_t>::max()); |
|
|
|
// SimpleAtoi(absl::string_view, uint64_t) |
|
VerifySimpleAtoiGood<uint64_t>(0, 0); |
|
VerifySimpleAtoiGood<uint64_t>(42, 42); |
|
VerifySimpleAtoiBad<uint64_t>(-42); |
|
|
|
VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int32_t>::min()); |
|
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int32_t>::max(), |
|
std::numeric_limits<int32_t>::max()); |
|
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint32_t>::max(), |
|
std::numeric_limits<uint32_t>::max()); |
|
VerifySimpleAtoiBad<uint64_t>(std::numeric_limits<int64_t>::min()); |
|
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<int64_t>::max(), |
|
std::numeric_limits<int64_t>::max()); |
|
VerifySimpleAtoiGood<uint64_t>(std::numeric_limits<uint64_t>::max(), |
|
std::numeric_limits<uint64_t>::max()); |
|
|
|
// Some other types |
|
VerifySimpleAtoiGood<int>(-42, -42); |
|
VerifySimpleAtoiGood<int32_t>(-42, -42); |
|
VerifySimpleAtoiGood<uint32_t>(42, 42); |
|
VerifySimpleAtoiGood<unsigned int>(42, 42); |
|
VerifySimpleAtoiGood<int64_t>(-42, -42); |
|
VerifySimpleAtoiGood<long>(-42, -42); // NOLINT(runtime/int) |
|
VerifySimpleAtoiGood<uint64_t>(42, 42); |
|
VerifySimpleAtoiGood<size_t>(42, 42); |
|
VerifySimpleAtoiGood<std::string::size_type>(42, 42); |
|
} |
|
|
|
TEST(NumbersTest, Atoenum) { |
|
enum E01 { |
|
E01_zero = 0, |
|
E01_one = 1, |
|
}; |
|
|
|
VerifySimpleAtoiGood<E01>(E01_zero, E01_zero); |
|
VerifySimpleAtoiGood<E01>(E01_one, E01_one); |
|
|
|
enum E_101 { |
|
E_101_minusone = -1, |
|
E_101_zero = 0, |
|
E_101_one = 1, |
|
}; |
|
|
|
VerifySimpleAtoiGood<E_101>(E_101_minusone, E_101_minusone); |
|
VerifySimpleAtoiGood<E_101>(E_101_zero, E_101_zero); |
|
VerifySimpleAtoiGood<E_101>(E_101_one, E_101_one); |
|
|
|
enum E_bigint { |
|
E_bigint_zero = 0, |
|
E_bigint_one = 1, |
|
E_bigint_max31 = static_cast<int32_t>(0x7FFFFFFF), |
|
}; |
|
|
|
VerifySimpleAtoiGood<E_bigint>(E_bigint_zero, E_bigint_zero); |
|
VerifySimpleAtoiGood<E_bigint>(E_bigint_one, E_bigint_one); |
|
VerifySimpleAtoiGood<E_bigint>(E_bigint_max31, E_bigint_max31); |
|
|
|
enum E_fullint { |
|
E_fullint_zero = 0, |
|
E_fullint_one = 1, |
|
E_fullint_max31 = static_cast<int32_t>(0x7FFFFFFF), |
|
E_fullint_min32 = INT32_MIN, |
|
}; |
|
|
|
VerifySimpleAtoiGood<E_fullint>(E_fullint_zero, E_fullint_zero); |
|
VerifySimpleAtoiGood<E_fullint>(E_fullint_one, E_fullint_one); |
|
VerifySimpleAtoiGood<E_fullint>(E_fullint_max31, E_fullint_max31); |
|
VerifySimpleAtoiGood<E_fullint>(E_fullint_min32, E_fullint_min32); |
|
|
|
enum E_biguint { |
|
E_biguint_zero = 0, |
|
E_biguint_one = 1, |
|
E_biguint_max31 = static_cast<uint32_t>(0x7FFFFFFF), |
|
E_biguint_max32 = static_cast<uint32_t>(0xFFFFFFFF), |
|
}; |
|
|
|
VerifySimpleAtoiGood<E_biguint>(E_biguint_zero, E_biguint_zero); |
|
VerifySimpleAtoiGood<E_biguint>(E_biguint_one, E_biguint_one); |
|
VerifySimpleAtoiGood<E_biguint>(E_biguint_max31, E_biguint_max31); |
|
VerifySimpleAtoiGood<E_biguint>(E_biguint_max32, E_biguint_max32); |
|
} |
|
|
|
TEST(stringtest, safe_strto32_base) { |
|
int32_t value; |
|
EXPECT_TRUE(safe_strto32_base("0x34234324", &value, 16)); |
|
EXPECT_EQ(0x34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("0X34234324", &value, 16)); |
|
EXPECT_EQ(0x34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("34234324", &value, 16)); |
|
EXPECT_EQ(0x34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("0", &value, 16)); |
|
EXPECT_EQ(0, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base(" \t\n -0x34234324", &value, 16)); |
|
EXPECT_EQ(-0x34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 16)); |
|
