Abseil Common Libraries (C++) (grcp 依赖)
https://abseil.io/
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
260 lines
9.2 KiB
260 lines
9.2 KiB
// Copyright 2017 The Abseil Authors. |
|
// |
|
// Licensed under the Apache License, Version 2.0 (the "License"); |
|
// you may not use this file except in compliance with the License. |
|
// You may obtain a copy of the License at |
|
// |
|
// https://www.apache.org/licenses/LICENSE-2.0 |
|
// |
|
// Unless required by applicable law or agreed to in writing, software |
|
// distributed under the License is distributed on an "AS IS" BASIS, |
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
|
// See the License for the specific language governing permissions and |
|
// limitations under the License. |
|
|
|
#ifndef ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ |
|
#define ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_ |
|
|
|
// This file contains some implementation details which are used by one or more |
|
// of the absl random number distributions. |
|
|
|
#include <cfloat> |
|
#include <cstddef> |
|
#include <cstdint> |
|
#include <cstring> |
|
#include <limits> |
|
#include <type_traits> |
|
|
|
#if (defined(_WIN32) || defined(_WIN64)) && defined(_M_IA64) |
|
#include <intrin.h> // NOLINT(build/include_order) |
|
#pragma intrinsic(_umul128) |
|
#define ABSL_INTERNAL_USE_UMUL128 1 |
|
#endif |
|
|
|
#include "absl/base/config.h" |
|
#include "absl/base/internal/bits.h" |
|
#include "absl/numeric/int128.h" |
|
#include "absl/random/internal/fastmath.h" |
|
#include "absl/random/internal/traits.h" |
|
|
|
namespace absl { |
|
namespace random_internal { |
|
|
|
// Creates a double from `bits`, with the template fields controlling the |
|
// output. |
|
// |
|
// RandU64To is both more efficient and generates more unique values in the |
|
// result interval than known implementations of std::generate_canonical(). |
|
// |
|
// The `Signed` parameter controls whether positive, negative, or both are |
|
// returned (thus affecting the output interval). |
|
// When Signed == SignedValueT, range is U(-1, 1) |
|
// When Signed == NegativeValueT, range is U(-1, 0) |
|
// When Signed == PositiveValueT, range is U(0, 1) |
|
// |
|
// When the `IncludeZero` parameter is true, the function may return 0 for some |
|
// inputs, otherwise it never returns 0. |
|
// |
|
// The `ExponentBias` parameter determines the scale of the output range by |
|
// adjusting the exponent. |
|
// |
|
// When a value in U(0,1) is required, use: |
|
// RandU64ToDouble<PositiveValueT, true, 0>(); |
|
// |
|
// When a value in U(-1,1) is required, use: |
|
// RandU64ToDouble<SignedValueT, false, 0>() => U(-1, 1) |
|
// This generates more distinct values than the mathematically equivalent |
|
// expression `U(0, 1) * 2.0 - 1.0`, and is preferable. |
|
// |
|
// Scaling the result by powers of 2 (and avoiding a multiply) is also possible: |
|
// RandU64ToDouble<PositiveValueT, false, 1>(); => U(0, 2) |
|
// RandU64ToDouble<PositiveValueT, false, -1>(); => U(0, 0.5) |
|
// |
|
|
|
// Tristate types controlling the output. |
|
struct PositiveValueT {}; |
|
struct NegativeValueT {}; |
|
struct SignedValueT {}; |
|
|
|
// RandU64ToDouble is the double-result variant of RandU64To, described above. |
