Abseil Common Libraries (C++) (grcp 依赖) https://abseil.io/
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

299 lines
12 KiB

// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
#define ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_
#include <cstddef>
#include <cstdint>
#include <limits>
#include <type_traits>
namespace absl {
namespace random_internal {
// Computes the length of the range of values producible by the URBG, or returns
// zero if that would encompass the entire range of representable values in
// URBG::result_type.
template <typename URBG>
constexpr typename URBG::result_type constexpr_range() {
using result_type = typename URBG::result_type;
return ((URBG::max)() == (std::numeric_limits<result_type>::max)() &&
(URBG::min)() == std::numeric_limits<result_type>::lowest())
? result_type{0}
: (URBG::max)() - (URBG::min)() + result_type{1};
}
// FastUniformBits implements a fast path to acquire uniform independent bits
// from a type which conforms to the [rand.req.urbg] concept.
// Parameterized by:
// `UIntType`: the result (output) type
// `Width`: binary output width
//
// The std::independent_bits_engine [rand.adapt.ibits] adaptor can be
// instantiated from an existing generator through a copy or a move. It does
// not, however, facilitate the production of pseudorandom bits from an un-owned
// generator that will outlive the std::independent_bits_engine instance.
template <typename UIntType = uint64_t,
size_t Width = std::numeric_limits<UIntType>::digits>
class FastUniformBits {
static_assert(std::is_unsigned<UIntType>::value,
"Class-template FastUniformBits<> must be parameterized using "
"an unsigned type.");
// `kWidth` is the width, in binary digits, of the output. By default it is
// the number of binary digits in the `result_type`.
static constexpr size_t kWidth = Width;
static_assert(kWidth > 0,
"Class-template FastUniformBits<> Width argument must be > 0");
static_assert(kWidth <= std::numeric_limits<UIntType>::digits,
"Class-template FastUniformBits<> Width argument must be <= "
"width of UIntType.");
static constexpr bool kIsMaxWidth =
(kWidth >= std::numeric_limits<UIntType>::digits);
// Computes a mask of `n` bits for the `UIntType`.
static constexpr UIntType constexpr_mask(size_t n) {
return (UIntType(1) << n) - 1;
}
public:
using result_type = UIntType;
static constexpr result_type(min)() { return 0; }
static constexpr result_type(max)() {
return kIsMaxWidth ? (std::numeric_limits<result_type>::max)()
: constexpr_mask(kWidth);
}
template <typename URBG>
result_type operator()(URBG& g); // NOLINT(runtime/references)
private:
// Variate() generates a single random variate, always returning a value
// in the closed interval [0 ... FastUniformBitsURBGConstants::kRangeMask]
// (kRangeMask+1 is a power of 2).
template <typename URBG>
typename URBG::result_type Variate(URBG& g); // NOLINT(runtime/references)
// generate() generates a random value, dispatched on whether
// the underlying URNG must loop over multiple calls or not.
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
std::true_type /* avoid_looping */);
template <typename URBG>
result_type Generate(URBG& g, // NOLINT(runtime/references)
std::false_type /* avoid_looping */);
};
// FastUniformBitsURBGConstants computes the URBG-derived constants used
// by FastUniformBits::Generate and FastUniformBits::Variate.
// Parameterized by the FastUniformBits parameter:
// `URBG`: The underlying UniformRandomNumberGenerator.
//
// The values here indicate the URBG range as well as providing an indicator
// whether the URBG output is a power of 2, and kRangeMask, which allows masking
// the generated output to kRangeBits.
template <typename URBG>
class FastUniformBitsURBGConstants {
// Computes the floor of the log. (i.e., std::floor(std::log2(N));
static constexpr size_t constexpr_log2(size_t n) {
return (n <= 1) ? 0 : 1 + constexpr_log2(n / 2);
}
// Computes a mask of n bits for the URBG::result_type.
static constexpr typename URBG::result_type constexpr_mask(size_t n) {
return (typename URBG::result_type(1) << n) - 1;
}
public:
using result_type = typename URBG::result_type;
// The range of the URNG, max - min + 1, or zero if that result would cause
// overflow.
static constexpr result_type kRange = constexpr_range<URBG>();
static constexpr bool kPowerOfTwo =
(kRange == 0) || ((kRange & (kRange - 1)) == 0);
// kRangeBits describes the number number of bits suitable to mask off of URNG
// variate, which is:
// kRangeBits = floor(log2(kRange))
static constexpr size_t kRangeBits =
kRange == 0 ? std::numeric_limits<result_type>::digits
: constexpr_log2(kRange);
// kRangeMask is the mask used when sampling variates from the URNG when the
// width of the URNG range is not a power of 2.
// Y = (2 ^ kRange) - 1
static constexpr result_type kRangeMask =
kRange == 0 ? (std::numeric_limits<result_type>::max)()
: constexpr_mask(kRangeBits);
static_assert((URBG::max)() != (URBG::min)(),
"Class-template FastUniformBitsURBGConstants<> "
"URBG::max and URBG::min may not be equal.");
static_assert(std::is_unsigned<result_type>::value,
"Class-template FastUniformBitsURBGConstants<> "
"URBG::result_type must be unsigned.");
static_assert(kRangeMask > 0,
"Class-template FastUniformBitsURBGConstants<> "
"URBG does not generate sufficient random bits.");
static_assert(kRange == 0 ||
kRangeBits < std::numeric_limits<result_type>::digits,
"Class-template FastUniformBitsURBGConstants<> "
"URBG range computation error.");
};
// FastUniformBitsLoopingConstants computes the looping constants used
// by FastUniformBits::Generate. These constants indicate how multiple
// URBG::result_type values are combined into an output_value.