EXPECT_EQ(-0x34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("7654321", &value, 8)); |
|
EXPECT_EQ(07654321, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("-01234", &value, 8)); |
|
EXPECT_EQ(-01234, value); |
|
|
|
EXPECT_FALSE(safe_strto32_base("1834", &value, 8)); |
|
|
|
// Autodetect base. |
|
EXPECT_TRUE(safe_strto32_base("0", &value, 0)); |
|
EXPECT_EQ(0, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("077", &value, 0)); |
|
EXPECT_EQ(077, value); // Octal interpretation |
|
|
|
// Leading zero indicates octal, but then followed by invalid digit. |
|
EXPECT_FALSE(safe_strto32_base("088", &value, 0)); |
|
|
|
// Leading 0x indicated hex, but then followed by invalid digit. |
|
EXPECT_FALSE(safe_strto32_base("0xG", &value, 0)); |
|
|
|
// Base-10 version. |
|
EXPECT_TRUE(safe_strto32_base("34234324", &value, 10)); |
|
EXPECT_EQ(34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("0", &value, 10)); |
|
EXPECT_EQ(0, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base(" \t\n -34234324", &value, 10)); |
|
EXPECT_EQ(-34234324, value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("34234324 \n\t ", &value, 10)); |
|
EXPECT_EQ(34234324, value); |
|
|
|
// Invalid ints. |
|
EXPECT_FALSE(safe_strto32_base("", &value, 10)); |
|
EXPECT_FALSE(safe_strto32_base(" ", &value, 10)); |
|
EXPECT_FALSE(safe_strto32_base("abc", &value, 10)); |
|
EXPECT_FALSE(safe_strto32_base("34234324a", &value, 10)); |
|
EXPECT_FALSE(safe_strto32_base("34234.3", &value, 10)); |
|
|
|
// Out of bounds. |
|
EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); |
|
EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); |
|
|
|
// String version. |
|
EXPECT_TRUE(safe_strto32_base(std::string("0x1234"), &value, 16)); |
|
EXPECT_EQ(0x1234, value); |
|
|
|
// Base-10 std::string version. |
|
EXPECT_TRUE(safe_strto32_base("1234", &value, 10)); |
|
EXPECT_EQ(1234, value); |
|
} |
|
|
|
TEST(stringtest, safe_strto32_range) { |
|
// These tests verify underflow/overflow behaviour. |
|
int32_t value; |
|
EXPECT_FALSE(safe_strto32_base("2147483648", &value, 10)); |
|
EXPECT_EQ(std::numeric_limits<int32_t>::max(), value); |
|
|
|
EXPECT_TRUE(safe_strto32_base("-2147483648", &value, 10)); |
|
EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); |
|
|
|
EXPECT_FALSE(safe_strto32_base("-2147483649", &value, 10)); |
|
EXPECT_EQ(std::numeric_limits<int32_t>::min(), value); |
|
} |
|
|
|
TEST(stringtest, safe_strto64_range) { |
|
// These tests verify underflow/overflow behaviour. |
|
int64_t value; |
|
EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); |
|
EXPECT_EQ(std::numeric_limits<int64_t>::max(), value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("-9223372036854775808", &value, 10)); |
|
EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); |
|
|
|
EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); |
|
EXPECT_EQ(std::numeric_limits<int64_t>::min(), value); |
|
} |
|
|
|
TEST(stringtest, safe_strto32_leading_substring) { |
|
// These tests verify this comment in numbers.h: |
|
// On error, returns false, and sets *value to: [...] |
|
// conversion of leading substring if available ("123@@@" -> 123) |
|
// 0 if no leading substring available |
|
int32_t value; |
|
EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 10)); |
|
EXPECT_EQ(4069, value); |
|
|
|
EXPECT_FALSE(safe_strto32_base("04069@@@", &value, 8)); |
|
EXPECT_EQ(0406, value); |
|
|
|
EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 10)); |
|
EXPECT_EQ(4069, value); |
|
|
|
EXPECT_FALSE(safe_strto32_base("04069balloons", &value, 16)); |
|
EXPECT_EQ(0x4069ba, value); |
|
|