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0> |
|
inline double RandU64ToDouble(uint64_t bits) { |
|
static_assert(std::is_same<Signed, PositiveValueT>::value || |
|
std::is_same<Signed, NegativeValueT>::value || |
|
std::is_same<Signed, SignedValueT>::value, |
|
""); |
|
|
|
// Maybe use the left-most bit for a sign bit. |
|
uint64_t sign = std::is_same<Signed, NegativeValueT>::value |
|
? 0x8000000000000000ull |
|
: 0; // Sign bits. |
|
|
|
if (std::is_same<Signed, SignedValueT>::value) { |
|
sign = bits & 0x8000000000000000ull; |
|
bits = bits & 0x7FFFFFFFFFFFFFFFull; |
|
} |
|
if (IncludeZero) { |
|
if (bits == 0u) return 0; |
|
} |
|
|
|
// Number of leading zeros is mapped to the exponent: 2^-clz |
|
int clz = base_internal::CountLeadingZeros64(bits); |
|
// Shift number left to erase leading zeros. |
|
bits <<= IncludeZero ? clz : (clz & 63); |
|
|
|
// Shift number right to remove bits that overflow double mantissa. The |
|
// direction of the shift depends on `clz`. |
|
bits >>= (64 - DBL_MANT_DIG); |
|
|
|
// Compute IEEE 754 double exponent. |
|
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the |
|
// exponent to account for that. |
|
const uint64_t exp = |
|
(std::is_same<Signed, SignedValueT>::value ? 1023U : 1022U) + |
|
static_cast<uint64_t>(ExponentBias - clz); |
|
constexpr int kExp = DBL_MANT_DIG - 1; |
|
// Construct IEEE 754 double from exponent and mantissa. |
|
const uint64_t val = sign | (exp << kExp) | (bits & ((1ULL << kExp) - 1U)); |
|
|
|
double res; |
|
static_assert(sizeof(res) == sizeof(val), "double is not 64 bit"); |
|
// Memcpy value from "val" to "res" to avoid aliasing problems. Assumes that |
|
// endian-ness is same for double and uint64_t. |
|
std::memcpy(&res, &val, sizeof(res)); |
|
|
|
return res; |
|
} |
|
|
|
// RandU64ToFloat is the float-result variant of RandU64To, described above. |
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0> |
|
inline float RandU64ToFloat(uint64_t bits) { |
|
static_assert(std::is_same<Signed, PositiveValueT>::value || |
|
std::is_same<Signed, NegativeValueT>::value || |
|
std::is_same<Signed, SignedValueT>::value, |
|
""); |
|
|
|
// Maybe use the left-most bit for a sign bit. |
|
uint64_t sign = std::is_same<Signed, NegativeValueT>::value |
|
? 0x80000000ul |
|
: 0; // Sign bits. |
|
|
|
if (std::is_same<Signed, SignedValueT>::value) { |
|
uint64_t a = bits & 0x8000000000000000ull; |
|
sign = static_cast<uint32_t>(a >> 32); |
|
bits = bits & 0x7FFFFFFFFFFFFFFFull; |
|
} |
|
if (IncludeZero) { |
|
if (bits == 0u) return 0; |
|
} |
|
|
|
// Number of leading zeros is mapped to the exponent: 2^-clz |
|
int clz = base_internal::CountLeadingZeros64(bits); |
|
// Shift number left to erase leading zeros. |
|
bits <<= IncludeZero ? clz : (clz & 63); |
|
// Shift number right to remove bits that overflow double mantissa. The |
|
// direction of the shift depends on `clz`. |
|
bits >>= (64 - FLT_MANT_DIG); |
|
|
|
// Construct IEEE 754 float exponent. |
|
// In the Signed case, bits is a 63-bit number with a 0 msb. Adjust the |
|
// exponent to account for that. |
|
const uint32_t exp = |
|
(std::is_same<Signed, SignedValueT>::value ? 127U : 126U) + |
|
static_cast<uint32_t>(ExponentBias - clz); |
|
constexpr int kExp = FLT_MANT_DIG - 1; |
|
