Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
272 lines
9.2 KiB
272 lines
9.2 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ |
|
#define ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_ |
|
|
|
// absl::gaussian_distribution implements the Ziggurat algorithm |
|
// for generating random gaussian numbers. |
|
// |
|
// Implementation based on "The Ziggurat Method for Generating Random Variables" |
|
// by George Marsaglia and Wai Wan Tsang: http://www.jstatsoft.org/v05/i08/ |
|
// |
|
|
|
#include <cmath> |
|
#include <cstdint> |
|
#include <istream> |
|
#include <limits> |
|
#include <type_traits> |
|
|
|
#include "absl/random/internal/fast_uniform_bits.h" |
|
#include "absl/random/internal/generate_real.h" |
|
#include "absl/random/internal/iostream_state_saver.h" |
|
|
|
namespace absl { |
|
namespace random_internal { |
|
|
|
// absl::gaussian_distribution_base implements the underlying ziggurat algorithm |
|
// using the ziggurat tables generated by the gaussian_distribution_gentables |
|
// binary. |
|
// |
|
// The specific algorithm has some of the improvements suggested by the |
|
// 2005 paper, "An Improved Ziggurat Method to Generate Normal Random Samples", |
|
// Jurgen A Doornik. (https://www.doornik.com/research/ziggurat.pdf) |
|
class gaussian_distribution_base { |
|
public: |
|
template <typename URBG> |
|
inline double zignor(URBG& g); // NOLINT(runtime/references) |
|
|
|
private: |
|
friend class TableGenerator; |
|
|
|
template <typename URBG> |
|
inline double zignor_fallback(URBG& g, // NOLINT(runtime/references) |
|
bool neg); |
|
|
|
// Constants used for the gaussian distribution. |
|
static constexpr double kR = 3.442619855899; // Start of the tail. |
|
static constexpr double kRInv = 0.29047645161474317; // ~= (1.0 / kR) . |
|
static constexpr double kV = 9.91256303526217e-3; |
|
static constexpr uint64_t kMask = 0x07f; |
|
|
|
// The ziggurat tables store the pdf(f) and inverse-pdf(x) for equal-area |
|
// points on one-half of the normal distribution, where the pdf function, |
|
// pdf = e ^ (-1/2 *x^2), assumes that the mean = 0 & stddev = 1. |
|
// |
|
// These tables are just over 2kb in size; larger tables might improve the |
|
// distributions, but also lead to more cache pollution. |
|
// |
|
// x = {3.71308, 3.44261, 3.22308, ..., 0} |
|
// f = {0.00101, 0.00266, 0.00554, ..., 1} |
|
struct Tables { |
|
double x[kMask + 2]; |
|
double f[kMask + 2]; |
|
}; |
|
static const Tables zg_; |
|
random_internal::FastUniformBits<uint64_t> fast_u64_; |
|
}; |
|
|
|
} // namespace random_internal |
|
|
|
// absl::gaussian_distribution: |
|
// Generates a number conforming to a Gaussian distribution. |
|
template <typename RealType = double> |
|
class gaussian_distribution : random_internal::gaussian_distribution_base { |
|
public: |
|
using result_type = RealType; |
|
|
|
class param_type { |
|
public: |
|
using distribution_type = gaussian_distribution; |
|
|
|
explicit param_type(result_type mean = 0, result_type stddev = 1) |
|
: mean_(mean), stddev_(stddev) {} |
|
|
|
// Returns the mean distribution parameter. The mean specifies the location |
|
// of the peak. The default value is 0.0. |
|
result_type mean() const { return mean_; } |
|
|
|
// Returns the deviation distribution parameter. The default value is 1.0. |
|
result_type stddev() const { return stddev_; } |
|
|
|
friend bool operator==(const param_type& a, const param_type& b) { |
|
return a.mean_ == b.mean_ && a.stddev_ == b.stddev_; |
|
} |
|
|
|
friend bool operator!=(const param_type& a, const param_type& b) { |
|
return !(a == b); |
|
} |
|
|
|
private: |
|
result_type mean_; |
|
result_type stddev_; |
|
|
|
static_assert( |
|
std::is_floating_point<RealType>::value, |
|
"Class-template absl::gaussian_distribution<> must be parameterized " |
|
"using a floating-point type."); |
|
}; |
|
|
|
gaussian_distribution() : gaussian_distribution(0) {} |
|
|
|
explicit gaussian_distribution(result_type mean, result_type stddev = 1) |
|
: param_(mean, stddev) {} |
|
|
|
explicit gaussian_distribution(const param_type& p) : param_(p) {} |
|
|
|
void reset() {} |
|
|
|
// Generating functions |
|
template <typename URBG> |
|
result_type operator()(URBG& g) { // NOLINT(runtime/references) |
|
return (*this)(g, param_); |
|
} |
|
|
|
template <typename URBG> |
|
result_type operator()(URBG& g, // NOLINT(runtime/references) |
|
const param_type& p); |
|
|
|
param_type param() const { return param_; } |
|
void param(const param_type& p) { param_ = p; } |
|
|
|
result_type(min)() const { |
|
return -std::numeric_limits<result_type>::infinity(); |