|
EXPECT_FALSE(safe_strto32_base("@@@", &value, 10)); |
|
EXPECT_EQ(0, value); // there was no leading substring |
|
} |
|
|
|
TEST(stringtest, safe_strto64_leading_substring) { |
|
// These tests verify this comment in numbers.h: |
|
// On error, returns false, and sets *value to: [...] |
|
// conversion of leading substring if available ("123@@@" -> 123) |
|
// 0 if no leading substring available |
|
int64_t value; |
|
EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 10)); |
|
EXPECT_EQ(4069, value); |
|
|
|
EXPECT_FALSE(safe_strto64_base("04069@@@", &value, 8)); |
|
EXPECT_EQ(0406, value); |
|
|
|
EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 10)); |
|
EXPECT_EQ(4069, value); |
|
|
|
EXPECT_FALSE(safe_strto64_base("04069balloons", &value, 16)); |
|
EXPECT_EQ(0x4069ba, value); |
|
|
|
EXPECT_FALSE(safe_strto64_base("@@@", &value, 10)); |
|
EXPECT_EQ(0, value); // there was no leading substring |
|
} |
|
|
|
TEST(stringtest, safe_strto64_base) { |
|
int64_t value; |
|
EXPECT_TRUE(safe_strto64_base("0x3423432448783446", &value, 16)); |
|
EXPECT_EQ(int64_t{0x3423432448783446}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("3423432448783446", &value, 16)); |
|
EXPECT_EQ(int64_t{0x3423432448783446}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("0", &value, 16)); |
|
EXPECT_EQ(0, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base(" \t\n -0x3423432448783446", &value, 16)); |
|
EXPECT_EQ(int64_t{-0x3423432448783446}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base(" \t\n -3423432448783446", &value, 16)); |
|
EXPECT_EQ(int64_t{-0x3423432448783446}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("123456701234567012", &value, 8)); |
|
EXPECT_EQ(int64_t{0123456701234567012}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("-017777777777777", &value, 8)); |
|
EXPECT_EQ(int64_t{-017777777777777}, value); |
|
|
|
EXPECT_FALSE(safe_strto64_base("19777777777777", &value, 8)); |
|
|
|
// Autodetect base. |
|
EXPECT_TRUE(safe_strto64_base("0", &value, 0)); |
|
EXPECT_EQ(0, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("077", &value, 0)); |
|
EXPECT_EQ(077, value); // Octal interpretation |
|
|
|
// Leading zero indicates octal, but then followed by invalid digit. |
|
EXPECT_FALSE(safe_strto64_base("088", &value, 0)); |
|
|
|
// Leading 0x indicated hex, but then followed by invalid digit. |
|
EXPECT_FALSE(safe_strto64_base("0xG", &value, 0)); |
|
|
|
// Base-10 version. |
|
EXPECT_TRUE(safe_strto64_base("34234324487834466", &value, 10)); |
|
EXPECT_EQ(int64_t{34234324487834466}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("0", &value, 10)); |
|
EXPECT_EQ(0, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base(" \t\n -34234324487834466", &value, 10)); |
|
EXPECT_EQ(int64_t{-34234324487834466}, value); |
|
|
|
EXPECT_TRUE(safe_strto64_base("34234324487834466 \n\t ", &value, 10)); |
|
EXPECT_EQ(int64_t{34234324487834466}, value); |
|
|
|
// Invalid ints. |
|
EXPECT_FALSE(safe_strto64_base("", &value, 10)); |
|
EXPECT_FALSE(safe_strto64_base(" ", &value, 10)); |
|
EXPECT_FALSE(safe_strto64_base("abc", &value, 10)); |
|
EXPECT_FALSE(safe_strto64_base("34234324487834466a", &value, 10)); |
|
EXPECT_FALSE(safe_strto64_base("34234487834466.3", &value, 10)); |
|
|
|
// Out of bounds. |
|
EXPECT_FALSE(safe_strto64_base("9223372036854775808", &value, 10)); |
|
EXPECT_FALSE(safe_strto64_base("-9223372036854775809", &value, 10)); |
|
|
|
// String version. |
|
EXPECT_TRUE(safe_strto64_base(std::string("0x1234"), &value, 16)); |
|
EXPECT_EQ(0x1234, value); |
|
|
|
// Base-10 std::string version. |
|