const uint32_t val = sign | (exp << kExp) | (bits & ((1U << kExp) - 1U)); |
|
|
|
float res; |
|
static_assert(sizeof(res) == sizeof(val), "float is not 32 bit"); |
|
// Assumes that endian-ness is same for float and uint32_t. |
|
std::memcpy(&res, &val, sizeof(res)); |
|
|
|
return res; |
|
} |
|
|
|
template <typename Result> |
|
struct RandU64ToReal { |
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0> |
|
static inline Result Value(uint64_t bits) { |
|
return RandU64ToDouble<Signed, IncludeZero, ExponentBias>(bits); |
|
} |
|
}; |
|
|
|
template <> |
|
struct RandU64ToReal<float> { |
|
template <typename Signed, bool IncludeZero, int ExponentBias = 0> |
|
static inline float Value(uint64_t bits) { |
|
return RandU64ToFloat<Signed, IncludeZero, ExponentBias>(bits); |
|
} |
|
}; |
|
|
|
inline uint128 MultiplyU64ToU128(uint64_t a, uint64_t b) { |
|
#if defined(ABSL_HAVE_INTRINSIC_INT128) |
|
return uint128(static_cast<__uint128_t>(a) * b); |
|
#elif defined(ABSL_INTERNAL_USE_UMUL128) |
|
// uint64_t * uint64_t => uint128 multiply using imul intrinsic on MSVC. |
|
uint64_t high = 0; |
|
const uint64_t low = _umul128(a, b, &high); |
|
return absl::MakeUint128(high, low); |
|
#else |
|
// uint128(a) * uint128(b) in emulated mode computes a full 128-bit x 128-bit |
|
// multiply. However there are many cases where that is not necessary, and it |
|
// is only necessary to support a 64-bit x 64-bit = 128-bit multiply. This is |
|
// for those cases. |
|
const uint64_t a00 = static_cast<uint32_t>(a); |
|
const uint64_t a32 = a >> 32; |
|
const uint64_t b00 = static_cast<uint32_t>(b); |
|
const uint64_t b32 = b >> 32; |
|
|
|
const uint64_t c00 = a00 * b00; |
|
const uint64_t c32a = a00 * b32; |
|
const uint64_t c32b = a32 * b00; |
|
const uint64_t c64 = a32 * b32; |
|
|
|
const uint32_t carry = |
|
static_cast<uint32_t>(((c00 >> 32) + static_cast<uint32_t>(c32a) + |
|
static_cast<uint32_t>(c32b)) >> |
|
32); |
|
|
|
return absl::MakeUint128(c64 + (c32a >> 32) + (c32b >> 32) + carry, |
|
c00 + (c32a << 32) + (c32b << 32)); |
|
#endif |
|
} |
|
|
|
// wide_multiply<T> multiplies two N-bit values to a 2N-bit result. |
|
template <typename UIntType> |
|
struct wide_multiply { |
|
static constexpr size_t kN = std::numeric_limits<UIntType>::digits; |
|
using input_type = UIntType; |
|
using result_type = typename random_internal::unsigned_bits<kN * 2>::type; |
|
|
|
static result_type multiply(input_type a, input_type b) { |
|
return static_cast<result_type>(a) * b; |
|
} |
|
|
|
static input_type hi(result_type r) { return r >> kN; } |
|
static input_type lo(result_type r) { return r; } |
|
|
|
static_assert(std::is_unsigned<UIntType>::value, |
|
"Class-template wide_multiply<> argument must be unsigned."); |
|
}; |
|
|
|
#ifndef ABSL_HAVE_INTRINSIC_INT128 |
|
template <> |
|
struct wide_multiply<uint64_t> { |
|
using input_type = uint64_t; |
|
using result_type = uint128; |
|
|
|
static result_type multiply(uint64_t a, uint64_t b) { |
|
return MultiplyU64ToU128(a, b); |
|
} |
|
|
|
static uint64_t hi(result_type r) { return Uint128High64(r); } |
|
static uint64_t lo(result_type r) { return Uint128Low64(r); } |
|
}; |
|
#endif |
|
|
|
} // namespace random_internal |
|
} // namespace absl |
|
|
|
#endif // ABSL_RANDOM_INTERNAL_DISTRIBUTION_IMPL_H_
|
|
|