|
} |
|
result_type(max)() const { |
|
return std::numeric_limits<result_type>::infinity(); |
|
} |
|
|
|
result_type mean() const { return param_.mean(); } |
|
result_type stddev() const { return param_.stddev(); } |
|
|
|
friend bool operator==(const gaussian_distribution& a, |
|
const gaussian_distribution& b) { |
|
return a.param_ == b.param_; |
|
} |
|
friend bool operator!=(const gaussian_distribution& a, |
|
const gaussian_distribution& b) { |
|
return a.param_ != b.param_; |
|
} |
|
|
|
private: |
|
param_type param_; |
|
}; |
|
|
|
// -------------------------------------------------------------------------- |
|
// Implementation details only below |
|
// -------------------------------------------------------------------------- |
|
|
|
template <typename RealType> |
|
template <typename URBG> |
|
typename gaussian_distribution<RealType>::result_type |
|
gaussian_distribution<RealType>::operator()( |
|
URBG& g, // NOLINT(runtime/references) |
|
const param_type& p) { |
|
return p.mean() + p.stddev() * static_cast<result_type>(zignor(g)); |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_ostream<CharT, Traits>& operator<<( |
|
std::basic_ostream<CharT, Traits>& os, // NOLINT(runtime/references) |
|
const gaussian_distribution<RealType>& x) { |
|
auto saver = random_internal::make_ostream_state_saver(os); |
|
os.precision(random_internal::stream_precision_helper<RealType>::kPrecision); |
|
os << x.mean() << os.fill() << x.stddev(); |
|
return os; |
|
} |
|
|
|
template <typename CharT, typename Traits, typename RealType> |
|
std::basic_istream<CharT, Traits>& operator>>( |
|
std::basic_istream<CharT, Traits>& is, // NOLINT(runtime/references) |
|
gaussian_distribution<RealType>& x) { // NOLINT(runtime/references) |
|
using result_type = typename gaussian_distribution<RealType>::result_type; |
|
using param_type = typename gaussian_distribution<RealType>::param_type; |
|
|
|
auto saver = random_internal::make_istream_state_saver(is); |
|
auto mean = random_internal::read_floating_point<result_type>(is); |
|
if (is.fail()) return is; |
|
auto stddev = random_internal::read_floating_point<result_type>(is); |
|
if (!is.fail()) { |
|
x.param(param_type(mean, stddev)); |
|
} |
|
return is; |
|
} |
|
|
|
namespace random_internal { |
|
|
|
template <typename URBG> |
|
inline double gaussian_distribution_base::zignor_fallback(URBG& g, bool neg) { |
|
using random_internal::GeneratePositiveTag; |
|
using random_internal::GenerateRealFromBits; |
|
|
|
// This fallback path happens approximately 0.05% of the time. |
|
double x, y; |
|
do { |
|
// kRInv = 1/r, U(0, 1) |
|
x = kRInv * |
|
std::log(GenerateRealFromBits<double, GeneratePositiveTag, false>( |
|
fast_u64_(g))); |
|
y = -std::log( |
|
GenerateRealFromBits<double, GeneratePositiveTag, false>(fast_u64_(g))); |
|
} while ((y + y) < (x * x)); |
|
return neg ? (x - kR) : (kR - x); |
|
} |
|
|
|
template <typename URBG> |
|
inline double gaussian_distribution_base::zignor( |
|
URBG& g) { // NOLINT(runtime/references) |
|
using random_internal::GeneratePositiveTag; |
|
using random_internal::GenerateRealFromBits; |
|
using random_internal::GenerateSignedTag; |
|
|
|
while (true) { |
|
// We use a single uint64_t to generate both a double and a strip. |
|
// These bits are unused when the generated double is > 1/2^5. |
|
// This may introduce some bias from the duplicated low bits of small |
|
// values (those smaller than 1/2^5, which all end up on the left tail). |
|
uint64_t bits = fast_u64_(g); |
|
int i = static_cast<int>(bits & kMask); // pick a random strip |
|
double j = GenerateRealFromBits<double, GenerateSignedTag, false>( |
|
bits); // U(-1, 1) |
|
const double x = j * zg_.x[i]; |
|
|
|
// Retangular box. Handles >97% of all cases. |
|
// For any given box, this handles between 75% and 99% of values. |
|
// Equivalent to U(01) < (x[i+1] / x[i]), and when i == 0, ~93.5% |
|
if (std::abs(x) < zg_.x[i + 1]) { |
|
return x; |
|
} |
|
|
|
// i == 0: Base box. Sample using a ratio of uniforms. |
|
if (i == 0) { |
|
// This path happens about 0.05% of the time. |
|
return zignor_fallback(g, j < 0); |
|
} |
|
|
|
// i > 0: Wedge samples using precomputed values. |
|
double v = GenerateRealFromBits<double, GeneratePositiveTag, false>( |
|
fast_u64_(g)); // U(0, 1) |
|
if ((zg_.f[i + 1] + v * (zg_.f[i] - zg_.f[i + 1])) < |
|
std::exp(-0.5 * x * x)) { |
|
return x; |
|
} |
|
|
|
// The wedge was missed; reject the value and try again. |
|
} |
|
} |
|
|
|
} // namespace random_internal |
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_GAUSSIAN_DISTRIBUTION_H_
|
|
|