EXPECT_TRUE(safe_strto64_base("1234", &value, 10)); |
|
EXPECT_EQ(1234, value); |
|
} |
|
|
|
const size_t kNumRandomTests = 10000; |
|
|
|
template <typename IntType> |
|
void test_random_integer_parse_base(bool (*parse_func)(absl::string_view, |
|
IntType* value, |
|
int base)) { |
|
using RandomEngine = std::minstd_rand0; |
|
std::random_device rd; |
|
RandomEngine rng(rd()); |
|
std::uniform_int_distribution<IntType> random_int( |
|
std::numeric_limits<IntType>::min()); |
|
std::uniform_int_distribution<int> random_base(2, 35); |
|
for (size_t i = 0; i < kNumRandomTests; i++) { |
|
IntType value = random_int(rng); |
|
int base = random_base(rng); |
|
std::string str_value; |
|
EXPECT_TRUE(Itoa<IntType>(value, base, &str_value)); |
|
IntType parsed_value; |
|
|
|
// Test successful parse |
|
EXPECT_TRUE(parse_func(str_value, &parsed_value, base)); |
|
EXPECT_EQ(parsed_value, value); |
|
|
|
// Test overflow |
|
EXPECT_FALSE( |
|
parse_func(absl::StrCat(std::numeric_limits<IntType>::max(), value), |
|
&parsed_value, base)); |
|
|
|
// Test underflow |
|
if (std::numeric_limits<IntType>::min() < 0) { |
|
EXPECT_FALSE( |
|
parse_func(absl::StrCat(std::numeric_limits<IntType>::min(), value), |
|
&parsed_value, base)); |
|
} else { |
|
EXPECT_FALSE(parse_func(absl::StrCat("-", value), &parsed_value, base)); |
|
} |
|
} |
|
} |
|
|
|
TEST(stringtest, safe_strto32_random) { |
|
test_random_integer_parse_base<int32_t>(&safe_strto32_base); |
|
} |
|
TEST(stringtest, safe_strto64_random) { |
|
test_random_integer_parse_base<int64_t>(&safe_strto64_base); |
|
} |
|
TEST(stringtest, safe_strtou32_random) { |
|
test_random_integer_parse_base<uint32_t>(&safe_strtou32_base); |
|
} |
|
TEST(stringtest, safe_strtou64_random) { |
|
test_random_integer_parse_base<uint64_t>(&safe_strtou64_base); |
|
} |
|
|
|
TEST(stringtest, safe_strtou32_base) { |
|
for (int i = 0; strtouint32_test_cases[i].str != nullptr; ++i) { |
|
const auto& e = strtouint32_test_cases[i]; |
|
uint32_t value; |
|
EXPECT_EQ(e.expect_ok, safe_strtou32_base(e.str, &value, e.base)) |
|
<< "str=\"" << e.str << "\" base=" << e.base; |
|
if (e.expect_ok) { |
|
EXPECT_EQ(e.expected, value) << "i=" << i << " str=\"" << e.str |
|
<< "\" base=" << e.base; |
|
} |
|
} |
|
} |
|
|
|
TEST(stringtest, safe_strtou32_base_length_delimited) { |
|
for (int i = 0; strtouint32_test_cases[i].str != nullptr; ++i) { |
|
const auto& e = strtouint32_test_cases[i]; |
|
std::string tmp(e.str); |
|
tmp.append("12"); // Adds garbage at the end. |
|
|
|
uint32_t value; |
|
EXPECT_EQ(e.expect_ok, |
|
safe_strtou32_base(absl::string_view(tmp.data(), strlen(e.str)), |
|
&value, e.base)) |
|
<< "str=\"" << e.str << "\" base=" << e.base; |
|
if (e.expect_ok) { |
|
EXPECT_EQ(e.expected, value) << "i=" << i << " str=" << e.str |
|
<< " base=" << e.base; |
|
} |
|
} |
|
} |
|
|
|
TEST(stringtest, safe_strtou64_base) { |
|
for (int i = 0; strtouint64_test_cases[i].str != nullptr; ++i) { |
|
const auto& e = strtouint64_test_cases[i]; |
|
uint64_t value; |
|
EXPECT_EQ(e.expect_ok, safe_strtou64_base(e.str, &value, e.base)) |
|
<< "str=\"" << e.str << "\" base=" << e.base; |
|
if (e.expect_ok) { |
|
EXPECT_EQ(e.expected, value) << "str=" << e.str << " base=" << e.base; |
|
} |
|
} |
|
} |
|
|
|
TEST(stringtest, safe_strtou64_base_length_delimited) { |
|
for (int i = 0; strtouint64_test_cases[i].str != nullptr; ++i) { |
|
const auto& e = strtouint64_test_cases[i]; |
|
std::string tmp(e.str); |
|
tmp.append("12"); // Adds garbage at the end. |
|
|
|
uint64_t value; |
|
EXPECT_EQ(e.expect_ok, |
|
safe_strtou64_base(absl::string_view(tmp.data(), strlen(e.str)), |
|