// Parameterized by the FastUniformBits parameters:
// `UIntType`: output type.
// `Width`: binary output width,
// `URNG`: The underlying UniformRandomNumberGenerator.
//
// The looping constants describe the sets of loop counters and mask values
// which control how individual variates are combined the final output. The
// algorithm ensures that the number of bits used by any individual call differs
// by at-most one bit from any other call. This is simplified into constants
// which describe two loops, with the second loop parameters providing one extra
// bit per variate.
//
// See [rand.adapt.ibits] for more details on the use of these constants.
template <typename UIntType, size_t Width, typename URBG>
class FastUniformBitsLoopingConstants {
private:
static constexpr size_t kWidth = Width;
using urbg_result_type = typename URBG::result_type;
using uint_result_type = UIntType;
public:
using result_type =
typename std::conditional<(sizeof(urbg_result_type) <=
sizeof(uint_result_type)),
uint_result_type, urbg_result_type>::type;
private:
// Estimate N as ceil(width / urng width), and W0 as (width / N).
static constexpr size_t kRangeBits =
FastUniformBitsURBGConstants<URBG>::kRangeBits;
// The range of the URNG, max - min + 1, or zero if that result would cause
// overflow.
static constexpr result_type kRange = constexpr_range<URBG>();
static constexpr size_t kEstimateN =
kWidth / kRangeBits + (kWidth % kRangeBits != 0);
static constexpr size_t kEstimateW0 = kWidth / kEstimateN;
static constexpr result_type kEstimateY0 = (kRange >> kEstimateW0)
<< kEstimateW0;
public:
// Parameters for the two loops:
// kN0, kN1 are the number of underlying calls required for each loop.
// KW0, kW1 are shift widths for each loop.
//
static constexpr size_t kN1 = (kRange - kEstimateY0) >
(kEstimateY0 / kEstimateN)
? kEstimateN + 1
: kEstimateN;
static constexpr size_t kN0 = kN1 - (kWidth % kN1);
static constexpr size_t kW0 = kWidth / kN1;
static constexpr size_t kW1 = kW0 + 1;
static constexpr result_type kM0 = (result_type(1) << kW0) - 1;
static constexpr result_type kM1 = (result_type(1) << kW1) - 1;
static_assert(
kW0 <= kRangeBits,
"Class-template FastUniformBitsLoopingConstants::kW0 too large.");
static_assert(
kW0 > 0,
"Class-template FastUniformBitsLoopingConstants::kW0 too small.");
};
template <typename UIntType, size_t Width>
template <typename URBG>
typename FastUniformBits<UIntType, Width>::result_type
FastUniformBits<UIntType, Width>::operator()(
URBG& g) { // NOLINT(runtime/references)
using constants = FastUniformBitsURBGConstants<URBG>;
return Generate(
g, std::integral_constant<bool, constants::kRangeMask >= (max)()>{});
}
template <typename UIntType, size_t Width>
template <typename URBG>
typename URBG::result_type FastUniformBits<UIntType, Width>::Variate(
URBG& g) { // NOLINT(runtime/references)
using constants = FastUniformBitsURBGConstants<URBG>;
if (constants::kPowerOfTwo) {
return g() - (URBG::min)();
}
// Use rejection sampling to ensure uniformity across the range.
typename URBG::result_type u;
do {
u = g() - (URBG::min)();
} while (u > constants::kRangeMask);
return u;
}
template <typename UIntType, size_t Width>
template <typename URBG>
typename FastUniformBits<UIntType, Width>::result_type
FastUniformBits<UIntType, Width>::Generate(
URBG& g, // NOLINT(runtime/references)
std::true_type /* avoid_looping */) {
// The width of the result_type is less than than the width of the random bits
// provided by URNG. Thus, generate a single value and then simply mask off
// the required bits.
return Variate(g) & (max)();
}
template <typename UIntType, size_t Width>
template <typename URBG>
typename FastUniformBits<UIntType, Width>::result_type
FastUniformBits<UIntType, Width>::Generate(
URBG& g, // NOLINT(runtime/references)
std::false_type /* avoid_looping */) {
// The width of the result_type is wider than the number of random bits
// provided by URNG. Thus we merge several variates of URNG into the result
// using a shift and mask. The constants type generates the parameters used
// ensure that the bits are distributed across all the invocations of the
// underlying URNG.
using constants = FastUniformBitsLoopingConstants<UIntType, Width, URBG>;
result_type s = 0;
for (size_t n = 0; n < constants::kN0; ++n) {
auto u = Variate(g);
s = (s << constants::kW0) + (u & constants::kM0);
}
for (size_t n = constants::kN0; n < constants::kN1; ++n) {
auto u = Variate(g);
s = (s << constants::kW1) + (u & constants::kM1);
}
return s;
}
} // namespace random_internal
} // namespace absl
#endif // ABSL_RANDOM_INTERNAL_FAST_UNIFORM_BITS_H_