&value, e.base)) |
|
<< "str=\"" << e.str << "\" base=" << e.base; |
|
if (e.expect_ok) { |
|
EXPECT_EQ(e.expected, value) << "str=\"" << e.str << "\" base=" << e.base; |
|
} |
|
} |
|
} |
|
|
|
// feenableexcept() and fedisableexcept() are missing on Mac OS X, MSVC. |
|
#if defined(_MSC_VER) || defined(__APPLE__) |
|
#define ABSL_MISSING_FEENABLEEXCEPT 1 |
|
#define ABSL_MISSING_FEDISABLEEXCEPT 1 |
|
#endif |
|
|
|
class SimpleDtoaTest : public testing::Test { |
|
protected: |
|
void SetUp() override { |
|
// Store the current floating point env & clear away any pending exceptions. |
|
feholdexcept(&fp_env_); |
|
#ifndef ABSL_MISSING_FEENABLEEXCEPT |
|
// Turn on floating point exceptions. |
|
feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
|
#endif |
|
} |
|
|
|
void TearDown() override { |
|
// Restore the floating point environment to the original state. |
|
// In theory fedisableexcept is unnecessary; fesetenv will also do it. |
|
// In practice, our toolchains have subtle bugs. |
|
#ifndef ABSL_MISSING_FEDISABLEEXCEPT |
|
fedisableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
|
#endif |
|
fesetenv(&fp_env_); |
|
} |
|
|
|
std::string ToNineDigits(double value) { |
|
char buffer[kFastToBufferSize]; // more than enough for %.9g |
|
snprintf(buffer, sizeof(buffer), "%.9g", value); |
|
return buffer; |
|
} |
|
|
|
fenv_t fp_env_; |
|
}; |
|
|
|
// Run the given runnable functor for "cases" test cases, chosen over the |
|
// available range of float. pi and e and 1/e are seeded, and then all |
|
// available integer powers of 2 and 10 are multiplied against them. In |
|
// addition to trying all those values, we try the next higher and next lower |
|
// float, and then we add additional test cases evenly distributed between them. |
|
// Each test case is passed to runnable as both a positive and negative value. |
|
template <typename R> |
|
void ExhaustiveFloat(uint32_t cases, R&& runnable) { |
|
runnable(0.0f); |
|
runnable(-0.0f); |
|
if (cases >= 2e9) { // more than 2 billion? Might as well run them all. |
|
for (float f = 0; f < std::numeric_limits<float>::max(); ) { |
|
f = nextafterf(f, std::numeric_limits<float>::max()); |
|
runnable(-f); |
|
runnable(f); |
|
} |
|
return; |
|
} |
|
std::set<float> floats = {3.4028234e38f}; |
|
for (float f : {1.0, 3.14159265, 2.718281828, 1 / 2.718281828}) { |
|
for (float testf = f; testf != 0; testf *= 0.1f) floats.insert(testf); |
|
for (float testf = f; testf != 0; testf *= 0.5f) floats.insert(testf); |
|
for (float testf = f; testf < 3e38f / 2; testf *= 2.0f) |
|
floats.insert(testf); |
|
for (float testf = f; testf < 3e38f / 10; testf *= 10) floats.insert(testf); |
|
} |
|
|
|
float last = *floats.begin(); |
|
|
|
runnable(last); |
|
runnable(-last); |
|
int iters_per_float = cases / floats.size(); |
|
if (iters_per_float == 0) iters_per_float = 1; |
|
for (float f : floats) { |
|
if (f == last) continue; |
|
float testf = nextafter(last, std::numeric_limits<float>::max()); |
|
runnable(testf); |
|
runnable(-testf); |
|
last = testf; |
|
if (f == last) continue; |
|
double step = (double{f} - last) / iters_per_float; |
|
for (double d = last + step; d < f; d += step) { |
|
testf = d; |
|
if (testf != last) { |
|
runnable(testf); |
|
runnable(-testf); |
|
last = testf; |
|
} |
|
} |
|
testf = nextafter(f, 0.0f); |
|
if (testf > last) { |
|
runnable(testf); |
|
runnable(-testf); |
|
last = testf; |
|
} |
|
if (f != last) { |
|
runnable(f); |
|
runnable(-f); |
|
last = f; |
|
} |
|
} |
|
} |
|
|
|
TEST_F(SimpleDtoaTest, ExhaustiveDoubleToSixDigits) { |
|
uint64_t test_count = 0; |
|
std::vector<double> mismatches; |
|
auto checker = [&](double d) { |
|
if (d != d) return; // rule out NaNs |
|
++test_count; |
|
char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; |
|
SixDigitsToBuffer(d, sixdigitsbuf); |
|
char snprintfbuf[kSixDigitsToBufferSize] = {0}; |
|
snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); |
|
if (strcmp(sixdigitsbuf, snprintfbuf) != 0) { |
|
mismatches.push_back(d); |
|
if (mismatches.size() < 10) { |
|
ABSL_RAW_LOG(ERROR, "%s", |
|
absl::StrCat("Six-digit failure with double. ", "d=", d, |
|
"=", d, " sixdigits=", sixdigitsbuf, |
|
" printf(%g)=", snprintfbuf) |
|
.c_str()); |
|
} |
|
} |
|
}; |
|
// Some quick sanity checks... |
|
checker(5e-324); |
|
checker(1e-308); |
|
checker(1.0); |
|
checker(1.000005); |
|
checker(1.7976931348623157e308); |
|
checker(0.00390625); |
|
#ifndef _MSC_VER |
|
// on MSVC, snprintf() rounds it to 0.00195313. SixDigitsToBuffer() rounds it |
|
// to 0.00195312 (round half to even). |
|
checker(0.001953125); |
|
#endif |
|
checker(0.005859375); |
|
// Some cases where the rounding is very very close |
|
checker(1.089095e-15); |
|
checker(3.274195e-55); |
|
checker(6.534355e-146); |
|
checker(2.920845e+234); |
|
|
|
if (mismatches.empty()) { |
|
test_count = 0; |
|
ExhaustiveFloat(kFloatNumCases, checker); |
|
|
|
test_count = 0; |
|
std::vector<int> digit_testcases{ |
|
100000, 100001, 100002, 100005, 100010, 100020, 100050, 100100, // misc |
|
195312, 195313, // 1.953125 is a case where we round down, just barely. |
|
200000, 500000, 800000, // misc mid-range cases |
|
585937, 585938, // 5.859375 is a case where we round up, just barely. |
|
900000, 990000, 999000, 999900, 999990, 999996, 999997, 999998, 999999}; |
|
if (kFloatNumCases >= 1e9) { |
|
// If at least 1 billion test cases were requested, user wants an |
|
// exhaustive test. So let's test all mantissas, too. |
|
constexpr int min_mantissa = 100000, max_mantissa = 999999; |
|
digit_testcases.resize(max_mantissa - min_mantissa + 1); |
|
std::iota(digit_testcases.begin(), digit_testcases.end(), min_mantissa); |
|
} |
|
|
|
for (int exponent = -324; exponent <= 308; ++exponent) { |
|
double powten = pow(10.0, exponent); |
|
if (powten == 0) powten = 5e-324; |
|
if (kFloatNumCases >= 1e9) { |
|
// The exhaustive test takes a very long time, so log progress. |
|
char buf[kSixDigitsToBufferSize]; |
|
ABSL_RAW_LOG( |
|
INFO, "%s", |
|
absl::StrCat("Exp ", exponent, " powten=", powten, "(", |
|
powten, ") (", |
|
std::string(buf, SixDigitsToBuffer(powten, buf)), ")") |
|
.c_str()); |
|
} |
|
for (int digits : digit_testcases) { |
|
if (exponent == 308 && digits >= 179769) break; // don't overflow! |
|
double digiform = (digits + 0.5) * 0.00001; |
|
double testval = digiform * powten; |
|
double pretestval = nextafter(testval, 0); |
|
double posttestval = nextafter(testval, 1.7976931348623157e308); |
|
checker(testval); |
|
checker(pretestval); |
|
checker(posttestval); |
|
} |
|
} |
|
} else { |
|
EXPECT_EQ(mismatches.size(), 0); |
|
for (size_t i = 0; i < mismatches.size(); ++i) { |
|
if (i > 100) i = mismatches.size() - 1; |
|
double d = mismatches[i]; |
|
char sixdigitsbuf[kSixDigitsToBufferSize] = {0}; |
|
SixDigitsToBuffer(d, sixdigitsbuf); |
|
char snprintfbuf[kSixDigitsToBufferSize] = {0}; |
|
snprintf(snprintfbuf, kSixDigitsToBufferSize, "%g", d); |
|
double before = nextafter(d, 0.0); |
|
double after = nextafter(d, 1.7976931348623157e308); |
|
char b1[32], b2[kSixDigitsToBufferSize]; |
|
ABSL_RAW_LOG( |
|
ERROR, "%s", |
|
absl::StrCat( |
|
"Mismatch #", i, " d=", d, " (", ToNineDigits(d), ")", |
|
" sixdigits='", sixdigitsbuf, "'", " snprintf='", snprintfbuf, |
|
"'", " Before.=", PerfectDtoa(before), " ", |
|
(SixDigitsToBuffer(before, b2), b2), |
|
" vs snprintf=", (snprintf(b1, sizeof(b1), "%g", before), b1), |
|
" Perfect=", PerfectDtoa(d), " ", (SixDigitsToBuffer(d, b2), b2), |
|
" vs snprintf=", (snprintf(b1, sizeof(b1), "%g", d), b1), |
|
" After.=.", PerfectDtoa(after), " ", |
|
(SixDigitsToBuffer(after, b2), b2), |
|
" vs snprintf=", (snprintf(b1, sizeof(b1), "%g", after), b1)) |
|
.c_str()); |
|
} |
|
} |
|
} |
|
|
|
TEST(StrToInt32, Partial) { |
|
struct Int32TestLine { |
|
std::string input; |
|
bool status; |
|
int32_t value; |
|
}; |
|
const int32_t int32_min = std::numeric_limits<int32_t>::min(); |
|
const int32_t int32_max = std::numeric_limits<int32_t>::max(); |
|
Int32TestLine int32_test_line[] = { |
|
{"", false, 0}, |
|
{" ", false, 0}, |
|
{"-", false, 0}, |
|
{"123@@@", false, 123}, |
|
{absl::StrCat(int32_min, int32_max), false, int32_min}, |
|
{absl::StrCat(int32_max, int32_max), false, int32_max}, |
|
}; |
|
|
|
for (const Int32TestLine& test_line : int32_test_line) { |
|
int32_t value = -2; |
|
bool status = safe_strto32_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = -2; |
|
status = safe_strto32_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = -2; |
|
status = safe_strto32_base(absl::string_view(test_line.input), &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
} |
|
} |
|
|
|
TEST(StrToUint32, Partial) { |
|
struct Uint32TestLine { |
|
std::string input; |
|
bool status; |
|
uint32_t value; |
|
}; |
|
const uint32_t uint32_max = std::numeric_limits<uint32_t>::max(); |
|
Uint32TestLine uint32_test_line[] = { |
|
{"", false, 0}, |
|
{" ", false, 0}, |
|
{"-", false, 0}, |
|
{"123@@@", false, 123}, |
|
{absl::StrCat(uint32_max, uint32_max), false, uint32_max}, |
|
}; |
|
|
|
for (const Uint32TestLine& test_line : uint32_test_line) { |
|
uint32_t value = 2; |
|
bool status = safe_strtou32_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = 2; |
|
status = safe_strtou32_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = 2; |
|
status = safe_strtou32_base(absl::string_view(test_line.input), &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
} |
|
} |
|
|
|
TEST(StrToInt64, Partial) { |
|
struct Int64TestLine { |
|
std::string input; |
|
bool status; |
|
int64_t value; |
|
}; |
|
const int64_t int64_min = std::numeric_limits<int64_t>::min(); |
|
const int64_t int64_max = std::numeric_limits<int64_t>::max(); |
|
Int64TestLine int64_test_line[] = { |
|
{"", false, 0}, |
|
{" ", false, 0}, |
|
{"-", false, 0}, |
|
{"123@@@", false, 123}, |
|
{absl::StrCat(int64_min, int64_max), false, int64_min}, |
|
{absl::StrCat(int64_max, int64_max), false, int64_max}, |
|
}; |
|
|
|
for (const Int64TestLine& test_line : int64_test_line) { |
|
int64_t value = -2; |
|
bool status = safe_strto64_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = -2; |
|
status = safe_strto64_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = -2; |
|
status = safe_strto64_base(absl::string_view(test_line.input), &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
} |
|
} |
|
|
|
TEST(StrToUint64, Partial) { |
|
struct Uint64TestLine { |
|
std::string input; |
|
bool status; |
|
uint64_t value; |
|
}; |
|
const uint64_t uint64_max = std::numeric_limits<uint64_t>::max(); |
|
Uint64TestLine uint64_test_line[] = { |
|
{"", false, 0}, |
|
{" ", false, 0}, |
|
{"-", false, 0}, |
|
{"123@@@", false, 123}, |
|
{absl::StrCat(uint64_max, uint64_max), false, uint64_max}, |
|
}; |
|
|
|
for (const Uint64TestLine& test_line : uint64_test_line) { |
|
uint64_t value = 2; |
|
bool status = safe_strtou64_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = 2; |
|
status = safe_strtou64_base(test_line.input, &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
value = 2; |
|
status = safe_strtou64_base(absl::string_view(test_line.input), &value, 10); |
|
EXPECT_EQ(test_line.status, status) << test_line.input; |
|
EXPECT_EQ(test_line.value, value) << test_line.input; |
|
} |
|
} |
|
|
|
TEST(StrToInt32Base, PrefixOnly) { |
|
struct Int32TestLine { |
|
std::string input; |
|
bool status; |
|
int32_t value; |
|
}; |
|
Int32TestLine int32_test_line[] = { |
|
{ "", false, 0 }, |
|
{ "-", false, 0 }, |
|
{ "-0", true, 0 }, |
|
{ "0", true, 0 }, |
|
{ "0x", false, 0 }, |
|
{ "-0x", false, 0 }, |
|
}; |
|
const int base_array[] = { 0, 2, 8, 10, 16 }; |
|
|
|
for (const Int32TestLine& line : int32_test_line) { |
|
for (const int base : base_array) { |
|
int32_t value = 2; |
|
bool status = safe_strto32_base(line.input.c_str(), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strto32_base(line.input, &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strto32_base(absl::string_view(line.input), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
} |
|
} |
|
} |
|
|
|
TEST(StrToUint32Base, PrefixOnly) { |
|
struct Uint32TestLine { |
|
std::string input; |
|
bool status; |
|
uint32_t value; |
|
}; |
|
Uint32TestLine uint32_test_line[] = { |
|
{ "", false, 0 }, |
|
{ "0", true, 0 }, |
|
{ "0x", false, 0 }, |
|
}; |
|
const int base_array[] = { 0, 2, 8, 10, 16 }; |
|
|
|
for (const Uint32TestLine& line : uint32_test_line) { |
|
for (const int base : base_array) { |
|
uint32_t value = 2; |
|
bool status = safe_strtou32_base(line.input.c_str(), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strtou32_base(line.input, &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strtou32_base(absl::string_view(line.input), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
} |
|
} |
|
} |
|
|
|
TEST(StrToInt64Base, PrefixOnly) { |
|
struct Int64TestLine { |
|
std::string input; |
|
bool status; |
|
int64_t value; |
|
}; |
|
Int64TestLine int64_test_line[] = { |
|
{ "", false, 0 }, |
|
{ "-", false, 0 }, |
|
{ "-0", true, 0 }, |
|
{ "0", true, 0 }, |
|
{ "0x", false, 0 }, |
|
{ "-0x", false, 0 }, |
|
}; |
|
const int base_array[] = { 0, 2, 8, 10, 16 }; |
|
|
|
for (const Int64TestLine& line : int64_test_line) { |
|
for (const int base : base_array) { |
|
int64_t value = 2; |
|
bool status = safe_strto64_base(line.input.c_str(), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strto64_base(line.input, &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strto64_base(absl::string_view(line.input), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
} |
|
} |
|
} |
|
|
|
TEST(StrToUint64Base, PrefixOnly) { |
|
struct Uint64TestLine { |
|
std::string input; |
|
bool status; |
|
uint64_t value; |
|
}; |
|
Uint64TestLine uint64_test_line[] = { |
|
{ "", false, 0 }, |
|
{ "0", true, 0 }, |
|
{ "0x", false, 0 }, |
|
}; |
|
const int base_array[] = { 0, 2, 8, 10, 16 }; |
|
|
|
for (const Uint64TestLine& line : uint64_test_line) { |
|
for (const int base : base_array) { |
|
uint64_t value = 2; |
|
bool status = safe_strtou64_base(line.input.c_str(), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strtou64_base(line.input, &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
value = 2; |
|
status = safe_strtou64_base(absl::string_view(line.input), &value, base); |
|
EXPECT_EQ(line.status, status) << line.input << " " << base; |
|
EXPECT_EQ(line.value, value) << line.input << " " << base; |
|
} |
|
} |
|
} |
|
|
|
} // namespace
|
|
|